高三一轮复习资料知识点详解
- 格式:doc
- 大小:1.82 MB
- 文档页数:38
高三地理一轮复习的知识点分析(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高三地理一轮复习的知识点分析在学习上,注重理论联系实际,关注社会热点,培养应用能力,如让学生掌握地理学科广泛应用和社会价值性,运用地理知识和技能,去解释一些自然现象,解决一些实际的社会问题。
高中数学一轮总复习数与代数知识点详解在高中数学的学习中,数与代数是一个重要的知识点,涉及到了数的运算、代数式的化简、方程等内容。
本文将详细解析高中数学一轮总复习中数与代数的知识点。
一、数的运算1.整数运算在整数运算中,我们需要掌握整数的加法、减法、乘法和除法。
整数的加法和减法运算按照正负数的规则进行,乘法和除法运算需要注意正负数相乘的规则。
2.分数运算分数是整数除法的结果,我们需要了解分数的加法、减法、乘法和除法运算的规则,同时也需要掌握化简分数的方法。
3.小数运算小数运算包括加法、减法、乘法和除法,需要特别注意小数的位数对齐,以及运算结果的精确度。
4.百分数运算百分数是将分数表示的百分数转化为小数表示的百分数。
百分数运算包括百分数的加法、减法、乘法和除法,需要注意将百分数转化为小数进行运算。
二、代数式的化简1.代数式的基本概念代数式由常数、变量和运算符号组成,涉及到代数式的基本概念,比如多项式、单项式、系数、字母等。
2.代数式的合并同类项合并同类项是化简代数式的基本方法之一,需要将具有相同字母的项合并为一个项,并按照系数的大小进行排序。
3.代数式的提公因式提公因式也是化简代数式的常用方法,通过找出各项的公因式并提取出来,可以简化代数式的复杂度。
4.代数式的分解因式分解因式是将代数式因式分解的过程,需要掌握一些常用的因式分解公式,比如平方差公式、完全平方公式等。
5.代数式的乘法公式代数式的乘法公式包括平方公式、差积公式、和差积公式等,通过运用这些公式可以简化代数式的乘法运算。
三、方程1.一元一次方程一元一次方程是一个未知数的一次方程,我们需要掌握解一元一次方程的基本方法,包括化简方程、移项、合并同类项、解得未知数等。
2.一元二次方程一元二次方程是一个未知数的二次方程,我们需要掌握解一元二次方程的基本方法,包括配方法、因式分解法、求根公式等。
3.二元一次方程组二元一次方程组是两个未知数的一次方程组,我们需要掌握解二元一次方程组的基本方法,包括代入法、消元法等。
专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //nD .若m //α,m ⊂β,αβ=n ,则m //n例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是( ). (1)α、β都垂直于平面r ,那么α∥β. (2)α、β都平行于平面r ,那么α∥β. (3)α、β都垂直于直线l ,那么α∥β.(4)如果l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β,那么α∥β A .0B .1C .2D .3例3.(四川·高考真题(文))下列命题正确的是( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行 B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥ 【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件. (2)结合题意构造或绘制图形,结合图形作出判断. (3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等. 题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ; ③//EN 平面1ADB ; ④1//A M 平面1ADB , 错误的序号为___________.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A.B.C.D.例7.(2023·全国·高三专题练习)如图,AB是圆O的直径,点C是圆O上异于,A B的点,直线PC 平面ABC,,E F分别是PA,PC的中点.记平面BEF与平面ABC的交线为l,求证:直线l//平面PAC【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可.题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD 上.若EF∥平面AB1C,则线段EF的长度等于________.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.证明:MN ∥平面C 1DE .例10.如图,在直四棱柱ABCD A 1B 1C 1D 1中,E 为线段AD 上的任意一点(不包括A ,D 两点),平面CEC 1∩平面BB 1D =FG .证明:FG ∥平面AA 1B 1B .【总结提升】 1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识. (2)利用线面平行性质必须先找出交线. 2.易错提醒(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用. 题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______.例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 12AB AA ==.(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【规律方法】 1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. (3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”. (5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //n D .若m //α,m ⊂β,αβ=n ,则m //n【答案】D 【解析】 【分析】举例说明判断A ,B ,C ;利用线面平行的性质判断D 作答. 【详解】如图,长方体1111ABCD A B C D -中,平面1111D C B A 视为平面α,对于A ,直线AB 视为m ,直线11A B 视为n ,满足m //α,m //n ,而n ⊂α,A 不正确;对于B,直线AB视为m,直线BC视为n,满足m//α,n//α,而m与n相交,B不正确;A D视为n,满足m//α,n⊂α,显然m与n是异面直线,C不正确;对于C,直线AB视为m,直线11对于D,由直线与平面平行的性质定理知,D正确.故选:D例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是().(1)α、β都垂直于平面r,那么α∥β.(2)α、β都平行于平面r,那么α∥β.(3)α、β都垂直于直线l,那么α∥β.(4)如果l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β,那么α∥βA.0B.1C.2D.3【答案】D【解析】【分析】由面面平行的判定定理及其相关结论分析可得结果.【详解】由面面平行的判定定理分析可知(1)错,(2),(3),(4)正确.故选:D例3.(四川·高考真题(文))下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】【详解】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥【答案】A【解析】【分析】利用线面,面面位置关系逐项分析即得.【详解】对于A ,如图,n ⊂α,n n βαβ⊂⇒⋂=,结合m α,m β,可知m n ∥,故A 正确;对于B ,如图,m ,n 可能异面,故B 错误;对于C ,如图,α,β可能相交,故C 错误;对于D ,如图,αβ,可能相交,故D 错误.故选:A .【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ;③//EN 平面1ADB ;④1//A M 平面1ADB ,错误的序号为___________.【答案】①②④【解析】【分析】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,证明出平面1//A CE 平面1AD B ,利用面面平行的性质结合假设法可判断①②③④的正误.【详解】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,在三棱柱111ABC A B C -中,因为11//BB CC 且11BB CC =,所以,四边形11BB C C 为平行四边形,则11//BC B C 且11BC B C =,D 、E 分别为BC 、11B C 的中点,则1//CD B E 且1CD B E =,故四边形1CDB E 为平行四边形,则1//CE B D ,CE ⊄平面1ADB ,1B D ⊂平面1ADB ,故//CE 平面1ADB ,同理可证四边形1BB ED 为平行四边形,则11////DE BB AA ,11DE BB AA ==,则四边形1AA ED 为平行四边形,所以,1//A E AD ,1A E ⊄平面1ADB ,AD ⊂平面1ADB ,则1//A E 平面1ADB ,1CE A E E =,故平面1//A CE 平面1AD B ,EN ⊂平面1A CE ,则//EN 平面1ADB ,③对;对于①,若//EF 平面1ADB ,EF EN E =,则平面//EFN 平面1ADB ,因为过点E 且与平面1ADB 平行的平面只有一个,矛盾,故①错,同理可知,②④均错.故答案为:①②④.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A .B .C .D .【答案】BCD【解析】【分析】利用线面平行判定定理逐项判断可得答案.【详解】对于选项A,OQ∥AB,OQ与平面MNQ是相交的位置关系,故AB和平面MNQ不平行,故A错误;对于选项B,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ,故B正确;对于选项C,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:故C正确;对于选项D,由于AB∥CD∥NQ,结合线面平行判定定理可知AB∥平面MNQ:故D正确;故选:BCD例7.(2023·全国·高三专题练习)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,,E F 分别是PA ,PC 的中点.记平面BEF 与平面ABC 的交线为l ,求证:直线l //平面PAC【答案】证明见解析【解析】【分析】先通过//EF AC 可得出//EF 平面ABC ,再利用线面平行的性质即可证明.【详解】因为,E F 分别是,PA PC 的中点,所以//EF AC ,又因为AC ⊂平面ABC ,EF ⊄平面ABC ,所以//EF 平面ABC ,又EF ⊂平面BEF ,平面BEF 与平面ABC 的交线为l ,所以//EF l ,而l ⊄平面PAC ,EF ⊂平面PAC ,所以//l 平面P AC .【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可. 题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.【解析】【分析】根据直线与平面平行的性质定理可得//EF AC ,再根据E 为AD 的中点可得F 为CD 的中点,从而根据三角形的中位线可得.【详解】如图:因为//EF 平面1AB C ,EF ⊂平面DABC ,且平面1A C B 平面ABCD AC =,所以//EF AC ,又因为E 为AD 的中点,所以F 为CD 的中点, 所以12EF AC =,因为正方体的棱长为2.所以AC =所以EF =故答案为.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M,N分别是BC,BB1,A1D的中点.证明:MN∥平面C1DE.【答案】见解析【解析】证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1//=DC,可得B1C//=A1D,故ME//=ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.例10.如图,在直四棱柱ABCDA1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1∩平面BB1D=FG.证明:FG∥平面AA1B1B.【答案】见解析【解析】证明:在直四棱柱ABCDA1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1∩平面BB1D=FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.【总结提升】1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识.(2)利用线面平行性质必须先找出交线.(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用.题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6【答案】C【解析】【分析】由面面平行的性质结合题意可确定点M 所在的平面,再由平面几何的性质即可确定BM 的值为最大值时的位置,即可求解【详解】如图所示,取G ,H 分别为棱11B C 和11D C 的中点,连接11,,,BG DH BD B D ,由题意易知1111,BF B D GH B D ∥∥,所以BF GH ∥;又易知AF BG ∥,故可以证明平面BGHD ∥平面AEF ;又BM ∥平面AEF ,由面面平行的性质可知M ∈平面BGHD ,所以由题意可知M 在等腰梯形BGHD 四条边上运动,过点H 作HQ BD ⊥,交BD 于点Q ,由题意可知BD GH DH BG DQ ====所以HQ BQ BD DQ =-=所以BH又BD BH ==,所以故当M 与D 点重合时,BM 的值为最大值,此时BM BD ==例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______. 【答案】52【解析】【分析】根据面面平行的性质,证得//CD AB ,结合CD PC AB PA =,即可求解. 【详解】由题意,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB , 根据面面平行的性质,可得//CD AB ,所以CD PC AB PA =, 因为2PC =,3CA =,1CD =,所以15522CD PA AB PC ⋅⨯===.故答案为:52. 例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF【答案】证明见解析【解析】【分析】根据1//DF EC ,可证明1//EC 平面BDF ;又//BF AE ,可得//AE 平面BDF .进而根据线面平行证明面面平行.【详解】证明:在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点, 所以11111,22DE DD C F CC ==. 因为11CC DD =,且11//CC DD ,所以1DE C F =,且1//DE C F ,所以四边形1DEC F 是平行四边形,所以1//DF EC 又DF ⊂平面BDF ,1EC ⊄平面BDF ,所以1//EC 平面BDF .同理,//BF AE ,又BF ⊂平面BDF ,AE ⊄平面BDF , 所以//AE 平面BDF .又1AE EC E ⋂=,1,AE EC ⊂平面1AEC ,所以平面1//AEC 平面BDF 例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 1AB AA =(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【答案】(1)证明见解析;(2)1.【解析】【详解】试题分析:(1)要证明1A C ⊥平面11BB D D ,只要证明1A C 垂直于平面11BB D D 内的两条相交直线即可,由已知可证出1A C ⊥BD ,取11B D 的中点为1E ,通过证明四边形11A OCE 为正方形可证1A C ⊥1E O .由线面垂直的判定定理问题得证;(2)由已知1A O 是三棱柱ABD ﹣A 1B 1D 1的高,由此能求出三棱柱ABD ﹣A 1B 1D 1的体积 试题解析:(Ⅰ)∵四棱柱ABCD ﹣A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=,由棱柱的性质可得BB 1和DD 1平行且相等,故四边形BB 1D 1D 为平行四边形,故有BD 和B 1D 1平行且相等.而BD 不在平面CB 1D 1内,而B 1D 1在平面CB 1D 1内,∴BD ∥平面CB 1D 1.同理可证,A 1BCD 1为平行四边形,A 1B ∥平面CB 1D 1.而BD 和A 1B 是平面A 1BD 内的两条相交直线,故有平面A 1BD ∥平面CD 1B 1 .(Ⅱ)由题意可得A 1O 为三棱柱ABD ﹣A 1B 1D 1的高.三角形A 1AO 中,由勾股定理可得A 1O===1,∴三棱柱ABD ﹣A 1B 1D 1的体积V=S △ABD •A 1O=•A 1O=×1=1.【规律方法】1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.。
高三数学第一轮复习知识点总结高三数学第一轮复习知识点总结第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。
难度比较小。
第三:数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和立体几何。
在里面重点考察两个方面:一个是证明;一个是计算。
第五:概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六:解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七:押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。
这是高考所考的七大板块核心的考点。
知识点总结1 集合与简易逻辑一、集合(一)元素与集合1.集合的含义某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素.(2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现.(3)无序性:集合与其组成元素的顺序无关.3.元素与集合的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种.4.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图).5.常用数集的表示 数集 自然数集 正整数集 整数集 有理数集 实数集符号 NN ∗或N + Z Q R (二)集合间的基本关系1.集合A 为集合B 的子集 ,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集:若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB (或B A ⊃≠). 读作“A 真包含于B ”或“B 真包含A ”.(3)相等:对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A =B .(4)空集:把不含任何元素的集合叫做空集,记作∅;(三)集合的基本运算(1)交集:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂, 即{}|A B x x A x B ⋂=∈∈且.(2) 并集:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,(3) 即{}|A B x x A x B ⋃=∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且.(四)集合的运算性质(1)集合的运算性质:①交换律:A ∪B =B ∪A ;A ∩B =B ∩A ;②结合律:(A ∪B )∪C =A ∪(B ∪C );(A ∩B )∩C =A ∩(B ∩C );③分配律:(A ∩B )∪C =(A ∪C )∩(B ∪C );(A ∪B )∩C =(A ∩C )∪(B ∩C );【集合常用结论】1.子集个数:含有n个元素的有限集合M,其子集个数为2n;其真子集个数为2n-1;其非空子集个数为2n-1;其非空真子集个数为2n-2.2. 是任何集合的子集,是任何非空集合的真子集.3.∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B);4.A∪B=A⇔B⊆A;A∩B=B⇔B⊆A.5.集合运算中的常用方法若已知的集合是不等式的解集,用数轴求解;若已知的集合是点集,用数形结合法求解;若已知的集合是抽象集合,用Venn图求解.二、简易逻辑(一).全称命题、特称(存在性)命题及其否定(1)全称命题p:∀x∈M,p(x),其否定为特称(存在性)命题:¬p:∃x0∈M,¬p(x0).(2)特称(存在性)命题p:∃x0∈M,p(x0),其否定为全称命题:¬p:∀x∈M,¬p(x).(二).充分条件与必要条件的判定方法(1)定义法:若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且q⇏p,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)集合法:利用集合间的包含关系。
高三数学一轮复习知识点详细高三是整个中学生活的关键时期,对于将要面临高考的学生们来说,备考是最重要的任务之一。
而高考数学作为一门重要的科目,需要一轮复习提高自己的数学水平和应试能力。
本文将详细介绍高三数学一轮复习的知识点。
一、代数与函数在代数与函数中,我们需要重点复习的知识点有:1. 分式方程:包括分式的乘除与分式的方程与不等式;2. 二次函数:掌握二次函数的定义、性质以及相关的图像变换;3. 复杂函数的运算:包括函数的合并、分解、复合与反函数;4. 分式与整式的混合运算:理解分式与整式的加减及乘法与整式的除法运算;5. 二元一次方程组:熟悉二元一次方程组的解法;6. 等差数列与等比数列:掌握等差数列与等比数列的性质,并进行相关题目的解答;7. 幂指函数:理解幂函数与指数函数的图像变换与性质。
二、空间与几何在空间与几何中,我们需要重点复习的知识点有:1. 空间向量:包括向量的定义、加法、数量积与向量的共线与垂直关系;2. 圆锥曲线:掌握圆、椭圆、抛物线和双曲线的定义、相关性质与图像变换;3. 球与球面上的直线与平面:认识球与球面上直线与平面的性质、夹角、交点等;4. 空间几何体的体积与表面积:熟悉各种几何体的体积与表面积计算;5. 空间几何体的相交关系:包括平行与垂直关系、位似关系等。
三、数与统计在数与统计中,我们需要重点复习的知识点有:1. 随机事件与概率:理解随机事件的定义与基本性质,掌握概率的计算方法与相关公式;2. 二项式定理:掌握二项式展开的方法与应用;3. 组合数学与排列组合:了解排列组合计算的基本方法与公式,掌握应用技巧;4. 数据的整理与分析:学会收集数据、整理数据、制作统计图与分析统计结果。
四、解析几何在解析几何中,我们需要重点复习的知识点有:1. 平面直角坐标系与向量:理解平面直角坐标系的性质,掌握向量的加法、减法、数量积与向量的共线关系;2. 平面图形的方程:熟悉直线、圆、抛物线、双曲线及椭圆图形的方程;3. 几何变换:掌握平移、旋转、对称与放缩等几何变换的基本概念与性质。
高三数学一轮知识点总结归纳高三数学是学生们备战高考的关键时期,对于数学知识点的总结归纳是非常重要的。
本文将对高三数学一轮知识点进行全面梳理,帮助同学们更好地复习与巩固学习内容。
一、函数与方程1. 函数的性质与图像a. 定义域、值域与奇偶性b. 函数的增减性与最值c. 函数的周期性与对称性d. 常见函数的图像与性质总结2. 一次函数与二次函数a. 一次函数的定义与性质b. 一次函数的图像与常见问题c. 二次函数的定义与性质d. 二次函数的图像与常见问题3. 指数与对数函数a. 指数函数的定义与性质b. 指数函数的图像与常见问题c. 对数函数的定义与性质d. 对数函数的图像与常见问题4. 幂函数与反比例函数a. 幂函数的定义与性质b. 幂函数的图像与常见问题c. 反比例函数的定义与性质d. 反比例函数的图像与常见问题二、三角函数1. 基本概念与性质a. 弧度制与角度制的转换b. 正弦、余弦、正切函数的定义与性质c. 正弦、余弦、正切函数的图像与常见问题2. 三角函数的基本关系a. 三角函数的周期性与对称性b. 三角函数的和差化积与积化和差c. 三角函数的倍角与半角公式3. 解三角函数方程a. 解简单的三角方程b. 解复杂的三角方程c. 解三角方程组与实际问题应用三、数列与数列的表示方法1. 基本概念与通项公式a. 数列的定义与性质b. 等差数列的通项公式与性质c. 等比数列的通项公式与性质2. 数列求和问题a. 等差数列求和与常见问题b. 等比数列求和与常见问题c. 常用数列求和公式总结3. 递推数列与特殊数列a. 递推数列的定义与常见问题b. 斐波那契数列与常见问题c. 等差数列与等比数列的特殊性质四、空间几何与向量1. 点、直线与平面a. 点的定义与性质b. 直线的定义与性质c. 平面的定义与性质2. 空间图形的方程a. 点、直线的位置关系与方程b. 直线与平面的位置关系与方程c. 平面与平面的位置关系与方程3. 向量的基本概念与运算a. 向量的定义与性质b. 向量的加减法与数量积c. 向量的数量积与向量积4. 空间几何的应用a. 点到直线的距离与投影b. 直线与平面之间的夹角与距离c. 空间图形的体积与表面积计算通过以上的知识点总结归纳,我们可以更好地复习数学知识,加深对各个知识点的理解,并且在解题过程中能够迅速找到思路,提高解题效率。
高三语文复习一轮学问点总结高三语文复习一轮学问点:基础学问①字音辨析题要落实三个内容:形近字的读音,多音字的读音,简单误读字的读音等。
由于广东高考中所涉及的注音都是生活中常用的,因此备考中不必纠缠生僻字音。
字形辨析题虽然考试卷中没有出现,但是在(高考(作文))评分中却加大了对错别字的扣分标准,规定每一个错别字就扣一分,所以平常也应留意规范用字。
②(成语)俗语的复习的立足点是要正确理解成语俗语的整体意义,不要望文生义,同时要留意语境的组合与搭配状况及感情色调运用等。
该学问点的复习无捷径可言,平常对成语俗语多加积累了,考试就简单过关。
③病句的复习肯定要依据《考纲》上规定的六种类型来进行。
依据近几年的高考试卷分析,可知有关病句常考到十三种题型,第一轮复习要求对六类病句十三种题型,有一个全面的清晰的相识,最好各记一两个例句。
高三语文复习一轮学问点:古代诗文的复习①文言文的复习———留意课本文言文的考查,无论是实词、虚词、文句理解,还是语段翻译,各个学问点的考核无一不是源自课本,可见,文言文复习首先要复习好课本。
②诗歌鉴赏的复习对于诗歌的鉴赏,同学们普遍感到难度较大。
复习时肯定要处理好三个问题:一是阅读古诗词,要先解决语言的转换问题,扫除解读赏析中的障碍,然后做其他的题目。
因此,首轮复习时积累肯定量的古诗词就显得尤为必要了。
二是要全面了解高考试题的命制类型和出题设问的角度等,做到心中有数。
三是要形成清晰的答题思路和答题模式。
高三语文复习一轮学问点:现代文阅读复习现代文阅读分为两种,一种是科技类,包括自然科学与社会科学;一种是文学作品,以小说、(散文)为主。
科技文阅读,因为它的科学性、学问性和逻辑性比较突出,复习备考要训练整体把握材料的实力。
同时,答题时要能很快找到相对应的阅读区间。
文学作品,虽然不同作品表现的思想内容、艺术效果不同,但其解读(方法)大同小异,这就要求我们了解一些常规的解读方法。
例如,整体把握,以文解文;读懂题目要求,明确答题角度。
一轮复习高三知识点高三学生在备战高考时,需要进行全面而系统的复习。
一轮复习是为了巩固和回顾高三学年所学的全部知识点,并提高学习效率和成绩。
本文将以中文语文、数学、英语和物理为例,介绍高三知识点的一轮复习方法和注意事项。
1. 中文语文一轮复习中,中文语文的重点在于阅读理解、写作和应用题的训练。
学生可以通过阅读各种文学作品和实景材料,提高自己的阅读理解能力。
同时,要注重写作训练,如议论文、说明文和应用文等。
此外,还可以通过做模拟题和历年高考题,熟悉考试题型和解题思路。
2. 数学高三数学的一轮复习主要包括基础知识巩固、解题方法总结和难点突破。
学生需要重点复习数学公式、函数、方程、不等式等基础知识,并掌握各类题型的解题方法。
此外,还要注重做一些难度较高的试题,提高自己的解题能力。
3. 英语英语一轮复习主要包括听力、阅读、写作和翻译的训练。
学生可以通过听录音、看英文电影和做听力练习,提高自己的听力水平。
同时,要多读英文书籍和文章,拓宽阅读面,提高阅读理解能力。
此外,还要注重写作和翻译的训练,多做一些模拟题和真题。
4. 物理物理的一轮复习主要包括基本概念的回顾、公式的记忆和解题技巧的掌握。
学生需要重点理解和记忆各个物理概念,并熟练运用物理公式进行计算。
同时,要总结归纳解题方法和技巧,以便在考试中能够快速准确地解题。
总结:高三知识点的一轮复习需要注重整体规划和有针对性的练习。
学生需要坚持每天的复习计划,分配好时间,并结合自己的学习特点和重点进行复习。
此外,还可以利用各种辅助材料和资源,如习题集、辅导书和互联网资源等,提高复习效果。
最后,要保持积极的心态和信心,相信自己的能力,努力取得优异的成绩。
高三数学一轮知识点总结大全高三是所有考生的关键时刻,是为了应对高考而付出努力的最后一年。
数学作为高考必考科目之一,具有重要的分数和排名权重。
为了帮助高三学生更好地备考,下面将对高三数学一轮知识点进行全面总结。
一、函数与方程1. 函数的定义:函数是一种特殊的关系,对于定义域内的每个自变量都有唯一对应的因变量。
2. 函数的性质:奇偶性、周期性、增减性、单调性等。
3. 方程与不等式的解:通过求解方程或者不等式,求取未知数的取值范围。
二、数列与递推关系1. 等差数列:一种常见的数列,其中任意两个相邻项之间的差值为常数。
2. 等比数列:一种常见的数列,其中任意两个相邻项之间的比值为常数。
3. 递推关系:通过已知项和递推关系式,求解数列中任意一项的值。
三、平面几何1. 直线与曲线:通过方程或者性质,判断直线与曲线的关系。
2. 圆与其相关概念:弦、弧、切线、切点等。
3. 三角形与多边形:根据性质和定理,解决三角形和多边形相关的问题。
四、空间几何1. 空间中的直线与平面:通过方向向量和点的坐标等信息,求解直线与平面的关系。
2. 空间中的角与距离:根据空间几何相关定理,求解角的大小和点的距离。
3. 空间中的曲线与曲面:通过方程和性质,求解曲线和曲面的特性。
五、立体几何1. 立体的体积和表面积:求解各种形状的体积和表面积,例如(球、圆柱、锥、棱柱、棱锥等)。
2. 空间向量:矢量的定义、性质、运算等。
3. 空间解析几何:点、直线、平面的坐标和性质。
六、概率与统计1. 随机事件:基本概念、性质和运算。
2. 概率计算:频率、概率、事件间的关系和计算方法。
3. 排列组合与分布:排列、组合、二项分布、正态分布等。
七、数学证明与推理1. 数学证明的基本方法:直接证明法、反证法、数学归纳法等。
2. 数学运算与性质:算术运算、整除性质、同余关系等。
3. 数学推理与连续性:数学推理的过程和方法,连续性的概念和性质。
八、复数与数域1. 复数的定义与运算:复数的基本运算、共轭、模长等。
Unit 1Living well时态、语态多样化1.该学习顾问每周工作4个小时。
The advisor is expected to work 4 hours per week.2.李越因为班级所做的一切被评为“每周之星”。
Li Yue has been awarded the title of “Star Student of the Week” for what she did for our class.3.你亲自种植的树长得很好,全班同学决定叫它“Sue Wood”。
The tree you planted yourself is growing well, and the whole class decided to name it Sue Wood.4.最近网上做了一项关于“当我们生活或者学习中遇到麻烦时,我们青少年应该向谁寻求帮助”的调查。
A survey was recently held on the Internet about who we teenagers will turn to when we meet troubles in our life or study.用提示词的正确形式填空1.My uncle will_never_forget (nev-er forget) what_happened (happen) to him yesterday.2.Worse still, he was_fined (fi-ne) by the police.How he regretted what he had_done(do)!3.The book has_been_(be) pop-ular since it was firstly published.Ⅰ.词海拾贝基础记忆1.suitable adj.适合的;适宜的2.adapt v t. 使适应;改编3.conduct n. 行为;品行v t. 指挥;管理;主持4.abolish v t. 废除;废止5.resign v i.& v t. 辞职;辞去(工作、职位等)6.companion n. 同伴;伙伴7.adequate adj. 足够的;充分的8.profit n. 收益;利润;盈利9.disability n.伤残;无力;无能→disabled adj.伤残的10.ambition n.雄心;野心→ambitious adj.有雄心的;有野心的11.beneficial adj.有益的;受益的→benefit n.利益;好处v.受益;有益于12.absence n.缺席;不在某处→absent adj.缺席的;不在的13.annoy v t.使……不悦;惹恼→annoyed adj.颇为生气的→annoying adj.使人烦恼的→annoyance n.烦恼14.encouragement n.鼓励;奖励→encourage v.鼓励;鼓舞→courage n.勇气;胆量15.assistance n.协助;援助→assist v.帮助;援助→assistant n.助手16.congratulate v t.祝贺;庆贺→congratulation n.祝贺;贺词17.access n.(接近的)方法;通路;可接近性→accessible adj.可接近的;可进入的;可使用的18.approval n.赞成;认可→approve v.支持;赞成;同意→disapprove v.不赞成语境记忆19.My husband's talking with full food in his mouth annoys me. Although I am annoyed with him about his annoying habit, he can't get rid of it.(annoy)20.Your suggestion is very beneficial and I benefited a lot from it.(benefit)21. Robert is a very ambitious man and one of his ambitions is to travel in Antarctic.(ambition)篇章记忆Tom is ambitious.One of his ambitions was to get an architect certificate. But when he was conducting experiments in the basement, an oil tank on the bench exploded, sending him flying outwards through the exit. He lost his eyesight as well as 70% of his hearing. In other words, he was disabled.Ⅱ.短语互译1.换句话说in_other_words2.适合adapt_to3.切去;省略;停止(做某事) cut_out4.上气不接下气out_of_breath5.总而言之all_in_all6.闲坐着sit_around7.as well as 和;也8.in many ways 在很多方面9.make fun of 取笑10.never mind 不必担心11.all the best (口语)(祝你)一切顺利12.meet with 遇到;经历;会晤Ⅲ.句型一览ed to do (sth.)过去常常做……I used_to_climb_trees (过去常常爬树), swim and play football.2.every time引导的时间状语从句Every_time_I_returned_after_an_absence (每次我在缺课后回来), I felt stupid because I was behind the others.3.现在分词短语作伴随状语I have a very busy life with no time to sit around feeling_sorry_for_myself (顾影自怜).4.as+adj.+a/an+n.+as ... 和……一样……Just accept them for who they are, and give them encouragement to_live_as_rich_and_full_a_life_as_you_do (像你一样过得丰富多彩、充实美满).Ⅳ.语法自测——动词不定式用所给动词的适当形式填空1.George returned after the war, only to_be_told (tell) that his wife had left him.2.It is an honor for me to_be_invited (invite) to attend the meeting.3.He pretended to_be_working (work) hard when his boss passed him.4.Women and children were the first to_be_saved (save) in the boats.5.The man downstairs found it difficult to_get (get) to sleep.①浙江阅读A)这种野兔能否尽快地适应并生存下来是一个大问题。
(1)adapt to ... 适应于……adapt oneself to ... 使某人适应于…… adapt sth. from ... 根据……改编某物 be adapted for ... 为……而改写/改编 (2)adaptable adj . 能适应的;可修改的 (3)adaptation n . 适应;改编;改写本 an adaptation of ……的改写本 ②Novels are often adapted for the stage. 小说常常被改编为戏剧。
③As far as I know, the TV play is adapted from a true story. 据我所知,这部电视剧改编自真人真事。
【对点练习】 对比填空⎩⎪⎨⎪⎧①After graduation from college , I gradually adapted toliving on my own.②When you go to a new country , you must adapt yourself to new manners and customs.⎩⎪⎨⎪⎧③The film Tiny Times is an adaptation of Guo Jingming's novel of the same name.④The film Tiny Times is adapted from Guo Jingming's novel of the same name.in the absence of sth. 缺乏某物 absence of mind 心不在焉 (2)absent adj . 不在的;缺席的be absent from ... 不参加……;缺席……①But conscientiousness in the absence of social skills can lead to problems.(2013·江苏任务型阅读)但是缺乏社会技巧的良知会导致问题。
②His absence of mind during driving nearly caused an accident. 他驾车时心不在焉,差点肇事。
【对点练习】 完成句子①然而,在缺乏英语环境的情况下学习英语相当困难。
However, learning English as a foreign language is very difficult in_the_absence_of_a native language environment.②汤姆因病没去上学。
Tom was_absent_from school because he was ill.(2)annoyed adj . 感到恼火的;觉得生气的be annoyed with sb. 对某人生气be annoyed at/about sth. 因某事生气be annoyed by ... 被……惹恼(3)annoying adj. 使人不高兴的;恼人的;烦人的①It really annoys me when people forget to say thanks.当有人连谢谢都忘记说时,我确实感到不愉快。