当前位置:文档之家› 7.3 LMS自适应滤波器

7.3 LMS自适应滤波器

7.3  LMS自适应滤波器
7.3  LMS自适应滤波器

7.3 LMS自适应滤波器

自适应滤波器实际上是一种能够自动调整本身参数的特殊维纳滤波器,在设计时不需要预先知道关于输入信号和噪声的统计特性,它能够在工作过程中逐步“了解”或估计出所需的统计特性,并以此为依据自动调整自身的参数,以达到最佳滤波效果。一旦输入信号的统计特性发生变化,它又能够跟踪这种变化,自动调整参数,使滤波器性能重新达到最佳。

图7-3 自适应滤波器原理图

自适应滤波器由参数可调的数字滤波器(或称为自适应处理器)和自适应算法两部分组成,如图7-3所示。参数可调数字滤波器可以是FIR数字滤波器或IIR

数字滤波器,也可以是格型数字滤波器。输入信号x(n)通过参数可调数字滤波器后产生输出信号(或响应) y(n),将其与参考信号(或称期望响应) d(n)进行比较,形成误差信号e(n),并以此通过某种自适应算法对滤波器参数进行调整,最终使e(n)的均方值最小。

尽管自适应滤波器具有各种不同的算法和结构,但是,其最本质特征是始终不变的。这种最本质的特征可以概括为:自适应滤波器依据用户可以接受的准则或性能规范,在未知的而且可能是时变的环境中正常运行,而无须人为的干预。本章主要讨论的是基于维纳滤波器理论的最小均方(LMS)算法,可以看到LMS算法的主要优点是算法简单、运算量小、易于实现;其主要缺点是收敛速度较慢,而且与输入信号的统计特性有关。

7.3.1 LMS算法基本原理

1. 自适应线性滤波器

图7-4 单输入自适应线性滤波器图7-5 多输入自适应线性滤波器

自适应线性滤波器是一种参数可自适应调整的有限冲激响应(FIR)数字滤波器,具有非递归结构形式。因为它的分析和实现比较简单,所以在大多数自适应信号处理系统中得到了广泛应用。如图7-4所示的是自适应线性滤波器的一般形式。

输入信号矢量x(n)的L+1个元素,既可以通过在同一时刻对L+1个不同信号源取样得到,也可以通过对同一信号源在n以前L+1个时刻取样得到。前者称为多输入情况,如图7-5所示,后者称为单输入情况如图7-4所示,这两种情况下输入信号矢量都用x(n)表示,但应注意它们有如下区别。

单输入情况:

(7-18)

多输入情况:

(7-19)

单输入情况下x(n)是一个时间序列,其元素由一个信号在不同时刻的取样值构成;而多输入情况下x(n)是一个空间序列,其元素由同一时刻的一组取样值构成,相当于并行输入。

对于一组固定的权系数来说,线性滤波器是输出y(n)等于输入矢量x(n)的各元素的线性加权之和。然而实际上权系数是可调的,调整权系数的过程叫做自适应过程。在自适应过程中,各个权系数不仅是误差信号e(n)的函数,而且还可能是输入信号的函数,因此,自适应线性滤波器的输出就不再是输入信号的线性函数。

输入信号和输出信号之间的关系为

单输入情况:

(7-20)

多输入情况:

(7-21)

如图7-4所示的单输入自适应线性滤波器,实际上是一个时变横向数字滤波器,有时称为自适应横向滤波器。它在信号处理中应用很广泛。自适应线性滤波器的L+1个权系数构成一个权系数矢量,称为权矢量,用w(n)表示,即

(7-22) 这样,输出响应表示为

(7-23) 参考响应与输出响应之差称为误差信号,用e(n)表示,即

(7-24) 自适应线性滤波器按照误差信号均方值(或平均功率)最小的准则,即

(7-25) 来自动调整权矢量。

2. 自适应滤波器的性能函数

习惯上常称均方误差为自适应滤波器的性能函数,并记为、

或,

(7-26) 由式(7-24)、(7-25)和式(7-26),均方误差表示式为

(7-27)

在d(n)和x(n)都是平稳随机信号的情况下,输入信号的自相关矩阵

R,d

(n)与x

(n)的互相关矩阵P都是与时间无关的恒定二阶统计,分别定义为

(7-28)

(7-29)

以上二式对应于多输入情况,对于单输入情况,不难写出类似结果。将上二式代入式(7-27),得到均方误差的简单表示形式

(7-30)

为了书写方便这里省略了w(n)的时间标记。从该式可看出,在输入信号和参考响应都是平稳随机信号的情况下,均方误差是权矢量w各分量的二次函数。这就是说,若将上式展开,则w各分量只有一次项和二次项存在。的函数图形是L+2维空间中一个中间下凹的超抛物面,有唯一的最低点,该曲面称为均方误差性能曲面,简称性能曲面,如图7-6所示。自适应是自动调整权系数,使均方误差达到最小值的过程,这相当于沿性能曲面往下搜索最低点。

图7-6 均方误差性能曲面

3. 最速下降法

从前面的讨论中已经知道,在输入信号和参考响应都是平稳随机信号的情况下,自适应线性组合器的均方误差性能曲面是权矢量w(n)的二次函数。由于自相关矩阵为正定的,故此超抛物面向上凹,表示均方误差函数有唯一的最小值,该最

滤波小值所对应的权系数矢量

为自适应滤波器的最佳权矢量,即等于维纳滤波器的权矢量。如果自适应

器的权系数个数大于2,其性能表面的超抛物面仍有唯一的全局最优点。在许多实际应用中,性能曲面的参数,甚至解析表示式都是未知的,因此,只能根据已知的测量数据,采用某种算法自动地对性能曲面进行搜索,寻找最低点,从而得到最佳矢量。最常见的搜索方法是最速下降法(Method of Steepest Descent),它在工程上比较容易实现,有很大的实用价值。下面进行简单讨论。

均方误差性能曲面的梯度用表示,定义为

(7-31) 将式(7-31)代入上式,得到

(7-32)

最小均方误差对应的权矢量称为最佳权矢量或维纳解,用表示。在性能曲面上,该点梯度等于零,即

(7-33)

由此解出

(7-34) 式(7-34)称为维纳—霍夫方程。将上式代入式(7-31),即可得到自适应滤波器的最小均方误差为

(7-35) 利用矩阵运算规则,可以将上式简化为

(7-36)

由式(7-17)可知,只要知道了输入信号的自相关矩阵R和期望响应与输入信号的

难以实现的。一方面,我们通互相

关矢量P,就可以由该式直接得出最佳权矢量。但是在实际应用中,这种方法往往是

常很难得到有关信号和噪声的统计先验知识;另一方面,当R的阶数较高时,直接计算R的逆矩阵有一定的困难。因此,最佳权矢量的实现一般都采用迭代方法,一步一步地在性能表面上搜索,并最终达到最小均方值和实现最佳权矢量。

最速下降法是一种古老而又非常有用的通过迭代寻找极值的方法。从几何意义上来说,迭代调整权矢量的结果是使系统的均方误差沿性能曲面最陡的方向向下搜

索曲面的最低点,曲面的最速下降方向是曲面的负梯度方向,或性能函数

的梯度的反方向连续调整滤波器的权矢量w(n),梯度矢量可以表示为

(7-37) 这样,最速下降法可以表示为

(7-38)

式中,是正值常数,称为收敛因子,用于调整自适应迭代的步长。

为了证明最速下降法满足,即在迭代的每一步都满足在性能表面上下降,将性能函数在处进行一阶泰勒展开,并利用式(7-38),得到

(7-39) 由于收敛因子μ是正值常数,因此,随着的增加,性能函数不断减小,

时,性能函数趋于最小值。

最速下降法的自适应迭代公式可以通过把式(7-32)代入式(7-38)得到,即

(7-40)

最速下降法的稳定性取决于两个因素,一是收敛因子μ的取值,二是自相关矩阵R的特性。定义权误差矢量v(n)为

(7-41)

利用上式和,消去式(7-40)中的互相关矢量,有

(7-42)

式中,为单位阵。式(7-42)再次强调了最速下降法的稳定性是由和控制的。

利用正交相似变换,可以将自相关阵表示为

(7-43)

式中,Q为正交矩阵,矩阵Q的各个列矢量为自相关矩阵R的特征值相对应的特征矢量。为一对角阵,其对角元素为矩阵R的特征值。通常将这些特征值表示为,且均为正实值。每一个特征值对应矩阵Q中一列特征矢量。将式(7-43)代入式(7-42),有

(7-44)

上式两边左乘,并利用正交矩阵的性质,有

(7-45)

定义

(7-46) 有

(7-47)

设的初始值为

(7-48)

再假定自适应滤波器权矢量的初始值为,则上式简化为

(7-49)

考虑矢量的第个模式,则式(7-30)所示的最速下降法的迭代公式变为

(7-50)

式中,为自相关矩阵R的第个特征值,为矢量的第个元素。上式为的一阶齐次方程。若设的初始值为,则该差分方程的解为

(7-51)

由于矩阵R为正定阵,其特征值均为正实值。这样,构成了一个等比级数,其公比为。为了保证最速下降法稳定收敛,必须有

(7-52)

即保证的幅值小于1。当迭代次数时,最速下降法的各个模式均趋于0,而与初始状态无关。这意味着当时,自适应滤波器的权矢量趋于最佳权矢量。将式(7-51)写成矢量形式,有

(7-53)

由式(7-52)可以得到最速下降法收敛因子的限制条件:

(7-54)

式中,为自相关矩阵R的最大的特征值。

最速下降法的主要优点是它的简单性,然而,这种方法需要大量的迭代,才能使算法收敛于充分接近最优解的点。这个性能是由于最速下降法是以围绕当前点的性能表面的一阶近似为基础的。在实际应用中,如果计算的简单性相对重要,则选择最速下降法是合适的。然而,如果收敛速度是更重要的,可以选用牛顿法及其改进方法,这里就不再讨论了。

【例7-2】均方误差性能函数为,初值权值为0,μ=0.05,给出最速下降法的学习曲线。

已知

即按式7-30的形式可得:

由式7-34可得:

由式7-36可得:

由式7-41可知最速下降法学习曲线为:

由7-46式定义可知

由7-41式权误差矢量定义知

可以解得自相关矩阵R的第m个特征值为:

自相关矩阵R的特征值对应特征矢量为列矢量构成的正交阵Q为:

则, ,

所以

在MATLAB中,计算方阵的特征值与特征向量可以使用如下函数:

其中矩阵D的主对角线由A的特征值构成,矩阵V的列矢量由对应的特征向量构成。本例的学习曲线如图7-7所示。

图7-7 最速下降法学习曲线

4. 最小均方(LMS)算法

在最速下降法中,如果我们能够在迭代过程的每一步得到梯度的准确值,并且适当地选择了收敛因子,则最速下降法肯定会收敛于最佳维纳解。然而,在

迭代的每一步准确地测量梯度矢量是难以做到的。因为这需要具有关于自相关矩阵R和互相关矢量P的先验知识。在实际应用中,梯度矢量需要在迭代的每一步依据数据进行估计。换句话说,自适应滤波器的权矢量是根据输入数据在最优准则的控制下不断更新的。Widrow等人提出的最小均方算法(LMS)就是一种以期望响应和滤波器输出信号之间误差的均方值最小为准则,依据输入信号在迭代过程中估计梯度矢量,并更新权系数以达到最佳的自适应迭代算法。LMS算法是一种梯度最速下降算法,其显著特点简单性、计算量小、易于实现。这种算法不需要计算相关矩阵,也不需要进行矩阵运算。只要自适应线性组合器每次迭代运算时都知道输入信号和参考响应,选用LMS算法是很合适的。

现在的任务是采用如何来估计均方误差函数的梯度,并以此梯度估值来替代最速下降法中理论情况下的梯度真值。LMS算法进行梯度估计的方法是以误差信号每一次迭代的瞬时平方值替代其均方值,这样,原来由式(7-14)定义的梯度可近似为

(7-55)

根据上式并利用式(7-24),得到

(7-56) 实际上,只是单个平方误差序列的梯度,而则是多个平方误差序列统计平均的梯度,所以LMS算法就是用前者作为后者的近似。用梯度估值替代最速下降法中的梯度真值,有

(7-57) 式中,为自适应滤波器的收敛因子。式(7-57)即为著名的LMS算法的滤波器权矢量迭代公式。可以看出,自适应迭代下一时刻的权系数矢量可以由当前时刻的权系数矢量加上以误差函数为比例因子的输入矢量得到。

【例7-3】用MATLAB程序实现LMS算法。

如果给定输入序列x(n),期望响应序列d(n),步长μ和要求的自适应FIR滤波器长度N,我们就能够利用LMS算法的迭代公式(7-57)来确定自适应滤波器的权系数,下面给出实现这种算法的MATLAB函数,函数名为lms。

例程7-2 LMS算法

Function[h,y]=lms(x,d,u,N)

%LMS算法的实现

%[h,y]=lms(x,d,u,N)

%h=估计的FIR滤波器

%y=输出数组y(n)

%x=输入数组x(n)

%d=预期数组d(n),其长度应与x相同

%u=步长

%N=FIR滤波器的长度

M=length(x);y=zeros(1,M);

h=zeros(1,N);

for n=N:M

x1=x(n:-1:n-N+1);

y=h*x1';

e=d(n)-y;

h=h+u*e*x1;

end

7.3.2 LMS算法性能分析

1. LMS算法的收敛性

收敛性是自适应滤波器的一个非常重要的指标。为了检验LMS算法的收敛性,首先需要证明式(7-56)所示的梯度估计是无偏的。

将式(7-56)的两边取数学期望,得到

(7-58)

由此可见,LMS 算法对性能函数梯度的估值是无偏的。这就是说,如果每次迭代调整权矢量前能够进行多次观测,获得多个x (n ),并对按式

(7-56)计算得到的多个梯度估计进行统计平均,然后依据梯度的统计平均值

来调整权矢量,

那么,迭代结果必能得到理想的最佳权矢量。但是,实际运用中每次调整权矢量前,通过观测只能得到一个x (n ),再由式(7-56)得到一个

,据此调整权矢

量得到的w (n )必然是随机的。当迭代过程收敛后,权矢量将在最佳权矢量附近随机起伏,这等于在最佳权矢量上叠加了一个噪声。

由式(7-57)可知,当前时刻权矢量w (n )只是过去输入矢量

的函

数,如果假设这些输入矢量

相互独立,那么w (n )将与x (n )无关。为了研究方便起见,假设LMS 算法的连续两次迭代时间足够长,以保证输入信号x (n )和x (n +1)互不相关,即满足了w (n )将与x (n )无关的要求。对式(7-57)两边取数学期望,有

(7-59)

在前面我们讨论最速下降法时,得到的权矢量为

(7-60)

将上面的两个式子相对照,可以看出,LMS 算法得到的权矢量,其期望值与最速下降法得到的权矢量本身都服从相同的迭代计算规律。因此,用相同的推导方法

能够得出这样的结论:当式(7-60)的条件得到满足时,随着迭代次数趋近于无穷,权矢量的期望值将趋近于最佳权矢量。

对于横向自适应滤波器来说,输入信号的自相关矩阵的迹可用输入信号功率表示为

(7-61)

式中,是输入信号功率。因此,式(7-51)的收敛条件可表示为

(7-62)

这是工程上用起来很方便的公式,因为输入信号功率很容易根据输入信号取样值来估计。

最后需要说明的是,前面所作的关于输入信号功率是平稳随机信号和输入信号相继矢量不相关的假设对于LMS算法的收敛不是必需的。因为这些假设仅仅简化了式(7-59)的推导,如果没有这些假设,仍可推导出类似于式(7-60)的结果,只是其中的不再是平稳随机信号的自相关矩阵。但这不影响算法的收敛条件。【例7-4】时域LMS算法收敛曲线的仿真。

例程7-3 LMS算法收敛性

% 该程序实现时域LMS算法,并用统计的方法仿真得出不同步长下的收敛曲线

clear % 清空变量空间

g=100; % 统计仿真次数为g

N=1024; % 输入信号抽样点数N

k=128; % 时域抽头LMS算法滤波器阶数

pp=zeros(g,N-k); % 将每次独立循环的误差结果存于矩阵pp中,以便后

% 面对其平均

u=0.001; % 收敛因子

for q=1:g

t=1:N;

a=1;

s=a*sin(0.5*pi*t); % 输入单频信号s

figure(1);

plot(t,real(s)); % 信号s时域波形

title('信号s时域波形');

xlabel('n');

ylabel('s');

axis([0,N,-a-1,a+1]);

xn=awgn(s,3); % 加入均值为零的高斯白噪声,信噪比为3d B

% 设置初值

y=zeros(1,N); % 输出信号y

y(1:k)=xn(1:k); % 将输入信号xn的前k个值作为输出y的前k 个值

w=zeros(1,k); % 设置抽头加权初值

e=zeros(1,N); % 误差信号

% 用LMS算法迭代滤波

for i=(k+1):N

XN=xn((i-k+1):(i));

y(i)=w*XN';

e(i)=s(i)-y(i);

w=w+u*e(i)*XN;

end

pp(q,:)=(e(k+1:N)).^2;

end

for b=1:N-k

bi(b)=sum(pp(:,b))/g; % 求误差的统计平均

end

figure(2); % 算法收敛曲线

t=1:N-k;

plot(t,bi);

hold off % 将每次循环的图形显示结果保存下来

【程序运行结果】

图7-8 LMS算法收敛曲线

2. 自适应时间常数与学习曲线

在自适应调整权系数的过程中,均方误差是迭代次数的函数,由该函数给出的曲线称为学习曲线。根据均方误差函数和最小均方误差表达式,可以得到均方误差函数的另一种表达形式

(7-63)

再根据我们所定义的权误差矢量,代入上式,得到

(7-64)

再经过正交相似变换,将坐标轴转至主轴坐标系,得到

(7-65)

将式(7-53)代入式(7-65)中,有

(7-66)

由于矩阵和矩阵均为对角阵,因此有

(7-67)

将该式展开后,得到

(7-68)

式(7-68)即为LMS

算法的自适应学习曲线,其中,

为矢量

的第

k 个分量,

为对角阵中第k 个对角元素。由此我们可以看出,均方误差函数是迭代次数n 的指数函数,只要能够满足式(7-54)所规定的收敛条件,均方误差将随着迭代的进行呈现出指数下降的趋势,并最终趋近于维纳滤波所满足的最小均方误差

从式(7-68)还可以看出,学习曲线是M+1条指数曲线之和,每条指数曲线上的离散点的均方误差值按几何级数衰减,若定义其等比级数的公比为

(7-69)

再用一指数包络曲线来拟合这一等比级数,则可以得到

(7-70)

如果取该式的前两项,就可以得到其近似值为

(7-71)

比较式(7-69)和式(7-71),得到

(7-72)

式(7-72)即为LMS算法的第k个权系数的衰减时间常数。

由公比的定义式(7-52)及自适应学习曲线式(7-51),可以得到均方误差时间常数与权系数时间常数τ的关系为

(7-73)

这样,第k个的均方误差学习曲线时间常数的计算公式为

(7-74)

学习曲线时间常数是用迭代次数来度量的,若用其取样间隔来度量,则称之为自适应时间常数,常用表示。在LMS算法中,每次梯度估计是基于一个输入数据样本进行的,这样,输入数据的时间常数就与均方误差学习曲线的时间常数相等,即

(7-75) 学习曲线时间常数的大小决定了自适应学习过程的长短及收敛的快慢,根据上面各式,时间常数是与收敛因子μ成反比的,即步长越小,学习曲线收敛越慢。

3. 稳态误差及失调系数

LMS算法之所以简单,主要是因为它对梯度矢量各分量的估计是根据单个数据取样值得到的,没有进行平均。也正是这个原因,才使梯度估计中存在噪声。并且由于LMS算法的加权矢量w(n)具有随机性,使得LMS算法的将高于最速下降法的。特别是,对于LMS算法来说,在收敛到最佳值后,由于加权矢量继续按公式

(7-76)

变化,其校正值不为零而是继续随机起伏,从而使w(n)也继续随机起伏。这就使得LMS算法的收敛到后,均方误差将大于维纳误差,其偏移量用表示,的期望值称为超量均方误差,或“超量MSE”,即

(7-77)

梯度噪声的存在,使得收敛后的稳态权矢量在最佳权矢量附近随机起伏,这意味着稳态均方误差值总大于最小均方误差,且在附近随机地改变,如图7 -9所示。

图7-9 LMS算法的稳态误差

Widrow引入失调系数

(7-78)

来描述LMS算法(和其他算法)的稳态误差对维纳误差的相对偏差。

下面对LMS算法的失调系数进行估计。首先对权矢量噪声的方差的近似值进行

估计,令第n次迭代中梯度估计的噪声矢量用N(n)表示,于是有

(7-79)

若LMS算法已收敛到最佳权矢量附近,则这时上式中的真实梯度将趋近于零,于是得到

(7-80)

而其协方差为

(7-81)

由于与近似地不相关,故式可化简为

(7-82) 经正交变换,将上式变换到主轴坐标系,令,得到

(7-83)

这是梯度估计噪声的方差的近似计算公式。

用式(7-78)中的代替式

(7-38)中的,得到

(7-84)

将上式变换到平移坐标系,得

(7-85) 进行正交变换后,可得到

(7-86) 第二步,我们就可以对权噪声矢量v(n

)的方差进行估计,推导过程用到了式(7-86),可得到

(7-87)

式中是对角矩阵,交叉项之积的期望值等于零,则

(7-88) 通过化简,可以得到

(7-89) 该式建立了梯度估计噪声协方差与权矢量协方差之间的关系。将式(7-83)代入上式,得到

第三章 滤波器发展的回顾

第三章滤波方法发展的回顾 数字滤波分空间域和频率域的方法。空间域的滤波处理,是根据平滑窗口内的统计值或自适应参数进行处理,很难达到在消除相干斑噪声的同时又能很好地保留边缘和纹理细节的理想状态。一般只能在相干斑噪声消除和细节信息保留两个方面进行折衷,综合这两个方面的较好效果。频率域的傅立叶变换能够进行高频或低频的带通滤波,但不能区分噪声和信息相近的频率。基于小波分析的方法由于具有多分辨率和时频联合分析的特征,使得频率域的去噪有了更好的途径。 3.1空间域滤波方法 空间域的几种著名滤波器可分为以下两类:传统方法、局域统计自适应滤波方法。均值滤波器和中值滤波器属于经典传统滤波器范畴。传统方法在对SAR 影像进行滤波时,对噪声和边缘信息是不加区分的。为了解决传统方法存在的问题,人们提出了各种形式的自适应滤波器,自适应滤波器一般通过局域统计参数的调节,对噪声进行较强的平滑,而对边缘则尽量予以保留。比较常用的自适应滤波器有Lee滤波器、Frost滤波器、Sigma滤波器、改良K-均值滤波器及Gamma滤波器等。 3.1.1 传统方法 3.1.1.1均值滤波器 均值滤波是采用滤波窗口内所有像素灰度值的平均值来代替中心像素的值,均值滤波器具有很好的噪声平滑能力,噪声标准差按窗口内像元数的均方根降低[1]。然而,均值滤波器进行平滑时对噪声还是边缘信息是不加区分的,从而不可避免地导致了影像的整体模糊和分辨率的下降。 3.1.1.2中值滤波器 中值滤波器是采用滤波窗口内所有像素的中值来代替中心像素的值,它能有效地去除孤立的斑点噪声[1]。然而,这种滤波器存在边缘模糊,消除细的线性特征以及目标形状扭曲等常见问题[3]。中值滤波滤波后的影像失真度较大,纹理等细节信息损失较严重。 3.1.2 局域统计自适应滤波 这些滤波器都是对SAR图像的局部统计特征自适应的,即它们是局部统参数的函数,与传统方法相比,它们对斑点噪声的去除效果较好,同时保持边缘信息的效果有所提高,而且能通过参数控制来调整平滑和边缘保持效果。 3.1.2.1 Lee局域统计参数滤波器 Lee[4]提出了一种使用滤波窗口内样本均值和方差的自适应滤波器。 在缺乏信号x的精确模型的情况下,使用影像本身从5×5或7×7的滤波窗口内的局域均值z和局域方差var(z)来估计信号的先验均值和方差。根据前面的

最新自适应滤波器的设计开题报告

长江大学 毕业设计开题报告 题目名称自适应滤波器的设计与应用学院电信学院 专业班级信工10702班 学生姓名李雪利 指导教师王圆妹老师 辅导教师王圆妹老师 开题报告日期 2010年3月19日

自适应滤波器的设计与应用 学生:李雪利,长江大学电子信息学院 指导教师:王圆妹,长江大学电子信息学院 一、题目来源 来源于其他 二、研究目的和意义 滤波技术在当今信息处理领域中有着极其重要的应用。滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过。而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。 在数字信号处理中,数字滤波是语音和图像处理、模式识别、频谱分析等应用中的一个基本处理算法。在许多应用场合,由于无法预先知道信号和噪声的特性或者它们是随时间变化的,仅仅用 FIR 和 IIR两种具有固定滤波系数的滤波器无法实现最优滤波。在这种情况下,必须设计自适应滤波器,以跟踪信号和噪声的变化。 自适应滤波器是利用前一时刻已获得的滤波器参数,自动地调节、更新现时刻的滤波器参数,以适应信号和噪声未知的统计特性,从而实现最优滤波。当在未知统计特性的环境下处理观测信号时,利用自适应滤波器可以获得令人满意的效果,其性能远超过通用方法所设计的固定参数滤波器。

三、阅读的主要参考文献及资料名称 1、《数字信号处理》刘益成(第二版)西安电子科技出版社 2、《数字信号处理》张小虹(第二版)机械工业出版社 3、自适应信号处理[M].西安:西安电子科技大学出版社,2001. 4.邹理和,数字信号处理, 国防工业出版社,1985 5.丁玉美等, 数字信号处理,西安电子科技大学出版社,1999 6.程佩青, 数字信号处理,清华大学出版社,2001 7. The MathWorks Inc, Signal Processing Toolbox For Use with MATLAB, Sept. 2000 8. vinay K.Ingle, John G.Proakis,数字信号处理及MATLAB实现,陈怀琛等译,电子工业出版社,1998.9 9、《MATLAB编程参考手册》 10、中国期刊网的相关文献 11、赫金,自适应滤波器原理第四版,西安工业出版社,2010-5-1 四、国内外现状和发展趋势与主攻方向 自适应滤波器的理论与技术是50年代末和60年代初发展起来的。它是现代信号处理技术的重要组成部分,对复杂信号的处理具有独特的功能。自适应滤波器在数字滤波器中试属于随机数字信号处理的范畴。对于随机数字信号的滤波处理,通常有维纳滤波,卡尔曼滤波和自适应滤波,维纳滤波的权系数是固定的,适用于平稳随机信号;卡尔曼滤波器的权系数是可变的,适用于非平稳随机信号中。但是,只有在对信号和噪声的统计特性先验

matlab程序之——滤波器(带通-带阻)教学内容

m a t l a b程序之——滤波器(带通-带阻)

matlab程序之——滤波器(带通,带阻) 以下两个滤波器都是切比雪夫I型数字滤波器,不是巴特沃尔滤波器,请使用者注意! 1.带通滤波器 function y=bandp(x,f1,f3,fsl,fsh,rp,rs,Fs) %带通滤波 %使用注意事项:通带或阻带的截止频率与采样率的选取范围是不能超过采样率的一半 %即,f1,f3,fs1,fsh,的值小于 Fs/2 %x:需要带通滤波的序列 % f 1:通带左边界 % f 3:通带右边界 % fs1:衰减截止左边界 % fsh:衰变截止右边界 %rp:边带区衰减DB数设置 %rs:截止区衰减DB数设置 %FS:序列x的采样频率 % f1=300;f3=500;%通带截止频率上下限 % fsl=200;fsh=600;%阻带截止频率上下限 % rp=0.1;rs=30;%通带边衰减DB值和阻带边衰减DB值 % Fs=2000;%采样率 % wp1=2*pi*f1/Fs; wp3=2*pi*f3/Fs; wsl=2*pi*fsl/Fs; wsh=2*pi*fsh/Fs; wp=[wp1 wp3]; ws=[wsl wsh]; % % 设计切比雪夫滤波器; [n,wn]=cheb1ord(ws/pi,wp/pi,rp,rs); [bz1,az1]=cheby1(n,rp,wp/pi); %查看设计滤波器的曲线 [h,w]=freqz(bz1,az1,256,Fs); h=20*log10(abs(h));

figure;plot(w,h);title('所设计滤波器的通带曲线');grid on; y=filter(bz1,az1,x); end 带通滤波器使用例子 %-------------- %带通滤波器测试程序 fs=2000; t=(1:fs)/fs; ff1=100; ff2=400; ff3=700; x=sin(2*pi*ff1*t)+sin(2*pi*ff2*t)+sin(2*pi*ff3*t); figure; subplot(211);plot(t,x); subplot(212);hua_fft(x,fs,1); % y=filter(bz1,az1,x); y=bandp(x,300,500,200,600,0.1,30,fs); figure; subplot(211);plot(t,y); subplot(212);hua_fft(y,fs,1); %调用到的hua_fft()函数代码如下 function hua_fft(y,fs,style,varargin) %当style=1,画幅值谱;当style=2,画功率谱;当style=其他的,那么花幅值谱和功率谱 %当style=1时,还可以多输入2个可选参数 %可选输入参数是用来控制需要查看的频率段的 %第一个是需要查看的频率段起点 %第二个是需要查看的频率段的终点 %其他style不具备可选输入参数,如果输入发生位置错误 nfft= 2^nextpow2(length(y));%找出大于y的个数的最大的2的指数值(自动进算最佳FFT步长nfft) %nfft=1024;%人为设置FFT的步长nfft y=y-mean(y);%去除直流分量 y_ft=fft(y,nfft);%对y信号进行DFT,得到频率的幅值分布 y_p=y_ft.*conj(y_ft)/nfft;%conj()函数是求y函数的共轭复数,实数的共轭复数是他本身。

自适应滤波器的设计(终极版)

目录 摘要…………………..………………………………………………………..….............I 第1章绪论....................................................................................................................错误!未定义书签。 1.1引言……………………………………………...…..…………...……………...错误!未定义书签。 1.2课题研究意义和目的 (1) 1.3国内外研究发展状况 (2) 1.4本文研究思路与主要工作 (4) 第2章自适应滤波器理论基础 (5) 2.1自适应滤波器简介 (5) 2.2自适应滤波器的原理 (5) 2.3自适应滤波算法 (7) 2.4TMS320VC5402的简介 (8) 第3章总体方案设计 (10) 3.1无限冲激响应(IIR)滤波器 (10) 3.2有限冲激响应(FIR)滤波器 (11) 3.3电路设计 (11) 4基于软件设计及仿真 (17) 4.3 DSP的理论基础 (17) 4.4自适应滤波算法的DSP实现 (18) 5总结 (21) 参考文献 (22) 致谢 (23) 附录自适应滤波源代码 (24)

第1章绪论 1.1引言 随着微电子技术和计算机技术的迅速发展,具备了实现自适应滤波器技术的各种软硬件条件,有关自适应滤波器的新算法、新理论和新的实施方法不断涌现,对自适应滤波的稳定性、收敛速度和跟踪特性的研究也不断深入,这一切使该技术越来越成熟,并且在系统辨识、通信均衡、回波抵消、谱线增强、噪声抑制、系统模拟语音信号处理、生物医学电子等方面都获得了广泛应用口。自适应滤波器实现的复杂性通常用它所需的乘法次数和阶数来衡量,而DSP强大的数据吞吐量和数据处理能力使得自适应滤波器的实现更容易。目前绝大多数的自适应滤波器应用是基于最新发展的DSP 来设计的. 滤波技术是信号处理中的一种基本方法和技术,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果,自动地调节现时刻的滤波参数,从而达到最优化滤波。自适应滤波具有很强的自学习、自跟踪能力,适用于平稳和非平稳随机信号的检测和估计。自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。其中,自适应滤波算法一直是人们的研究热点,包括线性自适应算法和非线性自适应算法,非线性自适应算法具有更强的信号处理能力,但计算比较复杂,实际应用最多的仍然是线性自适应滤波算法。线性自适应滤波算法的种类很多,有LMS自适应滤波算法、R路自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等。 1.2课题研究意义和目的 自适应滤波理论与技术是现代信号处理技术的重要组成部分,对复杂信号的处理具有独特的功能,对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。自适应滤波器与普通滤波器不同,它的冲激响应或滤波参数是随外部环境的变化而变化的,经过一段自动调节的收敛时间达到最佳滤波的要求。自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、输出及原参量信号按照一定准则修改滤波参量,以使它本身能有效的跟踪外部环境的变化。因此,自适应数字系

自适应滤波器介绍及原理

关于自适应滤波的问题: 自适应滤波器有4种基本应用类型: 1) 系统辨识:这时参考信号就是未知系统的输出,当误差最小时,此时自适应滤波器就与未知系统具有相近的特性,自适应滤波器用来提供一个在某种意义上能够最好拟合未知装置的线性模型 2) 逆模型:在这类应用中,自适应滤波器的作用是提供一个逆模型,该模型可在某种意义上最好拟合未知噪声装置。理想地,在线性系统的情况下,该逆模型具有等于未知装置转移函数倒数的转移函数,使得二者的组合构成一个理想的传输媒介。该系统输入的延迟构成自适应滤波器的期望响应。在某些应用中,该系统输入不加延迟地用做期望响应。 3) 预测:在这类应用中,自适应滤波器的作用是对随机信号的当前值提供某种意义上的一个最好预测。于是,信号的当前值用作自适应滤波器的期望响应。信号的过去值加到滤波器的输入端。取决于感兴趣的应用,自适应滤波器的输出或估计误差均可作为系统的输出。在第一种情况下,系统作为一个预测器;而在后一种情况下,系统作为预测误差滤波器。 4) 干扰消除:在一类应用中,自适应滤波器以某种意义上的最优化方式消除包含在基本信号中的未知干扰。基本信号用作自适应滤波器的期望响应,参考信号用作滤波器的输入。参考信号来自定位的某一传感器或一组传感器,并以承载新息的信号是微弱的或基本不可预测的方式,供给基本信号上。 这也就是说,得到期望输出往往不是引入自适应滤波器的目的,引入它的目的是得到未知系统模型、得到未知信道的传递函数的倒数、得到未来信号或误差和得到消除干扰的原信号。 1 关于SANC (自适应消噪)技术的问题 自适应噪声消除是利用winer 自适应滤波器,以输入信号的时延信号作为参考信号来进行滤波的,其自适应消噪的原理说明如下: 信号()x n 可分解为确定性信号分量()D x n 和随机信号分量()R x n ,即: ()()()D R x n x n x n =+ (1.1) 对于旋转机械而言,确定性信号分量()D x n 通常可表示为周期或准周期信号分量()P x n ,即: ()()()P R x n x n x n =+ 1.2 对信号()x n 两个分量()P x n 和()R x n ,有两个基本假设: (1) ()P x n 和()R x n 互不相关; (2) ()P x n 和()R x n 的自相关函数具有下述特性:()0P P x x R m ≈, N m M ≥;()0R R x x R m ≈,B m M ≥;

自适应滤波器毕业设计论文

大学 数字信号处理课程要求论文 基于LMS的自适应滤波器设计及应用 学院名称: 专业班级: 学生姓名: 学号: 2013年6月

摘要自适应滤波在统计信号处理领域占有重要地位,自适应滤波算法直接决定着滤波器性能的优劣。目前针对它的研究是自适应信号处理领域中最为活跃的研究课题之一。收敛速度快、计算复杂性低、稳健的自适应滤波算法是研究人员不断努力追求的目标。 自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。研究自适应滤波器可以去除输出信号中噪声和无用信息,得到失真较小或者完全不失真的输出信号。本文介绍了自适应滤波器的理论基础,重点讲述了自适应滤波器的实现结构,然后重点介绍了一种自适应滤波算法最小均方误差(LMS)算法,并对LMS算法性能进行了详细的分析。最后本文对基于LMS算法自适应滤波器进行MATLAB仿真应用,实验表明:在自适应信号处理中,自适应滤波信号占有很重要的地位,自适应滤波器应用领域广泛;另外LMS算法有优也有缺点,LMS算法因其鲁棒性强特点而应用于自回归预测器。 关键词:自适应滤波器,LMS算法,Matlab,仿真

1.引言 滤波技术在当今信息处理领域中有着极其重要的应用。滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过;而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。Wiener于20世纪40年代提出了最佳滤波器的概念,即假定线性滤波器的输入为有用信号和噪音之和,两者均为广义平稳过程且己知他们的二阶统计过程,则根据最小均方误差准则(滤波器的输出信号与期望信号之差的均方值最小)求出最佳线性滤波器的参数,称之为Wiener滤波器。同时还发现,在一定条件下,这些最佳滤波器与Wiener滤波器是等价的。然而,由于输入过程取决于外界的信号、干扰环境,这种环境的统计特性常常是未知的、变化的,因而不能满足上述两个要求,设计不出最佳滤波器。这就促使人们开始研究自适应滤波器。自适应滤波器由可编程滤波器(滤波部分)和自适应算法两部分组成。可编程滤波器是参数可变的滤波器,自适应算法对其参数进行控制以实现最佳工作。自适应滤波器的参数随着输入信号的变化而变化,因而是非线性和时变的。 2. 自适应滤波器的基础理论 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。所谓“最优”是以一定的准则来衡量的,最常用的两种准则是最小均方误差准则和最小二乘准则。最小均方误差准则是使误差的均方值最小,它包含了输入数据的统计特性,准则将在下面章节中讨论;最小二乘准则是使误差的平方和最小。 自适应滤波器由数字结构、自适应处理器和自适应算法三部分组成。数字结构是指自适应滤波器中各组成部分之间的联系。自适应处理器是前面介绍的数字滤波器(FIR或IIR),所不同的是,这里的数字滤波器是参数可变的。自适应算法则用来控制数字滤波器参数的变化。 自适应滤波器可以从不同的角度进行分类,按其自适应算法可以分为LMS自适应滤波

带通滤波器的噪声分析

如题所述,本文主要针对二阶带通滤波器进行噪声分析。关键词:二阶高通滤波器热噪声低频噪声散粒噪声宽带噪声一、二阶带通有源滤波器电路简介 已知,有源滤波器一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 如下图示为一二阶带通滤波器电路图 图1 基本电路原理图如上图所示。放大器选择OPA363。图中R、C组成低通网络,C1、R3组成高通网络。 下图为带通滤波器的幅频特性

图2 二阶压控电源带通滤波器就是将低通与高通电路相串联,而构成的带通滤波电路。条件是低通滤波电路的截止脚频率wH大于高通滤波电路的截止角频率wL。因此,上图并不难理解。 设R2=R,R3=2R,则可得带通滤波器的中心角频率W0=1/(RC)。 电路的优点是改变Rf和R1的比例就可改变频宽而不影响中心频率。二、电路噪声分析电路噪声可分为内部噪声与外部噪声。 内部噪声是由电路内部电路元器件其本身固有物理性质所产生的噪声。造成内部噪声的元器件主要有电阻、运算放大器等。 外部噪声是由外界因素对电路中各部分的影响所造成的。一般来说,主要是外界电磁场、接地线不合理和电源等原因造成的。 (一)内部噪声分析 1.热噪声(主要是电阻造成的噪声):在导体中由于带电粒子热骚动而产生的随机噪声。它存在于所有电子器件和传输介质中。它是温度变化的结果,但不受频率变化的影响。热噪声是在所有频谱中以相同的形态分布,它是不能够消除的。 热噪声是杂乱无章的变化电压。一般来说,热噪声决定了电路的噪声基底。实际电阻器一般被等效为一理想无噪声电阻与噪声电压源相串联的电路,或者一理想无噪声电导和噪声电流源相并联。(见下图)

自适应滤波器的应用

中国地质大学(北京)自适应滤波器的应用小论文 课程名称:地球物理信息处理基础 老师:景建恩 学生:李东 学号:2110120011 学院:地信学院 日期:2012年11月22日

自适应滤波器的应用 摘要:自适应滤波器可以在没有任何关于信号和噪声的先验知识的条件下,利用前一时刻已获得的滤波器参数来自动调节现时刻的滤波器参数,以适应信号和噪声未知或随机变化的统计特性,从而实现最优滤波。自适应滤波器可用于干扰对消,在地球物理领域也得到了广泛的应用。 一、自适应滤波器简介 滤波器的分类方法很多,总的来说可分为经典滤波器和现代滤波器两大类。经典滤波器是假定输入信号() x k中的有用成分和希望去掉的成分各占有不同的频带,即关于信号和噪 声应具有一定的先验知识,这样当原始信号通过一个线性系统时有效地除去无用的成分。如果有用信号和噪声的频谱相互重叠,那么经典滤波器就无能为力了。现代滤波器是在没有任何关于信号和噪声的先验知识的条件下,从含有噪声的测量数据或时间序列() x k中估计出 信号的某些特征或信号本身。一旦信号被估计出,那么被估计出的信号将比原信号具有更高的信噪比。现代滤波器把信号和噪声都视为随机信号,利用它们的统计特征(如自相关函数、功率谱等)导出一套最佳的估计算法,然后用硬件或用软件予以实现。根据所处理的信号不同,滤波器还通常分为模拟滤波器和数字滤波器。现代滤波器大多是数字滤波器。 自适应滤波器属于现代滤波器的范畴,它是40年代发展起来的自适应信号处理领域的一个重要应用。自适应信号处理主要是研究结构可变或可调整的系统,它可以通过自身与外界环境的接触来改善自身对信号处理的性能。通常这类系统是时变的非线性系统,可以自动适应信号传输的环境和要求,无须详细知道信号的结构和实际知识,无须精确设计处理系统本身。自适应系统的非线性特性主要是由系统对不同的信号环境实现自身参数的调整来确定的。自适应系统的时变特性主要是由其自适应响应或自适应学习过程来确定的,当自适应过程结束和系统不再进行时,有一类自适应系统可成为线性系统,并称为线性自适应系统,因为这类系统便于设计且易于数学处理,所以实际应用广泛。本文研究的自适应滤波器就是这类滤波器。自适应信号处理的应用领域包括通信、雷达、声纳、地震学、导航系统、生物医学和工业控制等。 自适应滤波器是相对固定滤波器而言的,固定滤波器属于经典滤波器,它滤波的频率是固定的,自适应滤波器滤波的频率则是自动适应输入信号而变化的,所以其适用范围更广。在没有任何关于信号和噪声的先验知识的条件下,自适应滤波器利用前一时刻已获得的滤波器参数来自动调节现时刻的滤波器参数,以适应信号和噪声未知或随机变化的统计特性,从而实现最优滤波。实际情况中,由于信号和噪声的统计特性常常未知或无法获知,为自适应滤波器提供广阔的应用空间。系统辨识、噪声对消、自适应谱线增强、通信信道的自适应均衡、线性预测、自适应天线阵列等是自适应滤波器的主要应用领域。 二、自适应滤波算法原理 当输入信号和噪声的统计特性未知或输入过程的统计特性发生变化时,自适应滤波能自动调整自身参数以满足某种最佳准则要求> 根据不同的准则,产生不同的自适应算法,但主要有两种基本的算法:最小均方误差(LMS)算法和递推最小二乘(RLS)算法。最小均方误差算法,因其具有计算量小、易于实现等优点而在实践中被广泛采用。最小均方误差算法的基本思想是:调整滤波器自身参数,使滤波器的输出信号与期望输出信号之间的均方误差

自适应滤波器的原理与设计

实验二 自适应滤波信号 一、实验目的: 1.利用自适应LMS 算法实现FIR 最佳维纳滤波器。 2.观察影响自适应LMS算法收敛性,收敛速度以及失调量的各种因素,领会自适应信号处理方法的优缺点。 3.通过实现AR 模型参数的自适应估计,了解自适应信号处理方法的应用。 二、实验原理及方法 自适应滤波是一种自适应最小均方误差算法(LMS ),这种算法不像维纳滤波器需要事先知道输入和输出信号的自相关和互相关矩阵,它所得到的观察值 ,滤波器等价于自动“学习”所需要的相关函数,从而调整FIR 滤波器的权系数,并最终使之收敛于最佳值,即维纳解。 )(n y 下面是自适应FIR 维纳滤波器的LMS 算法公式: (2-1) )()()(0 ^ ^ m n y n h n x M m m -=∑= (2-2) ^ )()()(n x n x n e -=M m m n y n e n h n h m m ?=-?+=+,1) ()(2)()1(^ ^ μ (2-3) 其中FIR 滤波器共有M+1个权系数,表示FIR 滤波器第m 个权系数在第n 步的估计值。 ),0)((^ M m n h m ?=因此,给定初始值)M ,0(),0(?=m h m ,每得到一个样本,可以递归得到一组新的滤波器权系数,只要步长)(n y μ满足 max 1 0λμ< < (2-4) 其中max λ为矩阵R 的最大特征值,当∞→n 时,)M ,0(),0(?=m h m 收敛于维纳解。

现在我们首先考察只有一个权系数h 的滤波器,如图2.1所示。假如信号由下式确定: )(n y )()()(y n w n s n += (2-5) )()(n hx n s = (2-6) 其中h 为标量常数,与互不相关,我们希望利用和得到 )(n x )(n w )(n y )(n x )(n s 图1 利用公式(2-1),(2-2),(2-3),我们可以得到下面的自适应估计算法: (2-7) )()()(^ ^n x n h n s = (2-8) )())()()((2)()1(^ ^ ^ n x n x n h n y n h n h -+=+μ其框图如图所示。 图2 选择的初始值为,对式2-8取数学期望可得 ^)(n h ^ )0(h (2-9) ))0(()21(])([^ ^ h h R h n h E n --+=μ其中

自适应滤波器的dsp实现

学号: 课程设计 学院 专业 年级 姓名 论文题目 指导教师职称 成绩 2013年 1 月 10 日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 自适应滤波器原理 (2) 2 自适应滤波器算法 (3) 3 自适应滤波算法的理论仿真与DSP实现 (5) 3.1 MATLAB仿真 (5) 3.2 DSP的理论基础 (7) 3.3 自适应滤波算法的DSP实现 (9) 4 结论 ............................................... 错误!未定义书签。致谢 ................................................. 错误!未定义书签。参考文献 ............................................. 错误!未定义书签。

自适应滤波器算法的DSP实现 学生姓名:学号: 学院:专业: 指导教师:职称: 摘要:本文从自适应滤波器的基本原理、算法及设计方法入手。本设计最终采用改进的LMS算法设计FIR结构自适应滤波器,并采用MATLAB进行仿真,最后用DSP 实现了自适应滤波器。 关键词:DSP(数字信号处理器);自适应滤波器;LMS算法;FIR结构滤波器 DSP implementation of the adaptive filter algorithm Abstract:In this article, starting from the basic principles of adaptive filter and algorithms and design methods. Eventually the design use improved the LMS algorithm for FIR adaptive filter,and use MATLAB simulation, adaptive filter using DSP. Key words:DSP;adaptive filter algorithm;LMS algorithm;FIR structure adaptive filter 引言 滤波是电子信息处理领域的一种最基本而又极其重要的技术。在有用信号的传输过程中,通常会受到噪声或干扰的污染。利用滤波技术可以从复杂的信号中提取所需要的信号,同时抑制噪声或干扰信号,以便更有效地利用原始信号。滤波器实际上是一种选频系统,它对某些频率的信号予以很小的衰减,让该部分信号顺利通过;而对其他不需要的频率信号则予以很大的衰减,尽可能阻止这些信号通过。在电子系统中滤波器是一种基本的单元电路,使用很多,技术也较为复杂,有时滤波器的优劣直接决定产品的性能,所以很多国家非常重视滤波器的理论研究和产品开发[1]。近年来,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。 自适应滤波器是统计信号处理的一个重要组成部分。在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此我们需要研究自适应滤波器。凡是需要处理未知统计环境下运算结果所产生的信

word完整版自适应滤波器原理 带图带总结word版推荐文档

第二章自适应滤波器原理 2.1 基本原理 2.1.1 自适应滤波器的发展 在解决线性滤波问题的统计方法中,通常假设已知有用信号及其附加噪声的某些统计参数(例如,均值和自相关函数) ,而且需要设计含噪数据作为其输入的线性滤波器,使得根据某种统计准则噪声对滤波器的影响最小。实现该滤波器优化问题的一个有用方法是使误差信号(定义为期望响应与滤波器实际输出之差)的均方值最小化。对于平稳输入,通常采用所谓维纳滤波器( Wiener filter) 的解决方案。该滤波器在均方误差意义上使最优的。误差信号均方值相对于滤波器可调参数的曲线通常称为误差性能曲面。该曲面的极小点即为维纳解。 维纳滤波器不适合于应对信号和/或噪声非平稳问题。在这种情况下,必须假设最优滤波器为时变形式。对于这个更加困难的问题,十分成功的一个解决方案使采用卡尔曼滤波器 (Kalman filter )。该滤波器在各种工程应用中式一个强有力的系统。 维纳滤波器的设计要求所要处理的数据统计方面的先验知识。只有当输入数据的统计特性与滤波器设计所依赖的某一先验知识匹配时,该滤波器才是最优的。当这个信息完全未知时,就不可能设计维纳滤波器,或者该设计不再是最优的。而且维纳滤波器的参数是固定的。 在这种情况下,可采用的一个直接方法是“估计和插入过程”。该过程包含两个步骤,首先是“估计”有关信号的统计参数,然后将所得到的结果“插入( plug into)”非递归公式以计算滤波器参数。对于实时运算,该过程的缺点是要求特别精心制作,而且要求价格昂贵的硬件。为了消除这个限制,可采用自适应滤波器(adaptive filter)。采用这样一种系统,意味着滤波器是自设计的,即自适应滤波器依靠递归算法进行其计算,这样使它有可能在无法获得有关信号特征完整知识的环境下,玩完满地完成滤波运算。该算法将从某些预先确定的初始条件集出发,这些初始条件代表了人们所知道的上述环境的任何一种情况。我们还发现,在平稳环境下,该运算经一些成功迭代后收敛于某种统计意义上的最优维纳解。在非平稳环境下,该算法提供了一种跟踪能力,即跟踪输入数据统计特性随时间的变化,只要这种变化时足够缓慢的。 40年代,N.维纳用最小均方原则设计最佳线性滤波器,用来处理平稳随机

自适应滤波器的设计与实现毕业论文

自适应滤波器的设计与实现毕业论文 目录 第一章前言 (1) 1.1 自适应滤波器简介 (1) 1.2 选题背景及研究意义 (1) 1.3 国外研究发展现状 (2) 第二章自适应滤波器的基础理论 (4) 2.1 滤波器概述 (4) 2.1.1 滤波器简介 (4) 2.1.2 滤波器分类 (4) 2.1.3 数字滤波器概述 (4) 2.2 自适应滤波器基本理论 (7) 2.3 自适应滤波器的结构 (9) 第三章自适应滤波器递归最小二乘算法 (11) 3.1 递归最小二乘算法 (11) 3.1.1 递归最小二乘算法简介 (11) 3.1.2 正则方程 (11) 3.1.3 加权因子和正则化 (16) 3.1.4 递归计算 (18) 3.2递归最小二乘(RLS)算法的性能分析 (22) 第四章基于MATLAB自适应滤波器仿真 (23) 4.1 正弦波去噪实验 (23) 4.2 滤波器正则化参数的确定 (28) 4.2.1 高信噪比 (28) 4.2.2 低信噪比 (31) 4.2.3 结论 (33) 4.3 输入信号不同对滤波效果的影响 (33)

4.3.1 输入信号为周期信号 (33) 4.3.2 输入信号为非周期信号 (38) 第五章结论与展望 (44) 5.1 结论 (44) 5.2 对进一步研究的展望 (44) 参考文献 (45) 致谢 (46) 附录 (46) 声明 (58)

第一章前言 1.1自适应滤波器简介 自适应滤波器属于现代滤波的畴,它是40年代发展起来的自适应信号处理领域的一个重要应用,自适应信号处理主要是研究结构可变或可调整的系统,可以通过自身与外界的接触来改善自身对信号处理的性能,通常这类系统是时变的非线性系统,可以自动适应信号传输的环境和要求,无须详细的知道信号的结构和实际知识,无须精确设计处理系统本身。 自适应系统的非线性特性主要是由系统对不同的信号环境实现自身参数的调整来确定的。自适应系统的时变特性主要是由其自适应响应或自适应学习过程来确定的,当自适应过程结束和系统不再进行时,有一类自适应系统可成为线性系统,并称为线性自适应系统,因为这类系统便于设计且易于数学处理,所以实际应用广泛。本文研究的自适应滤波器就是这类滤波器。 自适应滤波器是相对固定滤波器而言的,固定滤波器属于经典滤波器,它滤波的频率是固定的,自适应滤波器的频率则是自动适应输入信号而变化的,所以其适用围更广。在没有任何信号和噪声的先验知识的条件下,自适应滤波器利用前一时刻已获得的滤波器参数来自动调节现时刻的滤波器参数,以适应信号和噪声未知或随机变化的统计特性,从而实现最优滤波。1.2选题背景及研究意义 伴随着移动通信事业的飞速发展,自适应滤波技术应用的围也日益扩大。早在20世纪40年代,就对平稳随机信号建立了维纳滤波理论。根据有用信号和干扰噪声的统计特性(自相关函数或功率谱),用线性最小均方误差估计准则设计的最佳滤波器,称为维纳滤波器。这种滤波器能最大程度地滤除干扰噪声,提取有用信号。但是,当输入信号的统计特性偏离设计条件,则它就不是最佳的了,这在实际应用中受到了限制。到60年代初,由于空间技术的发展,出现了卡尔曼滤波理论,即利用状态变量模型对非平稳、多输入多输出随机序列作最优估计。现在,卡尔曼滤波器已成功地应用到许多领域,它既可对平稳的和非平稳的随机信号作线性最佳滤波,也可作非线性滤波。实质上,维纳滤波器是卡尔曼滤波器的一个特例。 在设计卡尔曼滤波器时,必须知道产生输入过程的系统的状态方程和测量方程,即要求对信号和噪声的统计特性有先验知识,但在实际中,往往难以预知这些统计特性,因此实现不了真正的最佳滤波。 Widrow.B等于1967年提出的自适应滤波理论,可使自适应滤波系统的参数自动地调整而

自适应滤波算法理解与应用

自适应滤波算法理解与应用 什么是自适应滤波器自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。 对于一些应用来说,由于事先并不知道所需要进行操作的参数,例如一些噪声信号的特性,所以要求使用自适应的系数进行处理。在这种情况下,通常使用自适应滤波器,自适应滤波器使用反馈来调整滤波器系数以及频率响应。 总的来说,自适应的过程涉及到将代价函数用于确定如何更改滤波器系数从而减小下一次迭代过程成本的算法。价值函数是滤波器最佳性能的判断准则,比如减小输入信号中的噪声成分的能力。 随着数字信号处理器性能的增强,自适应滤波器的应用越来越常见,时至今日它们已经广泛地用于手机以及其它通信设备、数码录像机和数码照相机以及医疗监测设备中。 下面图示的框图是最小均方滤波器(LMS)和递归最小平方(en:Recursive least squares filter,RLS,即我们平时说的最小二乘法)这些特殊自适应滤波器实现的基础。框图的理论基础是可变滤波器能够得到所要信号的估计。 自适应滤波器有4种基本应用类型:1)系统辨识:这时参考信号就是未知系统的输出,当误差最小时,此时自适应滤波器就与未知系统具有相近的特性,自适应滤波器用来提供一个在某种意义上能够最好拟合未知装置的线性模型 2)逆模型:在这类应用中,自适应滤波器的作用是提供一个逆模型,该模型可在某种意义上最好拟合未知噪声装置。理想地,在线性系统的情况下,该逆模型具有等于未知装置转移函数倒数的转移函数,使得二者的组合构成一个理想的传输媒介。该系统输入的延迟构成自适应滤波器的期望响应。在某些应用中,该系统输入不加延迟地用做期望响应。3)预测:在这类应用中,自适应滤波器的作用是对随机信号的当前值提供某种意义上的一个最好预测。于是,信号的当前值用作自适应滤波器的期望响应。信号的过去值加到滤

自适应滤波器MATLAB仿真

自适应滤波器 MATLAB仿真 摘要 : 本文介绍了自适应滤波器的工作原理,以及推导了著名的LMS( Least mean squares )算法。以一个例子演示了自适应滤波器的滤波效果。实验结果表明,该滤波器滤波效果较好。 关键词:自适应滤波器 MATLAB7.0 LMS 算法 Simulate of adaptive filter based on MATLAB7.0 Abstract: This article described the working principle of adaptive filter and deduced the well-known LMS algorithm. Take an example to demonstrate the adaptive filters filtering effects. The results show that the filter has an effective way to filter single. Key words: LMS algorithm Adaptive Filter Matlab7.0 1引言 由 Widrow B 等提出的自适应滤波理论,是在维纳滤波、卡尔曼滤波等线性滤波基础上发展起来的一种最佳滤波方法。由于它具有更强的适应性和更优的滤波性能,从而广泛应用于通信、系统辨识、回波消除、自适应谱线增强、自适应信道均衡、语音线性预测和自适应天线阵等诸多领域[1]。自适应滤波器最大的优点在于不需要知道信号和噪声的统计特性的先验知识就可以实现信号的最佳滤波处理。本文通过一个具体例子和结果论证了自适应滤波器的滤波效果。 2自适应滤波原理及 LMS算法 2.1 自适应滤波原理 图 1 自适应滤波原理图 在自适应滤波器中,参数可调的数字滤波器一般为 FIR 数字滤波器, IIR 数字滤波器或格型数字滤波器。自适应滤波分 2 个过程。第一,输入信号想 x(n) 通过参数可调的数字滤波器后得输出信号 y(n) ,y(n) 与参考信号 d(n) 进行比较得误差信号 e(n) ;第二,通过一种自适应算法和 x(n) 和 e(n) 的值来调节参数可调的数字滤波器的参数,即加权系

维纳自适应滤波器设计及Matlab实现

维纳自适应滤波器设计及Matlab实现

摘要 本文从随机噪声的特性出发,分析了传统滤波和自适应滤波基本工作原理和性能,以及滤波技术的现状和发展前景。然后系统阐述了基本维纳滤波原理和自适应滤波器的基本结构模型,接着在此基础上结合最陡下降法引出LMS算法。在MSE准则下,设计了一个定长的自适应最小均方横向滤波器,并通过MATLAB 编程实现。接着用图像复原来验证该滤波器的性能,结果表明图像的质量在MSE 准则下得到了明显的改善。最后分析比较了自适应LMS滤波和频域维纳递归滤波之间的性能。本文还对MATLAB里面的自适应维纳滤波函数wiener2进行了简单分析。 关键字:退化图像维纳滤波自适应滤波最陡下降法LMS

Abstract This paper analyses the basic work theory, performance of traditional filter and adaptive filter based on the property of random noise, and introduce the status quo and the foreground of filter technology. Then we explain basic theory of wiener filter and basic structure model of adaptive filter, and combine the method of steepest descent to deduce the LMS. Afterward according to the MSE rule, we design a limited length transversal filter, and implement by MATLAB. And then we validate performance of adaptive LMS filter by restoring images, Test result show that the quality of the degrade images were improved under the rule of MSE. Finally, we compare the performance of adaptive LMS filter and iterative wiener filter. We also simply analyses the wiener2 () which is a adaptive filter in MATLAB. Keywords: degrade image;wiener filter;adaptive filter;ADF;LMS algorithm

M-3章 自适应格形滤波器分解

245 第3章 最小均方误差自适应格形滤波器 前面介绍的滤波器是横向结构的(或称为直接形式),这一章我们介绍另一类结构的自适应滤波器,称为自适应格形滤波器。自适应格形滤波器具有一系列重要优点,使其有着广泛的应用领域,例如用于系统辨识和控制、噪声干扰对消、信道均衡、以及语音分析和合成等。特别是递推最小二乘格型滤波器具有非常好的数值特性并能跟踪时变信号。 自适应格形滤波器正如自适应横向滤波器一样,有最小均方误差准则和最小二乘准则两种,因而自适应格形滤波器也两类不同的算法及实现结构。这一章将讨论最小均方误差自适应格形滤波器。 求解线性预测正规方程也可采用Levinson-Durbin 算法,其运算量比直接求解正规方程要小得多。根据Levinson-Durbin 算法可以发展出格形滤波器。格形滤波器具有一系列重要优点,使其在自适应中获得广泛应用。格形滤波器的优点包括:(1)一个m 阶格形滤波器可以产生相当于从1阶到m 阶的m 个横向滤波器的输出。这使我们能在变化的环境下动态地选择最佳的阶;(对于横向滤波器来说,一旦滤波器的长度改变就会导致一组新的滤波器系数,而新的滤波器系数与旧的完全不同。而格形滤波器的结构是阶次递推式的,它的阶数的改变并不影响其它级的反射系数。)(2)格形滤波器具有模块式结构,便于实现高速并行处理;(3)格形滤波器系数优良的数值特性。 3.1 线性预测滤波器 3.1.1 前向线性预测滤波器 前向线性预测是已知)1(-n x ,…,)(m n x -等m 个值,用这m 个值线性组合预测)(n x ,即 )()1()(?1m n x a n x a n x mm m -----= ∑=--=m k mk k n x a 1 )( 3.1.1) mk a 称为前向预测系数。实现这种处理的滤波器称为前向线性预测滤波器。前向 线性预测误差为

相关主题
文本预览
相关文档 最新文档