当前位置:文档之家› 第三章 滤波方法发展回顾

第三章 滤波方法发展回顾

第三章 滤波方法发展回顾
第三章 滤波方法发展回顾

第三章滤波方法发展的回顾

数字滤波分空间域和频率域的方法。空间域的滤波处理,是根据平滑窗口内的统计值或自适应参数进行处理,很难达到在消除相干斑噪声的同时又能很好地保留边缘和纹理细节的理想状态。一般只能在相干斑噪声消除和细节信息保留两个方面进行折衷,综合这两个方面的较好效果。频率域的傅立叶变换能够进行高频或低频的带通滤波,但不能区分噪声和信息相近的频率。基于小波分析的方法由于具有多分辨率和时频联合分析的特征,使得频率域的去噪有了更好的途径。

3.1空间域滤波方法

空间域的几种著名滤波器可分为以下两类:传统方法、局域统计自适应滤波方法。均值滤波器和中值滤波器属于经典传统滤波器范畴。传统方法在对SAR 影像进行滤波时,对噪声和边缘信息是不加区分的。为了解决传统方法存在的问题,人们提出了各种形式的自适应滤波器,自适应滤波器一般通过局域统计参数的调节,对噪声进行较强的平滑,而对边缘则尽量予以保留。比较常用的自适应滤波器有Lee滤波器、Frost滤波器、Sigma滤波器、改良K-均值滤波器及Gamma滤波器等。

3.1.1 传统方法

3.1.1.1均值滤波器

均值滤波是采用滤波窗口内所有像素灰度值的平均值来代替中心像素的值,均值滤波器具有很好的噪声平滑能力,噪声标准差按窗口内像元数的均方根降低[1]。然而,均值滤波器进行平滑时对噪声还是边缘信息是不加区分的,从而不可避免地导致了影像的整体模糊和分辨率的下降。

3.1.1.2中值滤波器

中值滤波器是采用滤波窗口内所有像素的中值来代替中心像素的值,它能有效地去除孤立的斑点噪声[1]。然而,这种滤波器存在边缘模糊,消除细的线性特征以及目标形状扭曲等常见问题[3]。中值滤波滤波后的影像失真度较大,纹理等细节信息损失较严重。

3.1.2 局域统计自适应滤波

这些滤波器都是对SAR图像的局部统计特征自适应的,即它们是局部统参数的函数,与传统方法相比,它们对斑点噪声的去除效果较好,同时保持边缘信息的效果有所提高,而且能通过参数控制来调整平滑和边缘保持效果。

3.1.2.1 Lee局域统计参数滤波器

Lee[4]提出了一种使用滤波窗口内样本均值和方差的自适应滤波器。

在缺乏信号x的精确模型的情况下,使用影像本身从5×5或7×7的滤波窗口内的局域均值z和局域方差var(z)来估计信号的先验均值和方差。根据前面的

乘性噪声模型,信号x 的先验均值和方差可以这样来估算:

z v z x ==/ (3.1)

1)v a r ()v a r (222

+-=v v z z x σσ (3.2) 假设线性滤波器的形式为 bz x a x +=∧,这里∧x 是x 的最小均方估计。最小均

方估计为: )(x z b x x -+=∧ (3.3)

这里 )var(/)var(z x b =,z x =,)var(x 根据公式(3.3)计算。要注意的是必须确保var(x)为非负,如果为负则置var(x)为0,否则可能在影像上引入人为的噪声成分。

)var()

var(22x z x b +=υσ (3.4)

这一滤波方法的直观解释是,在均匀区域0)var(≈x ,滤波后的像素值 x

x =∧(窗口内像素的平均值);对于高反差区域(或边缘),var(x)较大,z x ≈∧(像素

本身的值)。然而,该滤波器存在一个问题是边缘区域的噪声并没有被平滑。

3.1.2.2Frost 滤波器

Frost 滤波器[9]、[10]是特定大小窗口的像素值和指数脉冲响应m 卷积的Wiener 自适应滤波器:

()[]t t KC m y 0exp -= y C y y /σ= (3.5) 其中K 是滤波器参数,t 0代表中心像素的位置,t 是距t 0 的距离。这种响应是由目标反射率的自回归指数模型得到的。

Frost 滤波器采用的斑点噪声模型采用的形式如下:

ij ij ij ij h v x z *)(= (3.6) 这里h ij 是系统响应函数,“*”为卷积算子。尽管该算法适用于任何系统响应函数,但在通常的应用中,一般假定h ij 为delta 函数(例如假定h ij 的功率谱密度在感兴趣的波段宽度上是不变的)。最小均方滤波器形式如下:

)()()(*t m t z t x =∧ (3.7)

这里t 对应于空间域中像素之间的距离。选择脉冲函数m(t),使下式最小: ]))()([(2t x t x E J -=∧ (3.8)

按照频率域中Wiener 滤波器的推导,可以容易地找到上式的解:

||)(t e t m αα-= (3.9) a x x x a v ++=)])/(var())[var(/2(2

22σα (3.10) 衰减常数α的大小取决于x ,)var(x ,和a 。在应用中,a 取作一个常数,尽管它应当是与具体图像有关的。其他两个量则通过5×5窗口内像素的局域均值和方差来估计。

3.1.2.3 Sigma 滤波器[7]

这一滤波器是基于高斯分布的sigma 概率,它通过对滤波窗口内落在中央像素的两个sigma 范围内的像素进行平均来滤除影象噪声。众所周知,高斯分布的两个sigma 概率是0.955,即高斯分布随机样本的95.5%都落在其均值的两个标准偏差范围内。对于乘性噪声模型而言,两个sigma 范围是:

)2,2(z z z z υυσσ+- (3.11)

事先计算出所有灰度级(例如256个灰度级)的sigma 范围,并存储在数组中。对滤波窗口内的中央像素,从数组中提取出sigma 范围值,将窗口内像素与这些上下限进行比较,对落在上下限内的像素进行平均,并用平均值来替代中央像素的值。落在这两个sigma 范围之外的像素将被忽略。

如果没有其他窗口像素落在两个sigma 范围内时,引入一个阈值k s ,如果落在sigma 范围内的像素总数小于或等于k s 时,就用中间像素的四个最近的相邻像素的平均值来替代。

3.1.2.4 改良K-均值自适应滤波

改良K-均值自适应滤波器[15]是对Davis 和Rosenfeld [40]提出的K-均值滤波器的改进。两者的主要区别在于对k 值的估计方法不同,K-均值滤波器每一个滤波窗口均采用相同的 k 值,而改良K-均值滤波器的k 值则在每一个像素位置上都是变化的,因此改良K-均值滤波器对局域强度变化更加敏感。在这一滤波方案中,滤波窗口方差被认为是衡量中心像素的最近邻居数目(比如阈值k )的一种合适的度量方法,并利用这些最近邻像素的平均值来替代中心像素的值。阈值k 的确定方法如下:

)1(2sf n k -= (3.12) 这里:

)

()(min max min V V V V sf loc --= (3.13) 其中,V loc 为局域窗口的方差,n 为窗口的大小。

对于以任何一个像素为中心的滤波窗口,方差越大,存在边界的可能性就越大,选择的k 值就越小。相反,方差越小,就越有可能是均匀区域,用于平滑的k 值就会越大。这样,滤波窗口的局域影像方差就决定了最近邻像素的数目k 。然而,对影像上的高方差区域,固定最小阈值为3,以改善边缘处的均匀性和影像反差。

3.1.2.5 Gamma 滤波器[11]

Gamma 滤波器是基于图像统计学贝叶斯判决法的最大后验滤波器。它假设雷达反射和斑点噪声均服从Gamma 分布,它们的叠和会产生一个被公认的适合

多种目标的雷达反射的多样化的K 分布,x

?可由下式得到: ?

?+--?+--?=24)1()1(?2y Ly L y y L x (3.14) 1

)(1-+=?y L L y σ (3.15) 其中L 是视数,当x

?出现负数或复杂的非正常态,通常置y x =?。 3.2频率域滤波方法

传统的建立在傅里叶变换基础上的频率域滤波方法在提高信噪比和提高空间分辨率两项指标上存在矛盾。低通滤波能较好地平滑抑制噪声,但同时也模糊了图像的边缘。高通滤波可以使边缘更加陡峭,但背景噪声同时也被加强。此外相干平均也是滤除噪声常用的手段,但需时间较长,不能作动态提取,而且当各次纪录中的信号没有对齐时处理结果也会产生低通模糊。与之相比,基于小波变换的多分辨率滤波技术有明显优点。小波分析最大的特点在于具有极敏感的变焦特征,在不同的分辨率下,反映出不同的图像结构特征,使其在处理突变信息方面具有特殊的能力,利于噪声的滤除和边缘的保留。

3.2.1Fourier 变换滤波方法

早期的频率域去噪是基于Fourier 变换的方法,该方法主要通过对二维图像进行傅氏变换以后,采用交互方式确定斑点噪声的频率范围,然后选取适当的频域带通滤波器进行滤波处理,再经过傅氏反变换后获得去噪声的图像。这种处理方法对周期性特征较强的稳态噪声不失为一种较有效的方法,但在处理过程中,难以区分与噪声频率相近的图像信息,不具有频率自适应能力,以致造成大量图

像信息的损失[41]。

3.1.2基于小波分析的滤波方法

与傅立叶变换不同的是小波变换是一种同时具有时频二维变分辨率的变换,可以将信号分解为各种不同频率的细节成分,小尺度下的变换系数含有高频的信号和噪声,大尺度则包含较多的低频分量,十分有利于信号的精细分析。

3.1.2.1基于小波系数阈值去噪的思想

Wavelet Coefficient Shinkage (WCS )小波系数阈值去噪的方法是信号或图像去噪中比较简单且强有力的多分辨率技术[42]。由于小波函数在时频域都具有较好的局部性,同时其变尺度特性使得小波变换对信号具有一种“集中”的能力。如果一个信号的能量在小波变换域集中于少数系数上,那么相对来说,这些系数的取值必然大于在小波变换域内能量分散于大量小波系数上的信号或噪声的小波系数值。而噪声同信号的小波变换系数分布规律相反,其系数均匀分布于整个尺度空间(小波空间),幅度相差不大,尤其是在大尺度情况下,由于大尺度对

噪声进行了一定的平滑,使得噪声的小波变换系数很小。因此可以根据小波系数幅值上的差异设置阈值,去除由噪声控制的幅值小、数目多的小波系数,保留由信号控制的幅值大、数目少的小波系数,这样达到了降低噪声的目的,又可以较好地保持图像主要信息。

小波阈值去噪有三个步骤:第一将图像小波变换分解到多尺度中;第二设置一定的阈值对小波系数进行处理;第三小波逆变换。其中第二步用什么方法来选择合适阈值是关键,阈值确定后对小波系数的处理有硬门限和软门限两种方法

[43、44],硬门限将小于阈值的小波系数置为零,大于阈值的保留;软门限是基于David L.Donoho 软门限思想的小波系数的非线性处理。

Donoho 软门限的思想是针对高斯白噪声提出的,假设在[0,1]上从带噪声数据d 中,恢复一个

i i i z t f d σ+=)( i=0,1,2 …..n-1 (3.16) 未知函数f 。

其中t i =i/n ;z i 是标准高斯白噪声,σ是噪声级。这样,如果在频域中误差与f

(t i )又是不相关的,于是从d i 中求f (t i )就是一个经典的统计估计问题。

去噪的目的就是优化均方差,使得f ?至少与f 一样平滑。

()()()2

1012

1??∑-=---=-n i N n i f n i f E n L f f E n (3.17) 这个经典的统计估计问题可以在一个广域变量集F 内,用渐进逼近优化方法求解。David L.Donohe 从理论上严格证明了,f ?可以从基于小波域内的非线性软门限取得,而门限依赖于噪声方差。非线性软门限:

()()+-=t y y y t sgn )(η (3.18)

其中y 是小波系数,)log(2n t σ=是阈值。

张俊等[22] 直接应用David L.Donoho 的软门限理论,对SAR 影像进行了小波软门限滤波的处理。首先相干斑是一种不相关的乘性噪声,假设为标准高斯白噪声[45]。其选择了Daubechies 小波基对SAR 影像进行小波分解,根据SAR 影像在小波域内信号与斑点噪声奇异性的不同,当图像没有不规则纹理,与图像纹理对应的所有奇异点都具有正的Lipschitz 指数,而且图像小波变换的模极大值点数目随尺度的增大而加大;与之相对,因为标准高斯白噪声分布处处具有奇异性,而且具有负的Lipschitz 指数,平均随着尺度增加一倍,白噪声的极大值点数目将减少一半[46] 。奇异性绝大部分是由负的Lipschitz 指数引起的。由于在变为小尺度时,模值增大的极大值点是斑点噪声引起,将这部分小波系数置零。这样选择合适的阈值,在小波域内滤波。最后再进行小波逆变换就可以得到滤除噪声以后的SAR 影像。

如果f ?、f 分别代表恢复的图像与原始图像,也就是要求一个f ?,使得

f f

F f -∈?sup 为最小。设W 、W -1分别代表小波变换和小波逆变换算子。于是,非线性处理去噪算法可以表示为:

()[]

i d i W T W d f θ1)(?-= (3.19) 非线性软门限操作算子θT ??

????-+≤≤?-=-=+θθθθθθθθp p p p p p T 当当当-0p ))(sgn( (3.20)

其中p 是对原图像f 小波变换得到的系数图像;门限θT 与图像的方差和大小有关,可以从所处理的图像估计得到。 )log(2n n σθ= (3.21)

在实际应用中,噪声级是未知的,估计为:

6754.0/?MAD =σ

(3.22) 其中MAD (Median Absolute Value )即适当地归一化后的细尺度小波系数k k j w n )(,11-的中值的绝对值。

这是比较常用的小波系数估计噪声级方差的方法,通常认为最小尺度的小波空间的主要由噪声的小波系数为主。然而有时在细尺度估计的值应用到所有的小波系数并不准确,高频信号成分通常会被误作噪声或不能完全地判断噪声,另外,Donoho 是针对高斯白噪声而提出的软门限,软门限的本质是对大于阈值的小波系数进行削弱,即具有平滑作用,往往会产生信号的过分平滑。

由于不同小波基的特征不同以及噪声模型的差异,阈值去噪的方法在具体应用中要进行修正[47]。Guo [22] 通过估计噪声方差的范围来调整阈值,再分别用硬门限和软门限的方法进行比较,发现硬门限的方法去噪有比较好的效果。

另外有L .Gagnon [23] [48]等从相位信息的角度出发进行。其假设相位信息对噪声的反应能力要比小波系数幅值强,可以据此作为判断局部阈值的准则,就象根据不同的小波系数设置不同的阈值。最早提出的方法是:首先进行小波变换;储存小波系数的相位和最大尺度的低频部分;用标准的阈值方法进行小波系数处理;小波逆变换重构图像;将结果图像的虚部置为零再进行小波变换;用原来储存的相位和低频部分替代新的相位和低频部分;小波逆变换重构图像;重复以上步骤反复迭代直到获得满意结果,大概需要500次的循环。后来在此基础上又进行了改进:提出了椭圆形小波系数阈值算法,假设小波系数实部和虚部的二维直方图服从椭圆分布,根据二维椭圆分布的主轴来确定阈值。该方法能够保持复杂的小波系数分布的所有方向,并且充分考虑了相位信息。

3.1.2.2基于边缘检测的思想

Fukuda 等[21]提出了一种基于小波理论的斑点噪声滤波器,其主要思想是在

小波细节子图像中减少小波分解系数的幅值来抑制相干斑噪声,同时利用小波细节子图像中提供的边缘信息来检测边缘和纹理细节,并保留其对应的小波分解系数值。

其算法和步骤如下:

1、小波分解SAR影像到M层,将小波分解系数取绝对值。

2、对细节子图像进行如下处理

(1)设置阈值T将细节子图像分为强部分和弱部分

如果细节子图像分解系数的绝对值≥T ,划分为强部分

如果细节子图像分解系数的绝对值≤T,划分为弱部分。

(2)将弱部分乘上一个系数a 0≤a≤1

(3)在强部分的每一个像素周围组成3×3的窗口,对三个方向的细节子图像(LH,HL,HH)进行如下判断:

如果被观察的像素周围至少有一个强部分像素包含在窗口中的强

部分区域中,则窗口中央的被观察像素保留原值;如果被观察像

素周围没有一个强部分像素包含在窗口中的强部分区域中,则被

观察像素乘上系数b(0≤b≤1)

3、小波逆变换重建图像。

此方法涉及到三个参数:T、a、b,其中T是根据图像的灰度级确定,一般取灰度级的中值。a、b为1时相当于重构原图像,当a、b为0时相当于低通滤波。作者使用了a=b=0.5,a、b值太大或太小都会影响去除噪声之后的SAR图像的视觉解译效果。

这种方法考虑了小波域中邻域小波系数的关系,虽然噪声和边缘都集中于高频带,但边缘是连续变化的,具有丛生性,产生比噪声更宽的高频带,而斑点噪声是随机分布的,不会在周围邻域内连续出现,因此对窗口邻域内的强部分像素点数目限制为两个。

但该方法没有根据不同尺度的噪声级水平来确定阈值范围,也没有考虑不同尺度的噪声级水平的变化,对小波系数的抑制方法只是用了经验参数,经验参数的不合适会导致过分平滑或去噪效果不理想。

低通插值滤波器说明书

The University of South China 数字信号处理课程设计 说明书 学院名称 指导教师 班级 学号 学生姓名 2010年6 月

设计一个按因子I=5的内插器,要求镜像滤波器通带最大衰减为 0.1dB ,阻带最小衰减为30dB ,过渡带宽不大于20/π,设计FIR 滤波器系数h(n) 一、初始设计 (1) 幅度指标 可以两种方式给出。第一种,叫做绝对指标,它提出了对幅度回应函数|H (jw)| 的要求。这些指标一般可直接用于FIR 滤波器。第二种方法叫做相对指标,它以分贝(dB )值的形式提出要求,其定义为: 0|)(|| )(|log 20max 10≥-=jw jw e H e H dB 经过定义中所包含的归一化,所有滤波器的相对幅频特性最高处的值为0dB ,由于定义式中有一个负号,幅频特性小的地方,其dB 值反而是正的。 绝对指标: [0,wp]段叫通带,δ1是在理想通带中能接受的振幅波动或(容限) [ws, ]段叫做阻带,δ2是阻带中能接受的振幅波动或(容限) [wp,ws]叫做过渡带,在此段上幅度回应通常没有限制,也可以给些弱限制。 低通滤波器的典型幅度指标 相对指标(dB ): p R 是通带波动的dB 值; s A 是阻带衰减的dB 值。 由于绝对指标中的)1(|)(|1max δ+=jw H ,因此 011log 201 1 10 >+--=δδp R , ) (ωj e G c ω 1 1+ p 1- p s p s

11log 201 2 10 >>+-=δδs A 逆向的关系为 20 20 1101101p p R R --+-= δ 20 20 1210 10 )1(s s A A --≈+=δδ (2)低通FIR 滤波器阶数的估计 π ωωδδ2/)(6.1413)lg(20p s s p N ---≈ (3)滤波器结构分析: 整数倍内插器的 FIR 直接实现 整数I 倍内插是在已知的相邻两个原采样点之间等间隔插入I-1个新的采样值。对已知的采样序列)(11T n x 进行D/A 转移,得道原来的模拟信号)(t x a ,然后再对)(t x a 进行较高采样率的采样得到)(22T n y ,这里 21IT T = I 为大于1的整数,称为内插因子。 整数倍内插是先在已知采样序列)(11T n x 的相邻两个样点之间等间隔插入I-1个0值点,然后进行低通滤波器,即可获得I 倍内插的结果。内插方案如图所示: )(11T n x )(22T n v )(22T n y 图中↑ I 表示在)(11T n x 相邻样点之间插入I-1个0值采样,称为零值内插器。 )(11T n x 、)(22T n y 的傅里叶变换为:)(1 jw e X 、)(2jw e Y ,二者均为周期函数,若二 者都用模拟频率Ω表示,则 (1jw e X =)(1T j e X Ω,周期为11/2T sa π=Ω; )(2jw e Y =)(2T i e Y Ω,周期为2sa Ω=112)//(2/2sa I I T T Ω==ππ。 )(22T n v =?? ??? ±±=其它当 02,,0n )(212I I I T n x ↑ I )(22T n h

10种常用滤波方法

1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:

对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点: 测量速度较慢,和算术平均滤波法一样 比较浪费RAM 6、限幅平均滤波法 A、方法: 相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理, 再送入队列进行递推平均滤波处理 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点: 比较浪费RAM 7、一阶滞后滤波法 A、方法: 取a=0~1 本次滤波结果=(1-a)*本次采样值+a*上次滤波结果 B、优点: 对周期性干扰具有良好的抑制作用 适用于波动频率较高的场合 C、缺点: 相位滞后,灵敏度低 滞后程度取决于a值大小

数字滤波算法

几种简单的数字滤波 假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad(); 1、限副滤波 /* A值可根据实际情况调整 value为有效值,new_value为当前采样值 滤波程序返回有效的实际值*/ #define A 10 char value; char filter() { char new_value; new_value = get_ad(); if ( ( new_value - value > A ) || ( value - new_value > A ) return value; return new_value; } 2、中位值滤波法 /* N值可根据实际情况调整 排序采用冒泡法*/ #define N 11 char filter() { char value_buf[N]; char count,i,j,temp; for ( count=0;countvalue_buf[i+1] ) { temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; } } }

return value_buf[(N-1)/2]; } 3、算术平均滤波法 /* */ #define N 12 char filter() { int sum = 0; for ( count=0;count

常用的8种数字滤波算法

常用的8种数字滤波算法 摘要:分析了采用数字滤波消除随机干扰的优点,详细论述了微机控制系统中常用的8种数字滤波算法,并讨论了各种数字滤波算法的适用范围。 关键词:数字滤波;控制系统;随机干扰;数字滤波算法 1 引言 在微机控制系统的模拟输入信号中,一般均含有各种噪声和干扰,他们来自被测信号源本身、传感器、外界干扰等。为了进行准确测量和控制,必须消除被测信号中的噪声和干扰。噪声有2大类:一类为周期性的,其典型代表为50 Hz 的工频干扰,对于这类信号,采用积分时间等于20 ms整倍数的双积分A/D转换器,可有效地消除其影响;另一类为非周期的不规则随机信号,对于随机干扰,可以用数字滤波方法予以削弱或滤除。所谓数字滤波,就是通过一定的计算或判断程序减少干扰信号在有用信号中的比重,因此他实际上是一个程序滤波。 数字滤波器克服了模拟滤波器的许多不足,他与模拟滤波器相比有以下优点: (1)数字滤波器是用软件实现的,不需要增加硬设备,因而可靠性高、稳定性好,不存在阻抗匹配问题。 (2)模拟滤波器通常是各通道专用,而数字滤波器则可多通道共享,从而降低了成本。 (3)数字滤波器可以对频率很低(如0.01 Hz)的信号进行滤波,而模拟滤波器由于受电容容量的限制,频率不可能太低。 (4)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤波参数,具有灵活、方便、功能强的特点。 2 常用数字滤波算法 数字滤波器是将一组输入数字序列进行一定的运算而转换成另一组输出数字序列的装置。设数字滤波器的输入为X(n),输出为Y(n),则输入序列和输出序列之间的关系可用差分方程式表示为: 其中:输入信号X(n)可以是模拟信号经采样和A/D变换后得到的数字序列,也

十种数字滤波方法

1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 自动化科协 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果

N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 自动化科协 测量速度较慢,和算术平均滤波法一样 比较浪费RAM 6、限幅平均滤波法 A、方法: 相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理, 再送入队列进行递推平均滤波处理 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 比较浪费RAM 7、一阶滞后滤波法 A、方法: 取a=0~1 本次滤波结果=(1-a)*本次采样值+a*上次滤波结果 B、优点: 对周期性干扰具有良好的抑制作用 适用于波动频率较高的场合 C、缺点:

10种简单的数值滤波方法

单片机利用软件抗干扰的几种滤波方法 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效; 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值。 B、优点: 能有效克服因偶然因素引起的脉冲干扰。 C、缺点 无法抑制那种周期性的干扰,平滑度差。 2、中位值滤波法 A、方法: 连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值。 B、优点: 能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果。 C、缺点: 对流量、速度等快速变化的参数不宜。 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算,N值较大时:信号平滑度较高,但灵敏度较低;N值较小时:信号平滑度较低,但灵敏度较高;N值的选取:一般流量,N=12;压力:N=4。 B、优点: 适用于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动。 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用,比较浪费RAM。 4、递推平均滤波法(又称滑动平均滤波法)。 A、方法: 把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则),把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4。 B、优点: 对周期性干扰有良好的抑制作用,平滑度高,适用于高频振荡的系统 C、缺点: 灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差,不易消除由于脉冲干扰所引起的采样值偏差,不适用于脉冲干扰比较严重的场合,比较浪费RAM。 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法”,连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值,N值的选取:3~14, B、优点: 融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。 C、缺点: 测量速度较慢,和算术平均滤波法一样,比较浪费RAM。 6、限幅平均滤波法

单片机数字滤波算法

单片机主要作用是控制外围的器件,并实现一定的通信和数据处理。 但在某些特定场合,不可避免地要用到数学运算,尽管单片机并不擅长实现算法和进行复杂的运算。下面主要是介绍如何用单片机实现数字滤波。 在单片机进行数据采集时,会遇到数据的随机误差,随机误差是由随机干扰引起的,其特点是在相同条件下测量同一量时,其大小和符号会现无规则的变化而无法预测,但多次测量的结果符合统计规律。为克服随机干扰引起的误差,硬件上可采用滤波技术,软件上可采用软件算法实现数字滤波。滤波算法往往是系统测控算法的一个重要组成部分,实时性很强。 1采用数字滤波算法克服随机干扰的误差具有以下优点: 1.数字滤波无需其他的硬件成本,只用一个计算过程,可靠性高,不存在阻 抗匹配问题。尤其是数字滤波可以对频率很低的信号进行滤波,这是模拟滤波器做不到的。 2.数字滤波使用软件算法实现,多输入通道可共用一个滤波程序,降低系统 开支。 3.只要适当改变滤波器的滤波程序或运算,就能方便地改变其滤波特性,这 对于滤除低频干扰和随机信号会有较大的效果。 4.在单片机系统中常用的滤波算法有限幅滤波法、中值滤波法、算术平均滤 波法、加权平均滤波法、滑动平均滤波等。 2限幅滤波算法 该运算的过程中将两次相邻的采样相减,求出其增量,然后将增量的绝对值,与两次采样允许的最大差值A进行比较。A的大小由被测对象的具体情况而定,如果小于或等于允许的最大差值,则本次采样有效;否则取上次采样值作为本次数据的样本。 算法的程序代码如下: #define A //允许的最大差值 char data; //上一次的数据 char filter() { char datanew; //新数据变量 datanew=get_data(); //获得新数据变量 if((datanew-data)>A||(data-datanew>A)) return data; else return datanew; }

常用的软件滤波方法(工程师必备).

软件滤波在嵌入式的数据采集和处理中有着很重要的作用,这10种方法各有优劣,根据自己的需要选择。同时提供了C语言的参考代码,希望对各位能有帮助。 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 /* A值可根据实际情况调整 value为有效值,new_value为当前采样值 滤波程序返回有效的实际值 */ #define A 10 char value; char filter()

char new_value; new_value = get_ad(); if ( ( new_value - value > A ) || ( value - new_value > A ) return value; return new_value; } 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 /* N值可根据实际情况调整 排序采用冒泡法*/ #define N 11

char filter() { char value_buf[N]; char count,i,j,temp; for ( count=0;countvalue_buf[i+1] ) { temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; } } }

十一种软件数字滤波算法

1 数字滤波 1.1 概述 在单片机进行数据采集时,会遇到数据的随机误差,随机误差是由随机干扰引起的,其特点是在相同条件下测量同一量时,其大小和符号会现无规则的变化而无法预测,但多次测量的结果符合统计规律。为克服随机干扰引起的误差,硬件上可采用滤波技术,软件上可采用软件算法实现数字滤波。滤波算法往往是系统测控算法的一个重要组成部分,实时性很强。 采用数字滤波算法克服随机干扰的误差具有以下优点: 1、数字滤波无需其他的硬件成本,只用一个计算过程,可靠性高,不存在阻 抗匹配问题。尤其是数字滤波可以对频率很低的信号进行滤波,这是模拟滤波器做不到的。 2、数字滤波使用软件算法实现,多输入通道可共用一个滤波程序,降低系统 开支。 3、只要适当改变滤波器的滤波程序或运算,就能方便地改变其滤波特性,这 对于滤除低频干扰和随机信号会有较大的效果。 4、在单片机系统中常用的滤波算法有限幅滤波法、中值滤波法、算术平均滤 波法、加权平均滤波法、滑动平均滤波等。 1.2 限幅滤波算法 原理:该运算的过程中将两次相邻的采样相减,求出其增量,然后将增量的绝对值,与两次采样允许的最大差值A进行比较。A的大小由被测对象的具体情况而定,如果小于或等于允许的最大差值,则本次采样有效;否则放弃本次值取上次采样值作为本次数据的样本。 优点:能有效克服因偶然因素引起的脉冲干扰。 缺点:无法抑制那种周期性的干扰,平滑度差。 说明:限幅滤波法主要用于处理变化较为缓慢的数据,如温度、物体的位置等。使用时,关键要选取合适的门限制A。通常这可由经验数据获得,必要时可通过实验得到。 1.3 中值滤波算法 原理:该运算的过程是对某一参数连续采样N次(N一般为奇数),然后把N次采样的值按从小到大排列,再取中间值作为本次采样值,整个过程实际上是一个序列排序的过程。

数据处理中的几种常用数字滤波算法

数据处理中的几种常用数字滤波算法 王庆河王庆山 (济钢集团计量管理处,济南250101) (济钢集团中厚板厂,济南250101) 摘要随着数字化技术的发展,数字滤波技术成为数字化仪表和计算机在数据采集中的关键性技术,本文对常用的几种数字滤波算法的原理进行描述,并给出必要的数学模型。 关键词:数据采样噪声滤波移动滤波 一、引言 在仪表自动化工作中,经常需要对大量的数据进行处理,这些数据往往是一个时间序列或空间序列,这时常会用到数字滤波技术对数据进行预处理。数字滤波是指利用数学的方法对原始数据进行处理,去掉原始数据中掺杂的噪声数据,获得最具有代表性的数据集合。 数据采样是一种通过间接方法取得事物状态的技术如将事物的温度、压力、流量等属性通过一定的转换技术将其转换为电信号,然后再将电信号转换为数字化的数据。在多次转换中由于转换技术客观原因或主观原因造成采样数据中掺杂少量的噪声数据,影响了最终数据的准确性。 为了防止噪声对数据结果的影响,除了采用更加科学的采样技术外,我们还要采用一些必要的技术手段对原始数据进行整理、统计,数字滤波技术是最基本的处理方法,它可以剔除数据中的噪声,提高数据的代表性。 二、几种常用的数据处理方法 在实际应用中我们所用的数据滤波方法很多,在计算机应用高度普及的今天更有许多新的方法出现,如逻辑判断滤波、中值滤波、均值滤波、加权平均 2中值滤波 中值滤波是对采样序列按大小排滤波、众数滤波、一阶滞后滤波、移动滤波、复合滤波 等。 假设我们采用前端仪表采集了一组采样周期为1s的温度数据的时间序列 T0为第0s 采集的温度值,Ti为第is采集的温度值。下面介绍如何应用几种不同滤波算法来计算结果温度T。 1.程序判断滤波 当采样信号由于随机干扰、误检测或变送器不稳定引起严重失真时,可采用程序判断滤波算法,该算法的基本原理是根据生产经验,确定出相邻采样输入信号可能的最大偏差△T,若超过此偏差值,则表明该输入信号是干扰信号,应该去掉,若小于偏差值则作为此次采样值。 (1)限幅滤波 限幅滤波是把两次相邻的采集值进行相减,取其差值的绝对值△T作为比较依据,如果小于或等于△T,则取此次采样值,如果大于△T,则取前次采样值,如式(1)所示:

(整理)11种滤波方法+范例代码.

软件滤波算法(转载) 这几天做一个流量检测的东西,其中用到了对数据的处理部分,试了很多种方法,从网上找到这些个滤波算法,贴出来记下 需要注意的是如果用到求平均值的话,注意总和变量是否有溢出,程序没必要照搬,主要学习这些方法,相信做东西的时候都能用得上 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点:

适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 测量速度较慢,和算术平均滤波法一样 比较浪费RAM

常用滤波方法

1、限幅滤波法(又称程序判断滤波法) 2、A、方法: 3、根据经验判断,确定两次采样允许的最大偏差值(设为A) 4、每次检测到新值时判断: 5、如果本次值与上次值之差<=A,则本次值有效 6、如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 7、B、优点: 8、能有效克服因偶然因素引起的脉冲干扰 9、C、缺点 10、无法抑制那种周期性的干扰 11、平滑度差 12、 13、2、中位值滤波法 14、A、方法: 15、连续采样N次(N取奇数) 16、把N次采样值按大小排列 17、取中间值为本次有效值 18、B、优点: 19、能有效克服因偶然因素引起的波动干扰 20、对温度、液位的变化缓慢的被测参数有良好的滤波效果 21、C、缺点: 22、对流量、速度等快速变化的参数不宜 23、 24、 25、 26、3、算术平均滤波法 27、A、方法: 28、连续取N个采样值进行算术平均运算 29、N值较大时:信号平滑度较高,但灵敏度较低 30、N值较小时:信号平滑度较低,但灵敏度较高 31、N值的选取:一般流量,N=12;压力:N=4 32、B、优点: 33、适用于对一般具有随机干扰的信号进行滤波 34、这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 35、C、缺点: 36、对于测量速度较慢或要求数据计算速度较快的实时控制不适用 37、比较浪费RAM 38、 39、4、递推平均滤波法(又称滑动平均滤波法) 40、A、方法: 41、把连续取N个采样值看成一个队列 42、队列的长度固定为N 43、每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 44、把队列中的N个数据进行算术平均运算,就可获得新的滤波结果

基于内插滤波器符号同步的实现

基于内插滤波器符号同步的实现 陈卫东,孙 栋,张华冲 (中国电子科技集团公司第五十四研究所,河北石家庄050081) 摘 要:比较了同步采样和异步采样条件下符号同步实现方法的不同,在全数字接收机中需要采用内插方法来实现符号同步,内插滤波器是一种线性时变滤波器,在工程中可以采用多项式内插函数来近似,采用FARROW 结构实现。在此基础上介绍了内插法符号同步环路的结构,组成单元,其中详细介绍了内插控制器和定时误差检测器的原理。在AWGN 信道中针对QAM 64信号进行了仿真和实现,眼图和星座图恢复良好,该符号同步环路可以应用于侦察接收机的解调器中。 关键词:全数字接收机;内插滤波器;符号同步 中图分类号:TN914.42 文献标识码:A 文章编号:1003-3114(2009)06-53-3 Design of Symbol Synchronization Circuit Based on Interpolation C HE N Wei dong,SUN Dong,ZHANG Hua chong (The 54th Research Insti tute of CETC,Shijiazhuang Hebei 050081,China) Abstract :In traditional demodulator synchronization sampling is used.In all di g i tal recei ver based on the non synchronization samplin g timing recovery is achieved with the help of interpolator.Cubic interpolator,interpolation controller and Gardner Algoithm for symbol timing error detection are introduced in detail i n this paper.The performance of the design is well i n si mulation.The desi gn is implemented in XILINX FPGA and i t can be applied to demodulation for reconnaissance receiver. Key words:all digital receiver;interpolator;symbol synchronization 收稿日期:2009-09-01 作者简介:陈卫东(1968-),男,高级工程师。主要研究方向:通信信号处理、软件无线电。 0 引言 符号同步的主要任务是从接收到的信号中估计出恢复时钟相位与最佳采样位置的相位误差信息,并根据该信息,将本地采样时钟调整到能够对码元进行最佳检测的相位上,得到信号的最佳采样值,这些采样值中包含判决时刻的信号值。 传统的数字化解调器一般采用零中频方案,需要零中频信道单元把中频信号变换为I Q 两路零中频信号,再进行A/D 采样,定时恢复是通过调整AD 采样时钟相位来完成的,这种接收机定时恢复环路结构简单,但是环路包含模拟单元,模拟器件的非线性,稳定性较差,会对定时恢复的精度,可靠性造成影响。在全数字接收机中,A/D 采样在中频完成,数字下变频确保了I Q 幅度、相位的一致性,定时恢复环路完全在数字域实现。在具体实现中,整个环路可以在一片FPGA 芯片内完成,可靠性与稳定性得到了很大提高。符号同步是全数字接收机中的一个关键技术。 传统的解调器采用同步采样方式,即符号同步 环路锁定后,采样时钟频率是符号速率的整倍数,采样点中包含了判决时刻。在全数字接收机中,采用异步采样方式,即采样时钟频率与发送端时钟频率不相关,而是一个固定时钟频率,采样点中不包含判决时刻。由于采样不同步而引入的定时速率和相位误差,需要用数字信号处理的方法来补偿,即通过定时误差估值控制内插滤波器对采样得到的信号样本值进行插值运算,从而得到信号在最佳采样时刻的近似值。内插滤波器即是完成这一功能必须的环节。 1 内插原理 Gardner 在其文献中给出了速率转换模型来分析内插滤波器,该模型如图1 所示。 图1 内插滤波器速率转换模型 设发送的线性调制符号周期为T,T s 为采样周期。在全数字接收机中,由于T s 的定时来源于独立 工程实践及应用技术

AD转换中常用的十种数字滤波法

在AD采集中经常要用到数字滤波,而不同情况下又有不同的滤波需求,下面是10种经典的软件滤波方法的程序和优缺点分析: 1、限幅滤波法(又称程序判断滤波法) 2、中位值滤波法 3、算术平均滤波法 4、递推平均滤波法(又称滑动平均滤波法) 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) 6、限幅平均滤波法 7、一阶滞后滤波法 8、加权递推平均滤波法 9、消抖滤波法 10、限幅消抖滤波法 1、限副滤波 A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 程序: /* A值可根据实际情况调整 value为有效值,new_value为当前采样值 滤波程序返回有效的实际值*/ #define A 10 char value; char filter() { char new_value; new_value = get_ad(); if ( ( new_value - value > A ) || ( value - new_value > A ) ) return value; else return new_value; } 2、中位值滤波法 A、方法:

连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 程序: /* N值可根据实际情况调整 排序采用冒泡法*/ #define N 11 char filter() { char value_buf[N]; char count,i,j,temp; for ( count=0;countvalue_buf[i+1] ) { temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; } } } return value_buf[(N-1)/2]; } 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点:

10种简单的数字滤波算法(C语言源程序)

假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad(); 1、限副滤波 /* A值可根据实际情况调整 value为有效值,new_value为当前采样值 滤波程序返回有效的实际值*/ #define A 10 char value; char filter() { char new_value; new_value = get_ad(); if ( ( new_value - value > A ) || ( value - new_value > A ) return value; return new_value; } 2、中位值滤波法 /* N值可根据实际情况调整 排序采用冒泡法*/ #define N 11 char filter() { char value_buf[N]; char count,i,j,temp; for ( count=0;countvalue_buf[i+1] ) { temp = value_buf[i]; value_buf[i] = value_buf[i+1]; value_buf[i+1] = temp; } } } return value_buf[(N-1)/2]; } 3、算术平均滤波法

*/ #define N 12 char filter() { int sum = 0; for ( count=0;count

数字滤波器原理

4.2经典数字滤波器原理 数字滤波是数字信号分析中最重要的组成部分之一,与模拟滤波相比,它具有精度和稳定性高、系统函数容易改变、灵活性强、便于大规模集成和可实现多维滤波等优点。在信号的过滤、检测和参数的估计等方面,经典数字滤波器是使用最广泛的一种线性系统。 数字滤波器的作用是利用离散时间系统的特性对输入信号波形(或频谱)进行加工处理,或者说利用数字方法按预定的要求对信号进行变换。 4.2.1数字滤波器的概念 若滤波器的输入、输出都是离散时间信号,那么该滤波器的单位冲激响应h(n)也必然是离散的,这种滤波器称为数字滤波器。当用硬件实现一个DF时,所需的元件是乘法器、延时器和相加器;而用MATLAB软件实现时,它仅仅需要线性卷积程序就可以实现。众所周知,模拟滤波器(Analog Filter,AF)只能用硬件来实现,其元件有电阻R,电感L,电容C及运算放大器等。因此,DF的实现要比AF容易得多,并且更容易获得较理想的滤波性能。 数字滤波器的作用是对输入信号进行滤波,就如同信号通过系统一样。对于线性时不变系统,其时域输入输出关系是: (4-1)若y(n)、x(n)的傅里叶变化存在,则输入输出的频域关系是: (4-2) 当输入信号x(n)通过滤波器h(n)后,其输出y(n)中不再含有的频率成分,仅使的信号成分通过,其中是滤波器的转折频率。 4.2.2经典数字滤波器的分类 经典数字滤波器按照单位取样响应h(n)的时域特性可分为无限冲激响应(IIR,I nfinite Impulse Response)系统和有限冲激响应(FIR,Finite Impulse Respo nse)系统。如果单位取样响应是时宽无限的h(n),则称之为IIR系统;而如果单位取样响应是时宽有限的h(n),,则称之为FIR系统。

数字滤波的优点及10种常用数字滤波方法比较

数字滤波的优点及10 种常用数字滤波方法比较 在微机控制系统的模拟输入信号中,一般均含有各种噪声和干扰,他们来自被测信号源本身、传感器、外界干扰等。为了进行准确测量和控制,必须消除被测信号中的噪声和干扰。噪声有2 大类: (1)周期性的信号,其典型代表为50Hz 的工频干扰,对于这类信号,采用积分时间等于20ms 整倍数的双积分A/D 转换器,可有效地消除其影响; (2)非周期的不规则随机信号,对于随机干扰,可以用数字滤波方法予以削弱或滤除。 所谓数字滤波,就是通过一定的计算或判断程序减少干扰信号在有用信号中的比重,因此他实际上是一个程序滤波。数字滤波器克服了模拟滤波器的许多不足,他与模拟滤波器相比有以下优点: (1) 数字滤波器是用软件实现的,不需要增加硬设备,因而可靠性高、稳定性好,不存在阻抗匹配问题。 (2) 模拟滤波器通常是各通道专用,而数字滤波器则可多通道共享,从而降低了成本。 (3)数字滤波器可以对频率很低(如0.01Hz) 的信号进行滤波,而模拟滤波器由于受电容容量的限制,频率不可能太低。 (4)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤

波参数,具有灵活、方便、功能强的特点。 10 种数字滤波方法 1、限副滤波 方法:根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断:如果本次值与上次值之差A, 则本次值无效,放弃本次值,用上次值代替本次值优点:能有效克服因偶然因素引起的脉冲干扰。缺点:无法抑制那种周期性的干扰,平滑度差。 2、中位值滤波法 方法:连续采样N 次(N 取奇数),把N 次采样值按大小排列,取中间值为本次有效值。 优点:能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果。缺点:对流量、速度等快速变化的参数不宜。 3、算术平均滤波法 方法:连续取N 个采样值进行算术平均运算。N 值较大时:信号平滑度较高,但灵敏度较低;N 值较小时:信号平滑度较低,但灵敏度较高。N 值的选取:一般流量,N=12; 压力: N=4 优点:适用于对一般具有随机干扰的信号进行滤波,这样信 号的特点是有一个平均值,信号在某一数值范围附近上下波动。缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用,比较浪费RAM 。 4、递推平均滤波法(又称滑动平均滤波法)方法:把连续取

相关主题
文本预览
相关文档 最新文档