当前位置:文档之家› 经验模式分解(EMD)及其应用

经验模式分解(EMD)及其应用

经验模式分解(EMD)及其应用
经验模式分解(EMD)及其应用

经验模式分解算法的探讨和改进

第46卷 第1期2007年 1月中山大学学报(自然科学版) ACT A S C I E NTI A RUM NAT URAL I U M UN I V ERSI T ATI S S UNY ATSE N I Vol 146 No 11 Jan 1 2007   经验模式分解算法的探讨和改进 3 郑天翔,杨力华 (中山大学科学计算与计算机应用系,广东广州510275) 摘 要:对经验模式分解算法中的滤波停止条件和端点延拓问题进行了研究。在改进的E MD 算法基础上,通 过对本征模函数使用“新的滤波停止条件”,获得了更好的实验分解结果,同时,由于改进的E MD 算法假定信号是无限长的,回避了B 样条插值中节点延拓的固有问题,研究了有限长度信号的端点延拓问题,给出了端点延拓算法,从而弥补了已有方法的不足,使之更具实用性。实验表明,文中提出的算法是有效的。 关键词:经验模式分解;端点延拓;本征模函数;滤波停止条件;B 样条插值中图分类号:TP274 文献标识码:A 文章编号:052926579(2007)0120001206 H ilbert 2Huang Transfor m (简称HHT )是近年 来发展起来的一种新的时间序列信号分析方法[1] (以下简称H98)。其核心是经验模式分解(E mp ir 2icalMode Decompositi on,E MD ),它把复杂的信号分解成若干个本征模式函数(I ntrinsic Mode Func 2ti on,I M F )之和。由于E MD 是自适应的,故其分解非常有效,尤其适用于非线性和非平稳过程分析。 HHT 自1998年由N 1Huang 及其合作者提出以来,一直受到国内外学者的关注,并取得了一系列的研究成果。Huang 所提出的E MD 是算法型的,虽然该算法在实际信号分解中十分有效,但迄今为止并没有关于该算法的收敛性结果。实际上,人们在利用E MD 进行信号分解时,有两个方面是采取了主观的规则:其一是根据人们对零均值条件的主观理解,使用了特定的门限作为I M F 滤波停止条件;其二是利用三次样条计算信号的上、下包络时,根据人们对信号两端走势的主观经验,使用了特定的端点延拓方法。当使用E MD 时,在上述两点上使用不同的规则将导致不同的分解结果。 Huang 等[1] 在提出E MD 算法时给出了较好的I M F 滤波停止条件,然而该算法依然存在某些方面的不足,为了使用尽量合理的I M F 滤波停止条件, 2003年R illing 等[2] 对文[1]中的E MD 算法进行了改进,提出一种“新的I M F 滤波停止条件”。实验结果表明,该改进算法可以获得更好的分解结果。 为了从理论上有效解决E MD 算法的边界效应,许多学者对端点延拓问题作了研究,这些工作包括 2001年邓拥军等[3] 提出的神经网络方法、2003年 黄大吉等[4] 提出的镜像闭合法和极值点延拓法及 2004年刘慧婷等[5] 提出的多项式拟合算法等。 另外,为了得到E MD 算法的解析表示,2004 年Chen 等[6] 提出了“直接采用基于极值点滑动平 均的B 样条函数的线性组合作为均值” (滑动平均)的方法代替传统的“用极值点插值的三次样条函 数分别得到信号的上下包络从而求得均值” (包络平均)的方法。该方法获得了较好的实验结果,尤其重要的是,借助B 样条函数已有的良好性质,可以为E MD 算法中信号的低频走势(其定义参见本文§111)给出明确的解析表达式,从而为建立E MD 方法的理论基础进行了有益的探索。 但文[6]并没有讨论I M F 的滤波停止条件问题,也没有考虑E MD 算法的端点延拓问题,在那里,信号被假定是无限长的,这对实际的信号分析和处理带来不便。本文将在这两方面对文[6]中的算法进行研究。 1 E MD 方法简介 111 原始E MD 算法的基本思想 E MD 算法本质上是一个有限次的滤波过程(sifting p r ocess ),使得信号具有如下两个特性:①极值点(极大值和极小值)数目与跨零点数目相 等或最多相差一个(以下简称过零点条件);②由局部极大值构成的上包络和由局部极小值构成的下包络的平均值为零(以下简称均值条件)。满足上述特征的信号就称为一个I M F 。 E MD 方法的滤波过程[1] 可写成如下的算法: 3收稿日期:2006202222 基金项目:国家自然科学基金资助项目(60475042,10631080) 作者简介:郑天翔(1979年生),男,博士生;通讯联系人:杨力华;E 2mail :mcsylh@mail 1sysu 1edu 1cn

EMD经验模式分解信息汇总资料

EMD Empirical Mode Decomposition 经验模态分解 美国工程院院士黄锷1998年提出 一种自适应数据处理或挖掘方法,适用于非线性、非平稳时间序列的处理。 1.什么是平稳和非平稳 时间序列的平稳,一般是宽平稳,即时间序列的方差和均值是和时间无关的常数,协方差与与时间间隔有关、与时间无关。未来样本时间序列,其均值、方差、协方差必定与已经获得的样本相同,理解为平稳的时间序列是有规律且可预测的,样本拟合曲线的形态具有“惯性”。 而非平稳信号样本的本质特征只存在于信号所发生的当下,不会延续到未来,不可预测。 严格来说实际上不存在理想平稳序列,实际情况下都是非平稳。 2.什么是EMD经验模态分解方法? EMD理论上可以应用于任何类型时间序列信号的分解,在实际工况中大量非平稳信号数据的处理上具有明显优势。这种优势是相对于建立在先验性假设的谐波基函数上的傅里叶分解和小波基函数上的小波分解而言的。EMD分解信号不需要事先预定或强制给定基函数,而是依赖信号本身特征自适应地进行分解。 相对于小波分解:EMD克服了基函数无自适应性的问题,小波分析需要选定一个已经定义好的小波基,小波基的选择至关重要,一旦选定,在整个分析过程中无法更换。这就导致全局最优的小波基在局部的表现可能并不好,缺乏适应性。而EMD不需要做预先的分析与研究,可以直接开始分解,不需要人为的设置和干预。 相对于傅里叶变换:EMD克服了传统傅里叶变换中用无意义的谐波分量来表示非线性、非平稳信号的缺点,并且可以得到极高的时频分辨率。 EMD方法的关键是将复杂信号分解为有限个本征模函数IMF,Intrinsic Mode Function。分解出来的IMF分量包含了原信号的不同时间尺度上的局部特征信号。 这句话中:不同时间尺度=局部平稳化,通过数据的特征时间尺度来获得本征波动模式,然后分解or筛选数据。 本质上,EMD将一个频率不规则的波化为多个单一频率的波+残波的形式。 原波形=ΣIMFs+余波 信号()t f 筛选出的本征模函数IMF包括余波,对应有实际的物理成因。 现实中的信号分量IMF不会保持完全稳定的频率和振幅,也常常无法从各个分量中直接看出信号规律。EMD分解经常被用作信号特征提取的一个预先处理手段,将各IMF分量作为后续分析方法的输入,以完成更加复杂的工作。 3.IMF的筛选过程 第一步: Get原数据曲线f(t)所有极大值点,三次样条插值函数拟合成原数据的上包络线; Get原数据曲线f(t)所有极小值点,三次样条插值函数拟合成原数据的下包络线。

经验模态分解和算法

经验模态分解和算法 摘要——黄提出了经验模态分解(EMD)的数据处理方法,也对这种技术应用的有效性进行了讨论。许多变种算法(新的停止准则,即时版本的算法)也产生出来。数值模拟用来作经验性的评估执行单元运用于语音识别和分离方面,得出的实验结果认为这种方法是根据自适应的常数Q的滤波器组提出的。 1.介绍 近来,一种被称为EMD的新的非线性方法被黄等人提出,这种方法能够自适应的把非平稳信号分解成一系列零均值的AMFM信号(调频调幅) 的总和。尽管这种方法经常有着显著的效果,但是这个方法在算法方面的定义是困难的,因此这种方法没有作为一种分析方法得到承认,一般一种分析方法是需要有理论分析和性能评估。因此本文的目的是用实验的方式使得该算法更容易理解,并且提出了基于原算法的各种各样的改进的算法。设置实验性能评估的许多初始条件是为了获取一种有效的分解并且使得该算法更容易理解。 2.EMD基础 EMD的出发点是把信号内的震荡看作是局部的。实际上,如果我们要看评估信号x(t)的2个相邻极值点之间的变化(2个极小值,分别在t-和t+处),我们需要定义一个(局部)高频成分{d(t),t-<=t<=t+}(局部细节),这个高频成分与震荡相对应,震荡在2个极小值之间并且通过了极大值(肯定出现在2极小值之间)。为了完整这个图形,我们还需要定义一个(局部)低频成分m(t)(局部趋势),这样x(t)=m(t)+d(t),(t-<=t<=t+)。对于整个信号的所有震动成分,如果我们能够找到合适的方法进行此类分解,这个过程可以应用于所有的局部趋势的残余成分,因此一个信号的构成成分能够通过迭代的方式被抽离出来。 对于一个给定的信号x(t),进行有效的EMD分解步骤如下: 1)找出想x(t)的所有极值点 2)用插值法对极小值点形成下包络emint(t),对极大值形成上包络emax(t) 3)计算均值m(t)=(emint(t)+emax(t))/2 4)抽离细节d(t)=x(t)-m(t) 5)对残余的m(t)重复上诉步骤 在实际中,上述过程需要通过一个筛选过程进行重定义,筛选过程的第一个迭代步骤是对细节信号d(t)重复从1-4步,直到d(t)的均值是0,或者满足某种停止准则才停止迭代。一旦满足停止准则,此时的细节信号d(t)就被称为IMF,d(t)对应残量信号用第5步计算。通过以上过程,极值点的数量伴随着残量信号的产生而越来越少,整个分解过程会产生有限个模函数(IMF)。 模函数和残量信号可以进行谱分析,但是这个谱分析不能从狭隘的角度来看。首先,需要强调一下,即使是谐振荡,应用上述方法产生的高频和低频也只是局部的,没办法产生一个预设的频带过滤(例如小波变换)进行辨识。选择的模函数对应了一个自适应(依赖于信号自身的)的时变滤波器。一个这方面的例子:一个信号由3个部分组成(这3个部分是时间频率上都明显叠加的信号),用上述方法成功的分解了。分解如图1所示。这个例子的程序是emd_fmsin2.m 另外一个例子(emd_sawtooth.m)强调了EMD潜在的非谐振性质如图2所示。在这些例子中,线性的非线性的震荡都能被有效的识别和分离。因而,任何谐振分析(傅里叶,小波,…)可能结束在同类文章中,更少的紧凑和更少的实际意义的分解。 3.算法的改进 正如第二部分所定义的,EMD算法依赖于一系列的选项,这些选项需要用户控制,并且需要专业的知识。在此我们的目的找出更准确的选项,并且给予原来的算法进行改进。3.1采样率,插值方法和边缘效应

二维经验模态分解的关键问题

Key Problems of Bidimensional Empirical Mode Decomposition Guangtao Ge School of Information and Electronic Engineering Zhejiang Gongshang University Hangzhou, China ggtggtggt@https://www.doczj.com/doc/899929366.html, Guangtao Ge Department of Information Science & Electronic Engineering Zhejiang University Hangzhou, China ggtggtggt@https://www.doczj.com/doc/899929366.html, Abstract—In recent years , an emerging theory of Empirical Mode Decomposition (EMD) is an important breakthrough in the field of signal processing. This paper reviews three key problems in the development of the Bidimensional Empirical Mode Decomposition (BEMD) theory and introduces the latest developments of surface-fitting algorithms, boundary corruption solution methods and the BEMD criterion for stopping the sifting process. Then this paper also comments several open problems in BEMD theory and discusses the existing difficult problems . Keywords-component; Bidimensional Empirical Mode Decomposition; surface-fitting; boundary corruption; BEMD criterion 二维经验模态分解的关键问题 葛光涛1, 2 1.浙江工商大学信息与电子工程学院,杭州,中国,310018 2. 浙江大学信息与电子工程学系,杭州,中国,310027 ggtggtggt@https://www.doczj.com/doc/899929366.html, 【摘要】近年国际上出现的经验模态分解理论(Empirical Mode Decomposition , EMD)是信号处理领域的一个重大突破。本文综述了二维经验模态分解(Bidimensional Empirical Mode Decomposition , BEMD)理论发展过程中涉及的三个关键问题,并着重介绍了曲面拟合、边界污染处理和停止准则制定这三个方面的最新进展,评述了其中的公开问题,对研究中现存的难点问题进行了探讨。 【关键词】二维经验模态分解;曲面拟合;边界污染;停止准则 1 引言 1998 年美国国家宇航局(NASA)的Norden E.huang等人首次提出对一列时间序列数据先进行经验模态分解(以Empirical Mode Decomposition表示 , 简写作EMD),然后对各个分量作希尔伯特变换。这种变换被称为希尔伯特黄变换(Hilbert-Huang transform, HHT)[1,3]。这种信号处理方法被认为是近年来对以傅立叶变换为基础的线性和稳态谱分析的一个重大突破。该方法从本质上讲是对一个复杂的信号进行平稳化处理[2],其结果是将信号中不同尺度的波动或趋势逐级分解开来,由于这种分解是基于局部特征尺度,作为一种完全的数据驱动方法,它具有良好的局部适应性,因此,该方法既能对平稳信号进行分析,又能对非平稳信号进行分析。 以往很多的一维信号处理方法被成功地推广到空间二维信号处理领域,被应用于二维图像数据的处理时同样可以得到良好的效果[4]。例如,傅立叶变换、离散余弦变换以及小波变换等信号处理的技术已经广泛应用于数字图像处理领域,具体应用包括图像滤波、图像复原、图像增强、图像拼接、图像压缩以及数字水印等方面。经验模态分解方法在一维信号处理方面已经获得巨大的成功,所以如果能将一维经验模式分解方法推广到二维,将会给图像处理等领域提供一种新的有效的数据处理手段。 二维经验模态分解理论的发展过程中主要涉及以下几个重要问题[5]:曲面的精确拟合,边界污染的克服,合理停止准则的制定等。 2010 International Conference on Remote Sensing (ICRS) 978-1-4244-8729-5/10/$26.00 ?2010 IEEE ICRS2010

LMD经验模态分解matlab程序要点

LMD经验模态分解matlab程序——原味的 曾经也用滑动平均写过LMD,其实滑动平均的EMD才是原汁原味的居于均值分解。 分享给有需要的人,程序写的不好,只是希望提供一种思路。如果谁写了更完美LMD程序,别忘了发我一份,快毕业了,一直没有把LMD写完美,对于我来说始终是个遗憾。来分完美的LMD让我也品尝下,我也无憾了~ 代码下载地址:https://www.doczj.com/doc/899929366.html,/source/3102096 此处没有提供测试代码,如需要可以点这里:点我 源代码如下: %原始lmd算法,效果很不好,不知道程序哪里写错 function[PF,A,SI]=lmd(m) c=m; k=0 wucha1=0.001; n_l=nengliang(m); while 1 k=k+1; a=1; h=c; [pf,a,si]=zhaochun(a,h,wucha1); c=c-pf; PF(k,:)=pf; A(k,:)=a; SI(k,:)=si; c_pos=pos(c); n_c=nengliang(c); n_pf=nengliang(pf); if length(c_pos)<3 || n_c

经验模态分解及其雷达信号处理

0引言 当今信息时代,快速、高效的数据处理技术在科学研究、 工程应用乃至社会生活的方方面面都起着重要的作用。伴随着计算机技术的兴起,频谱分析被广泛应用于工程实践。但 Fourier 变换要求信号满足Dirichlet 条件,即对信号进行平稳 性假设,而现实中大量存在的是非平稳信号。针对Fourier 变换的不足,短时Fourier 变换(Short Time Fourier Transform , STFT ),即通过对一个时间窗内的信号进行Fourier 变换,分 析非平稳信号。虽然STFT 具有时频分析能力,但它具有固定 的时频分辨率,且难以找到合适的窗函数。而时频分析方法中的Wigner-Ville 分布存在严重的交叉项,会造成虚假信息的出现。小波变换具有可变的时频分析能力,在图像压缩和边缘检测等领域得到成功应用。但小波基不能自动更换,而且对众多小波基的合理选取也是一个难题。小波变换本质上是一种可变窗的Fourier 变换[1]。总之,这些方法没有完全摆脱 Fourier 变换的束缚,从广义上说都是对Fourier 变换的某种修 正,而且其时频分辨能力受到Heisenberg 不确定原理的制约。 Huang 等[1]在1998年提出了经验模态分解(Empirical 经验模态分解及其雷达信号处理 摘要 为了准确估计信号的瞬时频率,可用经验模态分解(EMD )将信号分解成有限个窄带信号。该方法因具有很强的自适应性及 处理非平稳信号的能力而引起广泛关注,已在众多工程领域得到应用。但EMD 是基于经验的方法,数值仿真和试验研究仍是分析 EMD 算法的主要方法。本文总结了EMD 算法存在的问题,并指出深入挖掘支持该方法的理论基础是消除制约EMD 算法进一步发 展和应用推广的关键。针对所存在的问题,从改进筛分停止准则、抑制端点效应、改进包络生成方法和解决模态混叠问题等诸方面阐述了改进EMD 算法的研究进展。综述了EMD 在雷达信号处理领域的应用。最后分析指出了进一步研究EMD 的几个主要方向。 关键词经验模态分解(EMD );希尔伯特-黄变换(HHT );时频信号分析;雷达信号处理 中图分类号TN911.7文献标识码A 文章编号1000-7857(2010)10-0101-05 杨彦利,邓甲昊 北京理工大学机电学院;机电工程与控制重点实验室,北京100081 Empirical Mode Decomposition and Its Application to Radar Signal 收稿日期:2010-03-24 作者简介:杨彦利,博士研究生,研究方向为探测、制导与控制,电子信箱:yyl070805@https://www.doczj.com/doc/899929366.html, ;邓甲昊(通信作者),教授,研究方向为中近程目标探测、 信号处理及感知与自适应控制,电子信箱:bitdjh@https://www.doczj.com/doc/899929366.html, YANG Yanli,DENG Jiahao Laboratory of Mechatronic Engineering &Control,School of Mechatronical Engineering,Beijing Institute of Technology,Beijing 100081,China Abstract In order to better estimate the instantaneous frequency of signals,the empirical mode decomposition (EMD)algorithm,proposed by Huang et al.,is used to break multi-component signals into several narrow subbands.EMD is an adaptive method and can be used to analyze nonstationary signals,so it has been widely applied to many engineering fields.However,EMD is still considered as an empirical method because it lacks a rigorous mathematical foundation,and its analysis depends largely on numerical simulations and experimental investigations.In this paper,related problems of the EMD algorithm are discussed,including its theoretical foundation and its applications.Some modified EMD algorithms are considered to overcome problems,such as stopping criterion,end effect,envelope of signals and mode aliasing.The applications of EMD to the processing of radar signals are reviewed.Some directions for further research on the EMD algorithm are suggested. Keywords empirical mode decomposition (EMD);Hilbert-Huang transform (HHT);time-frequency signal processing;radar signal processing 综述文章(Reviews )

EMD分解的流程图如下

1.什么是HHT? HHT就是先将信号进行经验模态分解(EMD分解),然后将分解后的每个IMF分量进行Hilbert变换,得到信号的时频属性的一种时频分析方法。 2.EMD分解的步骤。 EMD分解的流程图如下: 3.实例演示。 给定频率分别为10Hz和35Hz的两个正弦信号相叠加的复合信号,采样频率fs=2048Hz的信号,表达式如下:y=5sin(2*pi*10t)+5*sin(2*pi*35t) (1)为了对比,先用fft对求上述信号的幅频和相频曲线。 1.function fftfenxi 2.clear;clc; 3.N=2048; 4.%fft默认计算的信号是从0开始的 5.t=linspace(1,2,N);deta=t(2)-t(1);1/deta 6.x=5*sin(2*pi*10*t)+5*sin(2*pi*35*t); 7.% N1=256;N2=512;w1=0.2*2*pi;w2=0.3*2*pi;w3=0.4*2*pi; 8.% x=(t>=-200&t<=-200+N1*deta).*sin(w1*t)+(t>-200+N1*deta&t<=-200+N2*d eta).*sin(w2*t)+(t>-200+N2*deta&t<=200).*sin(w3*t); 9.y = x; 10.m=0:N-1; 11.f=1./(N*deta)*m;%可以查看课本就是这样定义横坐标频率范围的 12.%下面计算的Y就是x(t)的傅里叶变换数值 13.%Y=exp(i*4*pi*f).*fft(y)%将计算出来的频谱乘以exp(i*4*pi*f)得到频移 后[-2,2]之间的频谱值 14.Y=fft(y); 15.z=sqrt(Y.*conj(Y)); 16.plot(f(1:100),z(1:100)); 17.title('幅频曲线') 18.xiangwei=angle(Y);

基于二维经验模态分解的小波阈值图像去噪

基于二维经验模态分解的小波阈值图像去噪

基于二维经验模态分解的小波阈值 红外图像去噪 摘要:提出了一种红外图像去噪方法,采用二维经验模态分解(BEMD),将图像分解到本征模态函数域,即一系列的本征模态函数(IMF)和一个残差。然后对含噪的高频IMF用小波去噪中的阈值方法进行处理,把经过小波阈值去噪的高频IMF和低频的IMF以及残差进行叠加,得到重构后的图像,即去噪图像。Matlab 平台下的仿真实验表明,该算法对红外图像中常见的高斯噪声及椒盐噪声具有较好的去除效果,优于传统小波阈值去噪方法。 关键词:经验模态分解;小波阈值去噪;红外图像 1 引言 红外成像技术现已广泛应用于军事和民用领域。红外探测器将物体的红外辐射转化为电信号,经处理后的电信号可通过显示系统转换为可见的图像。红外图像特有的成像机理使得无光、高温、烟雾等特殊环境下的成像成为可能[1]。但红外图像采集过程中存在的周围环境影响、探测器本身由于非均匀性等造成的固有噪声、背景辐射等因素的干扰,导致红外图像具有噪声大、对比度低、边缘模糊等缺点。因此,对红外图像进行预处理是后续图像处理工作的前提,而红外去噪又是其中的关键环节。 小波阈值去噪是常见的图像去噪方法之一,自1995年Donoho首次提出小波阈值滤波方法后,该理论被逐步应用到信号处理的各个领域,并取得了较好的效果[2-3]。在小波变换中,小波基和分解尺度的选择对去噪效果有直接的影响,此外小波变换在非平稳非线性信号的分析中优势不明显。 经验模态分解(Empirical Mode Decomposition, EMD)是由美籍华人工程师E.Huang等于1998年提出的,其分解过程是基于信号时间尺度的局部特性的,因而在非线性和非平稳信号的分析中具有明显优势。与传统信号分析方法相比,EMD的优点[4]在于:无需选择基函数,其分解过程根据信号的时域局部特征自适应进行;EMD过程相当于微分过程,不受测不准原则的限制。

EMD分解

clc clear all close all % [x, Fs] = wavread('Hum.wav'); % Ts = 1/Fs; % x = x(1:6000); Ts = 0.001; Fs = 1/Ts; t=0:Ts:1; x = sin(2*pi*10*t) + sin(2*pi*50*t) + sin(2*pi*100*t) + 0.1*randn(1, length(t)); imf = emd(x); plot_hht(x,imf,1/Fs); k = 4; y = imf{k}; N = length(y); t = 0:Ts:Ts*(N-1); [yenvelope, yfreq, yh, yangle] = HilbertAnalysis(y, 1/Fs); yModulate = y./yenvelope; [YMf, f] = FFTAnalysis(yModulate, Ts); Yf = FFTAnalysis(y, Ts); figure subplot(321) plot(t, y) title(sprintf('IMF%d', k)) xlabel('Time/s') ylabel(sprintf('IMF%d', k)); subplot(322) plot(f, Yf) title(sprintf('IMF%d的频谱', k)) xlabel('f/Hz') ylabel('|IMF(f)|'); subplot(323) plot(t, yenvelope)

title(sprintf('IMF%d的包络', k)) xlabel('Time/s') ylabel('envelope'); subplot(324) plot(t(1:end-1), yfreq) title(sprintf('IMF%d的瞬时频率', k)) xlabel('Time/s') ylabel('Frequency/Hz'); subplot(325) plot(t, yModulate) title(sprintf('IMF%d的调制信号', k)) xlabel('Time/s') ylabel('modulation'); subplot(326) plot(f, YMf) title(sprintf('IMF%d调制信号的频谱', k)) xlabel('f/Hz') ylabel('|YMf(f)|'); findpeaks.m文件 function n = findpeaks(x) % Find peaks. 找极大值点,返回对应极大值点的坐标 n = find(diff(diff(x) > 0) < 0); % 相当于找二阶导小于0的点u = find(x(n+1) > x(n)); n(u) = n(u)+1; % 加1才真正对应极大值点 % 图形解释上述过程 % figure % subplot(611) % x = x(1:100); % plot(x, '-o') % grid on %

经验模态分解(EMD)在地球物理资料中的应用(附MATLAB程序)

经验模态分解(EMD)在地球物理资料中的应用(附MATLAB程序) 摘要经验模态分解(EMD)是由Huang等人提出的一种新的分析非线性、非平稳信号的方法。本文研究经验模态分解原理及其在地球物理资料中的应用。首先研究经验模态分解的基本原理和算法,对地球物理资料(地震资料,重磁资料)进行EMD分解试验分析,然后研究基于...

摘  要
经验模态分解(EMD)是由Huang等人提出的一种新的分析非线性、非平稳信号的方法。本文研究经验模态分解原理及其在地球物理资料中的应用。首先研究经验模态分解的基本原理和算法,对地球物理资料(地震资料,重磁资料)进行EMD分解试验分析,然后研究基于EMD的Hilbert变换原理及其在提取地震属性信息中的应用,对实际地震时间剖面和时间切片进行EMD时频分析试验。
本文的方法研究和数据试验分析表明:经EMD分解变换得到的IMF序列是直接从原始时序数据中分离出来的,事先无需确定分解阶次,能更好反映原始数据固有的物理特性,每阶IMF序列都代表了某种特定意义的频带信息;EMD分解获得的IMF序列具有稳态性,对IMF进行Hilbert变换,就可以得到单个固有模态函数的瞬时振幅、瞬时相位和瞬时频率,这些信息可以清楚的显示信号的时频特征;EMD分析方法用于分解地球物理资料和作时频分析是有效的。
关键词:经验模态分解;地球物理;Hilbert变换;固有模态函数;时频分析
 
ABSTRACT
Empirical Mode Decomposition(EMD), which was developed by huang, is a new method to analyse nonlinear and nonstationary signals. In this paper, we study the theory of EMD and its applications in handling geophysical data. Firstly, we introduce the theory and the Methodology about EMD ,then we will use this method to analyse the geophysical information, including the g ravity anomaly data and seism’s data. Based on the EMD, we will study the theory of the Hilbert transform, and then use it to obtain the images,from which we can deal with the seism’s slice by time- frequency analysis in order to distill the seism’s information.


The studying of EMD and the data testing in this paper indicate: intrinsic mode functions(IMF) is comes from the original signal by the EMD, in this course, we need not fix on the Decomposition number and would not influenced by some men’s factors. Every intrinsic mode function stand for some given information and can reflect the

经验模态分解(EEMD)、Fourier变换、HHT

10总体经验模态分解(EEMD)、Fourier变换、HHT EEMD实际就是噪声分析法和EMD方法的结合,抑制模态混叠。 Fourier变换是将任何信号分解为正弦信号的加权和,而每一个正弦信号对应着一个固定的频率(Fourier频率)和固定的幅值,因此,用Fourier 变换分析频率不随时间变化的平稳信号是十分有效的。但对于频率随时间变化的非平稳信号,Fourier 变换就无能为力了。 HHT是历史上首次对Fourier变换的基本信号和频率定义作的创造性的改进。他们不再认为组成信号的基本信号是正弦信号,而是一种称为固有模态函数的信号,也就是满足以下两个条件的信号: (1) 整个信号中,零点数与极点数相等或至多相差1 ; (2) 信号上任意一点,由局部极大值点确定的包络线和由局部极小值点确定的包络线的均值均为零,即信号关于时间轴局部对称。 无论Hilbert谱中的频率还是边际谱中的频率(即瞬时频率) ,其意义都与Fourier分析中的频率(即Fourier 频率) 完全不同,但在Fourier分析中,某一频率处能量的存在,代表一个正弦或余弦波在整个时间轴上的存在,而边际谱h中某一频率处能量的存在仅代表在整个时间轴上可能有这样一个频率的振动波在局部出现过,h越大,代表该频率出现的可能性越大。 11、HHT时频灰度谱转黑白谱 MATLAB作HHT时频谱时出来的是彩色的时频图。请问有办法在MATLAB上面将彩色谱图调成白色底黑色线的黑白图吗哎,因为老师说彩色图普通印出来的话不好看,一片黑的,谢谢大家啊 答:后面加上这个就可以了colormap(flipud(gray)) 12、HHT谱图怎么会这样呢 小弟刚刚接触HHT,也不是学信号的,只是用HHT这个工具处理信号,在处理过程中遇到了这样的问题: 对实测信号直接EMD,然后作HHT谱图如下:

经验模态分解算法

经验模态分解 摘要——黄提出了经验模态分解(EMD)的数据处理方法,也对这种技术应用的有效性进行了讨论。许多变种算法(新的停止准则,即时版本的算法)也产生出来。数值模拟用来作经验性的评估执行单元运用于语音识别和分离方面,得出的实验结果认为这种方法是根据自适应的常数Q的滤波器组提出的。 1.介绍 近来,一种被称为EMD的新的非线性方法被黄等人提出,这种方法能够自适应的把非平稳信号分解成一系列零均值的AMFM信号(调频调幅) 的总和。尽管这种方法经常有着显著的效果,但是这个方法在算法方面的定义是困难的,因此这种方法没有作为一种分析方法得到承认,一般一种分析方法是需要有理论分析和性能评估。因此本文的目的是用实验的方式使得该算法更容易理解,并且提出了基于原算法的各种各样的改进的算法。设置实验性能评估的许多初始条件是为了获取一种有效的分解并且使得该算法更容易理解。 2.EMD基础 EMD的出发点是把信号内的震荡看作是局部的。实际上,如果我们要看评估信号x(t)的2个相邻极值点之间的变化(2个极小值,分别在t-和t+处),我们需要定义一个(局部)高频成分{d(t),t-<=t<=t+}(局部细节),这个高频成分与震荡相对应,震荡在2个极小值之间并且通过了极大值(肯定出现在2极小值之间)。为了完整这个图形,我们还需要定义一个(局部)低频成分m(t)(局部趋势),这样x(t)=m(t)+d(t),(t-<=t<=t+)。对于整个信号的所有震动成分,如果我们能够找到合适的方法进行此类分解,这个过程可以应用于所有的局部趋势的残余成分,因此一个信号的构成成分能够通过迭代的方式被抽离出来。 对于一个给定的信号x(t),进行有效的EMD分解步骤如下: 1)找出想x(t)的所有极值点 2)用插值法对极小值点形成下包络emint(t),对极大值形成上包络emax(t) 3)计算均值m(t)=(emint(t)+emax(t))/2 4)抽离细节d(t)=x(t)-m(t) 5)对残余的m(t)重复上诉步骤 在实际中,上述过程需要通过一个筛选过程进行重定义,筛选过程的第一个迭代步骤是对细节信号d(t)重复从1-4步,直到d(t)的均值是0,或者满足某种停止准则才停止迭代。一旦满足停止准则,此时的细节信号d(t)就被称为IMF,d(t)对应残量信号用第5步计算。通过以上过程,极值点的数量伴随着残量信号的产生而越来越少,整个分解过程会产生有限个模函数(IMF)。 模函数和残量信号可以进行谱分析,但是这个谱分析不能从狭隘的角度来看。首先,需要强调一下,即使是谐振荡,应用上述方法产生的高频和低频也只是局部的,没办法产生一个预设的频带过滤(例如小波变换)进行辨识。选择的模函数对应了一个自适应(依赖于信号自身的)的时变滤波器。一个这方面的例子:一个信号由3个部分组成(这3个部分是时间频率上都明显叠加的信号),用上述方法成功的分解了。分解如图1所示。这个例子的程序是emd_fmsin2.m 另外一个例子(emd_sawtooth.m)强调了EMD潜在的非谐振性质如图2所示。在这些例子中,线性的非线性的震荡都能被有效的识别和分离。因而,任何谐振分析(傅里叶,小波,…)可能结束在同类文章中,更少的紧凑和更少的实际意义的分解。 3.算法的改进 正如第二部分所定义的,EMD算法依赖于一系列的选项,这些选项需要用户控制,并且需要专业的知识。在此我们的目的找出更准确的选项,并且给予原来的算法进行改进。3.1采样率,插值方法和边缘效应

经验模式分解

经验模式分解 摘要 近些年来,随着计算机技术的高速发展与信号处理技术的不断提高,人们对图像的分析结构的要求也越来越高。目前图像处理已经发展出很多分支,包括图像分割、边缘检测、纹理分析、图像压缩等。经验模式分解(EMD)是希尔伯特-黄变换(Hilbert-HuangTransform)中的一部分,它是一种新的信号处理方法,并且在非线性、非平稳信号处理中取得了重大进步,表现出了强大的优势与独特的分析特点。该方法主要是将复杂的非平稳信号分解成若干不同尺度的单分量平稳信号与一个趋势残余项,所以具有自适应性、平稳化、局部性等优点。鉴于EMD方法在各领域的成功应用以及进一步的发展,国外很多学者开始将其扩展到了二维信号分析领域中,并且也取得的一定的进展。但是由于二维信号不同于一种信号,限于信号的复杂性和二维数据的一些处理方法的有限性,二维经验模式分解(BEMD)在信号分析和处理精度上还存在一些问题,这也是本文要研究和改善的重点。 关键词:图像处理;信号分解;BEMD

Abstract In recent years, with the rapid development of computer technology and the continuous improvement of signal processing technology, the demand for the analysis structure of the image is becoming more and more high. At present, many branches have been developed in image processing, including image segmentation, edge detection, texture analysis, image compression and so on. Empirical mode decomposition (EMD) is a part of Hilbert Huang transform (Hilbert-HuangTransform). It is a new signal processing method, and has made significant progress in nonlinear and non-stationary signal processing, showing strong advantages and unique analysis points. This method mainly decomposes the complex non-stationary signals into several single scale stationary signals with different scales and a trend residual term, so it has the advantages of adaptability, stationarity and locality. In view of the successful application and further development of EMD method in many fields, many scholars at home and abroad have expanded it to the two-dimensional signal analysis field, and have made some progress. However, because two dimensional signal is different from one signal, it is limited to the complexity of signal and the processing methods of two-dimensional data. Two-dimensional empirical mode decomposition (BEMD) still has some problems in the accuracy of signal analysis and processing, which is also the important point of research and improvement in this paper. Key words: image processing; signal decomposition; BEMD

相关主题
文本预览
相关文档 最新文档