当前位置:文档之家› 分层沉降仪用途及原理

分层沉降仪用途及原理

分层沉降仪用途及原理

高层建筑桩基础特点浅析

高层建筑桩基础有如下特点:

⑴具有很高的竖向单桩承载力或群桩承载力;

⑵具有很大的竖向单桩或群桩刚度(摩擦桩),不会产生过大的不均匀沉降;

⑶具有良好的抗倾覆能力(单桩或群桩基础的侧向刚度巨大);

⑷箱、筏承台底土分担上部结构荷载;

⑸桩身穿过可液化土层而支承于稳定的坚实土层或嵌固于基岩,在地震引起浅层土液化与震陷的情况下,具有足够的抗压与抗拔承载力,从而确保高层建筑的稳定。

化工原理--沉降与过滤习题及答案

沉降与过滤一章习题及答案 一、选择题 1、 一密度为7800 kg/m 3 的小钢球在相对密度为1.2的某液体中的自由沉降速度为在20℃水中沉降速度的1/4000,则此溶液的粘度为 (设沉降区为层流20℃水密度998.2 kg/m 3粘度为100.5×10-5 Pa ·s )。A ?A 4000 mPa ·s ; ?B 40 mPa ·s ; ?C 33.82 Pa ·s ; ?D 3382 mPa ·s 2、含尘气体在降尘室内按斯托克斯定律进行沉降。理论上能完全除去30μm 的粒子,现气体处理量增大1倍,则该降尘室理论上能完全除去的最小粒径为 。D A .m μ302?; B 。m μ32/1?; C 。m μ30; D 。m μ302? 3、降尘室的生产能力取决于 。 B A .沉降面积和降尘室高度; B .沉降面积和能100%除去的最小颗粒的沉降速度; C .降尘室长度和能100%除去的最小颗粒的沉降速度; D .降尘室的宽度和高度。 4、降尘室的特点是 。D A . 结构简单,流体阻力小,分离效率高,但体积庞大; B . 结构简单,分离效率高,但流体阻力大,体积庞大; C . 结构简单,分离效率高,体积小,但流体阻力大; D . 结构简单,流体阻力小,但体积庞大,分离效率低 5、在降尘室中,尘粒的沉降速度与下列因素 无关。C A .颗粒的几何尺寸 B .颗粒与流体的密度 C .流体的水平流速; D .颗粒的形状 6、在讨论旋风分离器分离性能时,临界粒径这一术语是指 。C A .旋风分离器效率最高时的旋风分离器的直径; B. 旋风分离器允许的最小直径; C. 旋风分离器能够全部分离出来的最小颗粒的直径; D. 能保持滞流流型时的最大颗粒直径 7、旋风分离器的总的分离效率是指 。D A. 颗粒群中具有平均直径的粒子的分离效率; B. 颗粒群中最小粒子的分离效率; C. 不同粒级(直径范围)粒子分离效率之和; D. 全部颗粒中被分离下来的部分所占的质量分率 8、对标准旋风分离器系列,下述说法哪一个是正确的 。C A .尺寸大,则处理量大,但压降也大; B .尺寸大,则分离效率高,且压降小; C .尺寸小,则处理量小,分离效率高; D .尺寸小,则分离效率差,且压降大。 9、恒压过滤时, 如滤饼不可压缩,介质阻力可忽略,当操作压差增加1倍,则过滤速率为原来的 。 B A. 1 倍; B. 2 倍; C.2倍; D.1/2倍 10、助滤剂应具有以下性质 。B A. 颗粒均匀、柔软、可压缩; B. 颗粒均匀、坚硬、不可压缩; C. 粒度分布广、坚硬、不可压缩; D. 颗粒均匀、可压缩、易变形 11、助滤剂的作用是 。B A . 降低滤液粘度,减少流动阻力; B . 形成疏松饼层,使滤液得以畅流; C . 帮助介质拦截固体颗粒; D . 使得滤饼密实并具有一定的刚性 12、下面哪一个是转筒真空过滤机的特点 。B A .面积大,处理量大; B .面积小,处理量大; C .压差小,处理量小; D .压差大,面积小 13、以下说法是正确的 。B A. 过滤速率与A(过滤面积)成正比; B. 过滤速率与A 2成正比; C. 过滤速率与滤液体积成正比; D. 过滤速率与滤布阻力成反比 14、恒压过滤,如介质阻力不计,过滤压差增大一倍时,同一过滤时刻所得滤液量 。

气相色谱仪原理(图文详解)

气相色谱仪原理(图文详解) 什么是气相色谱 本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。 气相色谱(GC)是一种把混合物分离成单个组分的实验技术。它被用来对样品组分进行鉴定和定量测定: 基子时间的差别进行分离 和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。 将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。这样,就是基于时间的差别对化合物进行分离。样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。 峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。 图1典型色谱图

系统 一个气相色谱系统包括 可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离 检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应 某种数据处理装置图2是对此作出的一个总结。 样品 载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」 图2色谱系统 气源 载气必须是纯净的。污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。见图

钢瓶阀 若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。 进样口 进样口就是将挥发后的样品引入载气流。最常用的进样装置是注射进样口和进样阀。注射进样口 用于气体和液体样品进样。常用来加热使液体样品蒸发。用气体或液体注射器穿透隔垫将样品注入载气流。其原理(非实际设计尺寸)如图4所示。

沉降观测规范

沉降观测 1 一般规定 1.1 建筑沉降观测可根据需要,分别或组合测定建筑场地沉降、基坑回弹、地基土分层沉降以及基础和上部结构沉降。对于深基础建筑或高层、超高层建筑,沉降观测应从基础施工时开始。 1.2 各类沉降观测的级别和精度要求,应视工程的规模、性质及沉降量的大小速度确定。 1.3 布置沉降观测点时,应结合建筑结构、形状和场地工程地质条件,并应顾及施工和建成后的使用方便。同时,点位应易于保存,标志应稳固美观。 1.4 各类沉降观测应根据剧本规范第9.1节的规定及时提交相应的阶段性成果和综合成果。 2 建筑场地沉降观测 2.1 建筑场地沉降观测应分别测定建筑相邻影响范围之内的相邻地基沉降与建筑相邻影响范围之外的场地地面沉降。 2.2 建筑场地沉降点位的选择应符合下列规定: 1 相邻地基沉降观测点可选在建筑纵横轴线或边线的延长线上,亦可选在通过建筑重心的轴线延长线上。其点位间距应视基础类型、荷载大小及地质条件,与设计人员共同确定或征求设计人员意见后确定。点位可在建筑基础深度1.5~2.0倍的距离范围内,由墙外向外由密到疏布设,但距基础最远的观测点应设置在沉降量为零的沉降临界点以外; 2 场地地面沉降观测点应在相邻地基沉降观测点布设线路之外的地面上均匀布设。根据地质地形条件,可选择使用平行轴线方格网法、沿建筑物四角辐射网法或散点法布设。

2.3 建筑场地沉降点标志的类型及埋设应符合下列规定: 1 相邻地基沉降观测点标志可分为用于监测安全的浅埋标和用于结合科研的深埋标两种。浅埋标可采用普通水准标石或用于直径25cm的水泥管现场浇灌,埋深宜为1~2m,并使标石底部埋在冰冻线以下。深埋标可采用内管外加保护管的标石形式,埋深应与建筑基础深度相适应,标石顶部须埋入地面下20~30cm,并砌筑带盖的窨井加以保护; 2 场地地面沉降观测点的标志与埋设,应根据观测要求确定,可采用浅埋标志。 2.4 建筑场地沉降观测的路线布设、观测精度及其他技术要求可按照本规范第5.5节的有关规定执行。 2.5 建筑场地沉降观测的周期,应根据不同任务要求、产生沉降的不同情况以及沉降速度等因素具体分析确定,并符合下列规定: 1 基础施工的相邻地基沉降观测,在基坑降水时和基坑土开挖过程中应每天观测一次。混凝土地板浇完10d以后,可每2~3d观测一次,直至地下室顶板完工和水位恢复。此后可每周观测一次至回填土完工; 2 主体施工的相邻地基沉降观测和场地地面沉降观测的周期可按照本规范第5.5节的有关规定确定。 2.6 建筑场地沉降观测应提交下列图表: 1 场地沉降观测点平面布置图; 2 场地沉降观测成果表; 3 相邻地基沉降的距离-沉降曲线图; 4 场地地面等沉降曲线图。

化工原理第三章沉降与过滤课后习题及答案(1)

第三章 沉降与过滤 沉 降 【3-1】 密度为1030kg/m 3、直径为400m μ的球形颗粒在150℃的热空气中降落,求其沉降速度。 解 150℃时,空气密度./30835kg m ρ=,黏度.524110Pa s μ-=?? 颗粒密度/31030p kg m ρ=,直径4410p d m -=? 假设为过渡区,沉降速度为 ()(.)()./..11 2 2 223 34 5449811030410179225225241100835p t p g u d m s ρρμρ --??-???==??=? ???????????? 验算 .Re ..45 4101790.835 =24824110 p t d u ρμ--???==? 为过渡区 【3-2】密度为2500kg/m 3的玻璃球在20℃的水中和空气中以相同的速度沉降。试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。 " 解 在斯托克斯区,沉降速度计算式为 ()/2 18t p p u d g ρρμ=- 由此式得(下标w 表示水,a 表示空气) ()()22 18= p w pw p a pa t w a d d u g ρρρρμμ--= pw pa d d = 查得20℃时水与空气的密度及黏度分别为 ./,.339982 100410w w kg m Pa s ρμ-==?? ./,.35120518110a a kg m Pa s ρμ-==?? 已知玻璃球的密度为/32500p kg m ρ=,代入上式得 .961pw pa d d = = ·

【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为10m μ,气体密度为./311kg m ,黏度为.621810Pa s -??,颗粒密度为4000kg/m 3。试求:(1)最小颗粒的沉降速度;(2)若需要最小颗粒沉降,气体的最大流速不能超过多少m/s (3)此降尘室每小时能处理多少m 3的气体 解 已知,/./.6336101040001121810pc p d m kg m kg m Pa s ρρμ--=?===??,, (1) 沉降速度计算 假设为层流区 () .()(.) ./.2626 9811010400011001181821810pc p t gd u m s ρρμ ---??-= ==?? 验算..Re .66 101000111000505221810pc t d u ρ μ --???= ==

沉降观测规范

沉降观测 1 一般规定 建筑沉降观测可根据需要,分别或组合测定建筑场地沉降、基坑回弹、地基土分层沉降以及基础和上部结构沉降。对于深基础建筑或高层、超高层建筑,沉降观测应从基础施工时开始。 各类沉降观测的级别和精度要求,应视工程的规模、性质及沉降量的大小速度确定。 布置沉降观测点时,应结合建筑结构、形状和场地工程地质条件,并应顾及施工和建成后的使用方便。同时,点位应易于保存,标志应稳固美观。 各类沉降观测应根据剧本规范第节的规定及时提交相应的阶段性成果和综合成果。 2 建筑场地沉降观测 建筑场地沉降观测应分别测定建筑相邻影响范围之内的相邻地基沉降与建筑相邻影响范围之外的场地地面沉降。 建筑场地沉降点位的选择应符合下列规定: 1 相邻地基沉降观测点可选在建筑纵横轴线或边线的延长线上,亦可选在通过建筑重心的轴线延长线上。其点位间距应视基础类型、荷载大小及地质条件,与设计人员共同确定或征求设计人员意见后确定。点位可在建筑基础深度~倍的距离范围内,由墙外向外由密到疏布设,但距基础最远的观测点应设置在沉降量为零的沉降临界点以外; 2 场地地面沉降观测点应在相邻地基沉降观测点布设线路之外的地面

上均匀布设。根据地质地形条件,可选择使用平行轴线方格网法、沿建筑物四角辐射网法或散点法布设。 建筑场地沉降点标志的类型及埋设应符合下列规定: 1 相邻地基沉降观测点标志可分为用于监测安全的浅埋标和用于结合科研的深埋标两种。浅埋标可采用普通水准标石或用于直径25cm的水泥管现场浇灌,埋深宜为1~2m,并使标石底部埋在冰冻线以下。深埋标可采用内管外加保护管的标石形式,埋深应与建筑基础深度相适应,标石顶部须埋入地面下20~30cm,并砌筑带盖的窨井加以保护; 2 场地地面沉降观测点的标志与埋设,应根据观测要求确定,可采用浅埋标志。 建筑场地沉降观测的路线布设、观测精度及其他技术要求可按照本规范第节的有关规定执行。 建筑场地沉降观测的周期,应根据不同任务要求、产生沉降的不同情况以及沉降速度等因素具体分析确定,并符合下列规定: 1 基础施工的相邻地基沉降观测,在基坑降水时和基坑土开挖过程中应每天观测一次。混凝土地板浇完10d以后,可每2~3d观测一次,直至地下室顶板完工和水位恢复。此后可每周观测一次至回填土完工; 2 主体施工的相邻地基沉降观测和场地地面沉降观测的周期可按照本规范第节的有关规定确定。 建筑场地沉降观测应提交下列图表: 1 场地沉降观测点平面布置图; 2 场地沉降观测成果表;

(完整版)化工原理-第五章-颗粒的沉降和流态化

化工原理-第五章-颗粒的沉降和流态化 一、选择题 1、 一密度为7800 kg/m 3 的小钢球在相对密度为1.2的某液体中的自由沉降速度为在20℃水中沉降速度的1/4000,则此溶液的粘度为 D (设沉降区为层流)。 ?A 4000 mPa·s ; ?B 40 mPa·s ; ?C 33.82 Pa·s ; ?D 3382 mPa·s 2、含尘气体在降尘室内按斯托克斯定律进行沉降。理论上能完全除去30μm 的粒子,现气体处理量增大1倍,则该降尘室理论上能完全除去的最小粒径为 D 。 A .m μ302?; B 。m μ32/1?; C 。m μ30; D 。m μ302? 3、降尘室的生产能力取决于 B 。 A .沉降面积和降尘室高度; B .沉降面积和能100%除去的最小颗粒的沉降速度; C .降尘室长度和能100%除去的最小颗粒的沉降速度; D .降尘室的宽度和高度。 4、降尘室的特点是 。D A . 结构简单,流体阻力小,分离效率高,但体积庞大; B . 结构简单,分离效率高,但流体阻力大,体积庞大; C . 结构简单,分离效率高,体积小,但流体阻力大; D . 结构简单,流体阻力小,但体积庞大,分离效率低 5、在降尘室中,尘粒的沉降速度与下列因素 C 无关。 A .颗粒的几何尺寸 B .颗粒与流体的密度 C .流体的水平流速; D .颗粒的形状 6、在讨论旋风分离器分离性能时,临界粒径这一术语是指 C 。 A. 旋风分离器效率最高时的旋风分离器的直径; B. 旋风分离器允许的最小直径; C. 旋风分离器能够全部分离出来的最小颗粒的直径; D. 能保持滞流流型时的最大颗粒直径

CFC40型分层沉降仪使用说明书

CFC-40 型分层沉降仪使用说明书 武汉基深勘察仪器研究所

CFC-40型分层沉降仪 使用说明书 一、概述 CFC-40型分层沉降仪是一种地基原位测试仪器。它适用于测量地基、尾矿坝、基坑、堤防等底下各分层沉降量。根据测试数据的变化,可计算出沉降趋势,分析其稳定性,监控施工过程等。分层沉降仪与CX-3c型高精度钻孔测斜仪配合使用,是地基原位监测较理想的设备。 二、主要工作原理及特点 分层沉降仪所用传感器是根据电磁感应原理设计,将磁感应沉降环预先通过钻孔方式埋入地下待测的各点位,当传感器通过磁感应环时,产生电磁感应信号送至地面仪表显示,同时发出声光警报。读取孔口标记点上对应钢尺的刻度数值,即为沉降环的深度。每次测量值与前次测值相减即为该测点的沉降量。 探头结构牢固,密封性好。钢尺电缆一体化,整机为便携式,重量轻,采用直流电源供电,适合各种野外环境。

三主要技术指标 (1)测量精度:±1mm; (2)测量深度:30m,50m; (3)探头尺寸:长20cm,直径¢35mm; (4)工作电压:直流+12V; 四沉降环的安装及操作 1、钻¢90mm的孔,将沉降管按设计深度埋入孔中,用内径大于沉降管的塑料管将沉降环分别压入孔内待测各点深度位置,回填中砂加水密实(见图一) 图一 2 测量方法: a 孔口标高法。在孔口作一标记,每次测试都应该以该标记为基准点,孔口标高由测量仪器测量(此法常用)。

b 孔底标高法。以孔底为基准点(条件是,沉降管应落在地下相对稳定点),从下往上逐点测试。 3、地面仪表操作方法 (1)测试前,打开仪器电源开关,用一沉降环套住探头移动,当沉降环遇到探头的感应点时,发出声光报警,同时仪表有指示,说明仪器工作正常。 (2)以孔口(或孔底)为标高,顺孔放入探头,当探头敏感中心与沉降环相交时,仪器发出“嘟”的响声,并伴有灯光指示,电表指示值同时变大。此时钢尺在参照点上的指示值即是沉降环所在深度值。比较每次的测试值(即差值),可得出不同深度的沉降量。 (3)测试结束后,关断电源,将钢尺擦净,以备再用。(4)当报警声很小或无声时,表明电基本耗尽,应及时更换电池。换电池时应注意正负极性不要相碰,以免损坏电池。 五资料整理 每个点埋入后,应测出稳定的初始值,一般测2-3次,取得稳定的初值。以后每次测试值与初值之差即为该点的沉降值△h。 根据△h=h测-h初 根据△h值与时间t值,可绘出沉降量随时间的变化曲线.

最新CFC-40型分层沉降仪使用说明书汇总

C F C-40型分层沉降仪 使用说明书

CFC-40 型分层沉降仪使用说明书 武汉基深勘察仪器研究所

CFC-40型分层沉降仪 使用说明书 一、概述 CFC-40型分层沉降仪是一种地基原位测试仪器。它适用于测量地基、尾矿坝、基坑、堤防等底下各分层沉降量。根据测试数据的变化,可计算出沉降趋势,分析其稳定性,监控施工过程等。分层沉降仪与CX-3c型高精度钻孔测斜仪配合使用,是地基原位监测较理想的设备。 二、主要工作原理及特点 分层沉降仪所用传感器是根据电磁感应原理设计,将磁感应沉降环预先通过钻孔方式埋入地下待测的各点位,当传感器通过磁感应环时,产生电磁感应信号送至地面仪表显示,同时发出声光警报。读取孔口标记点上对应钢尺的刻度数值,即为沉降环的深度。每次测量值与前次测值相减即为该测点的沉降量。 探头结构牢固,密封性好。钢尺电缆一体化,整机为便携式,重量轻,采用直流电源供电,适合各种野外环境。

三主要技术指标 (1)测量精度:±1mm; (2)测量深度:30m,50m; (3)探头尺寸:长20cm,直径¢35mm; (4)工作电压:直流+12V; 四沉降环的安装及操作 1、钻¢90mm的孔,将沉降管按设计深度埋入孔中,用内径大于沉降管的塑料管将沉降环分别压入孔内待测各点深度位置,回填中砂加水密实(见图一) 图一 2 测量方法: a 孔口标高法。在孔口作一标记,每次测试都应该以该标记为基准点,孔口标高由测量仪器测量(此法常用)。

b 孔底标高法。以孔底为基准点(条件是,沉降管应落在地下相对稳定点),从下往上逐点测试。 3、地面仪表操作方法 (1)测试前,打开仪器电源开关,用一沉降环套住探头移动,当沉降环遇到探头的感应点时,发出声光报警,同时仪表有指示,说明仪器工作正常。 (2)以孔口(或孔底)为标高,顺孔放入探头,当探头敏感中心与沉降环相交时,仪器发出“嘟”的响声,并伴有灯光指示,电表指示值同时变大。此时钢尺在参照点上的指示值即是沉降环所在深度值。比较每次的测试值(即差值),可得出不同深度的沉降量。 (3)测试结束后,关断电源,将钢尺擦净,以备再用。(4)当报警声很小或无声时,表明电基本耗尽,应及时更换电池。换电池时应注意正负极性不要相碰,以免损坏电池。 五资料整理 每个点埋入后,应测出稳定的初始值,一般测2-3次,取得稳定的初值。以后每次测试值与初值之差即为该点的沉降值△h。 根据△h=h测-h初 根据△h值与时间t值,可绘出沉降量随时间的变化曲线.

CFC-40 型分层沉降仪使用说明书

CFC-40 型分层沉降仪使用 说明书 武汉基深勘察仪器研究所

CFC-40型分层沉降仪 使用说明书 一、概述 CFC-40型分层沉降仪是一种地基原位测试仪器。它适用于测量地基、尾矿坝、基坑、堤防等底下各分层沉降量。根据测试数据的变化,可计算出沉降趋势,分析其稳定性,监控施工过程等。分层沉降仪与CX-3c型高精度钻孔测斜仪配合使用,是地基原位监测较理想的设备。 二、主要工作原理及特点 分层沉降仪所用传感器是根据电磁感应原理设计,将磁感应沉降环预先通过钻孔方式埋入地下待测的各点位,当传感器通过磁感应环时,产生电磁感应信号送至地面仪表显示,同时发出声光警报。读取孔口标记点上对应钢尺的刻度数值,即为沉降环的深度。每次测量值与前次测值相减即为该测点的沉降量。 探头结构牢固,密封性好。钢尺电缆一体化,整机为便携式,重量轻,采用直流电源供电,适合各种野外环境。

三 主要技术指标 (1)测量精度:±1mm ; (2)测量深度:30m,50m; (3)探头尺寸:长20cm ,直径¢35mm; (4)工作电压:直流+12V ; 四 沉降环的安装及操作 1、钻¢90mm 的孔,将沉降管按设计深度埋入孔中,用内径大于沉降管的塑料管将沉降环分别压入孔内待测各点深度位置,回填中砂加水密实(见图一) 图 一 2 测量方法: a 孔口标高法。在孔口作一标记,每次测试都应该以该标记为基准点,孔口标高由测量仪器测量(此法常用)。 测尺 沉降环 钻孔 回填物 传感器 沉降环

b 孔底标高法。以孔底为基准点(条件是,沉降管应落在地下相对稳定点),从下往上逐点测试。 3、地面仪表操作方法 (1)测试前,打开仪器电源开关,用一沉降环套住探头移动,当沉降环遇到探头的感应点时,发出声光报警,同时仪表有指示,说明仪器工作正常。 (2)以孔口(或孔底)为标高,顺孔放入探头,当探头敏感中心与沉降环相交时,仪器发出“嘟”的响声,并伴有灯光指示,电表指示值同时变大。此时钢尺在参照点上的指示值即是沉降环所在深度值。比较每次的测试值(即差值),可得出不同深度的沉降量。 (3)测试结束后,关断电源,将钢尺擦净,以备再用。(4)当报警声很小或无声时,表明电基本耗尽,应及时更换电池。换电池时应注意正负极性不要相碰,以免损坏电池。 五资料整理 每个点埋入后,应测出稳定的初始值,一般测2-3次,取得稳定的初值。以后每次测试值与初值之差即为该点的沉降值△h。 根据△h=h测-h初 根据△h值与时间t值,可绘出沉降量随时间的变化曲线.

气相色谱仪原理结构及操作

气相色谱仪原理结构及操 作 Modified by JEEP on December 26th, 2020.

气相色谱仪原理、结构及操作 1、基本原理 气相色谱(GC)是一种分离技术。实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,一般是N2、He等)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图(假设样品分离出三个组分),它包含了色谱的全部原始信息。在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线。 2、气相色谱结构及维护 进样隔垫 进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃。正因为

进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就可能出现“鬼峰”(即不是样品本身的峰),从而影响分析。解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫。 一般更换进样隔垫的周期以下面三个条件为准:(1)出现“鬼峰”;(2)保留时间和峰面积重现性差;(3)手动进样次数70次,或自动进样次数50次以后。 玻璃衬管 气相色谱的衬管多为玻璃或石英材料制成,主要分成分流衬管、不分流衬管、填充柱玻璃衬管三种类型。衬管能起到保护色谱柱的作用,在分流/不分流进样时,不挥发的样品组分会滞留在衬管中而不进入色谱柱。如果这些污染物在衬管内积存一定量后,就会对分析产生直接影响。比如,它会吸附极性样品组分而造成峰拖尾,甚至峰分裂,还会出现“鬼峰”,因此一定要保持衬管干净,注意及时清洗和更换。 玻璃衬管清洗的原则和方法 当以下现象:(1)出现“鬼峰”;(2)保留时间和峰面积重现性差出现时,应考虑对衬管进行清洗。清洗的方法和步骤如下:(1)拆下玻璃衬管;(2)取出石英玻璃棉;(3)用浸过溶剂(比如丙酮)的纱布清洗衬管内壁。玻璃衬管更换时要注意玻璃棉的装填:装填量3~6mg,高度5~10mm。要求填充均匀、平整。 气体过滤器

分层沉降仪说明

分层沉降仪说明 FC-50分层沉降仪使用方法: 测量时,拧松绕线盘后面的止紧螺丝,让绕线盘转动自由后,按下电源按钮,让电源按钮指向蜂鸣侧(或着电压侧),此时电源指示灯亮,把测头放入导管内,手拿钢尺电缆,让测头缓慢地向下移动,当测头接触到土层是中的磁环时,接收系统的音响器便会发出连续不断的蜂鸣声,此时读写出钢尺电缆在管口处的深度尺寸,这样一点一点地测量到孔底,称为进程测读,用字母Ji表示,当在该导管内收回测量电缆时,也能通过土层中的磁环,接收系统的音响器发出音响,此时也须读写出测最电缆在管口处的深度尺寸,如此测量到孔口,称为回程测读,用字母H1表示。该孔各磁环在土层中的实际深度用字母S1表示。 其计算公式为: Si=(Ji+Hi)/2 式中:.i一为一孔中测读的点数,即土层中磁环个数; Si一i测点距管口的实际深度(mm); Ji一i测点在进程测读时距管口的深度(mm): Hi一i测点在回程测读时距管口的深度(mm):若是噪声比较大的环境中测量时,蜂呜声听不见,可改用峰值指示,只要把仪器面板上的选择开关拨至电压即可,测量方法同上,此时的测量精度与音响器测得的精度相同。 用户在使用时必须注意事项: a)当测头又进入到土层中磁环时,音响器会立即发出声音或电压表有指示,此时应缓慢地收、放测量电缆,以便仔细地寻找到发音或指示瞬间的确切位置后读出该点距管口的深度。 b)读数的准确性,决定于如何判定发音或指示的起始位置,测量的精度与操作者的熟练程度有关,故应反复练习与操作。 c)沉降测头进入每一只磁环时都有两次响声,但必须以第一次响声为标准测读,即进程是第一次响声,回程也是第一次响声。 维护: l、因电池容量有限,每当测量完毕后,应立即关闭电源开关,切勿忘记!当电源指示灯灭或比较暗时,要更换新电池。 2、测量后必须将测头及钢尺电缆等擦拭干净,并把钢尺电缆整齐地绕住绕线盘上,然后放置于箱柜中。 3、测头上作时要求密封,绝对禁止拆卸,以免损坏。 4、发现测头有故障时,应立即送我厂检修。 5、测量电缆切忌弯折,特别是靠近测头端部,以免损坏和断裂。 6、测头应轻拿、轻放,切忌剧烈震动。 收货和储存: l、仪器自发货之日起,一年内用户在遵守运输、储存和使和规则的条件下,如发现产品质量低于技术条件规定时,我厂负责修理或更换(擅自拆卸后,我不予包修).

化工原理王志魁第五版习题解答:第三章 沉降与过滤

第三章 沉降与过滤 沉 降 【3-1】密度为1030kg/m 3、直径为400m μ的球形颗粒在150℃的热空气中降落,求其沉降速度。 解 150℃时,空气密度./30835kg m ρ=,黏度.524110Pa s μ-=??颗粒密度/31030p kg m ρ=,直径4410p d m -=?假设为过渡区,沉降速度为 ()(.)()./..1 12 2 2 2 3 3 4 5 449811030410179225225241100835p t p g u d m s ρρμρ--??-???==??=????????????? 验算 .Re ..45 4101790.835=248 24110p t d u ρμ--???==?为过渡区 【3-2】密度为2500kg/m 3的玻璃球在20℃的水中和空气中以相同的速度沉降。试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。 解 在斯托克斯区,沉降速度计算式为 ()/2 18t p p u d g ρρμ =-由此式得(下标w 表示水,a 表示空气) ()()22 18= p w pw p a pa t w a d d u g ρρρρμμ-- =pw pa d d = 查得20℃时水与空气的密度及黏度分别为 ./,.339982 100410w w kg m Pa s ρμ-==??./,.35120518110a a kg m Pa s ρμ-==??已知玻璃球的密度为/32500p kg m ρ= ,代入上式得 .961 pw pa d d = 【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为10m μ,气体密度为./311kg m ,黏度为.621810Pa s -??,颗粒密度为

气相色谱仪原理、结构及操作(精)

气相色谱仪原理、结构及操作 1、基本原理 气相色谱(GC )是一种分离技术。实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。混合物的分离是基于组分的物理化学性质的差异,GC 主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,一般是N2、He 等)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图(假设样品分离出三个组分),它包含了色谱的全部原始信息。在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线。 2、气相色谱结构及维护 2.1 进样隔垫 进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃。正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就可能出现“鬼峰”(即不是样品本身的峰),从而影响分析。解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫。一般更换进样隔

分层沉降仪

XBHV-10型钢尺沉降仪 1概述 钢尺沉降仪机构简单,操作方便.本仪器与XB型PVC沉降管(另购), 沉降磁环(另购)及底盖(另购)配套使用在软土地基加固、土石坝、基坑开挖、回填、路堤等工程中,测量土体的分层沉降或隆起,也可测量一般堤坝等建筑物的水平(侧向)位移量.本仪器既可在施工期间使用,也可作为大坝等建筑物的长期安全监测.符合土石坝安全监测技术规范. 2主要技术指标 3结构原理 沉降量的测量由两大部分组成:一是地下埋入部分,由沉降导管和底盖、沉降磁环组成;二是地面接收仪器一钢尺沉降仪,由测头、测量电缆、接收系统和绕线盘等部分组成. 测头部分:不锈钢制成,内部安装了磁场感应器,当遇到外磁场作用时,便会接通接收系统,当外磁场不作用时,就会自动关闭接收系统. 测量电缆部分;由钢尺和导线采用塑胶工艺合二为一,既防止了钢尺锈蚀,又简化了操作过程,测读更加方便、准确.钢尺电缆一端接入测头,另一端接入接收系统. 接收系统:由音响器和峰值指示组成,音响器发出连续不断的蜂鸣声响,蜂值指示为电压表指针指示,两者可通过拨动开关来选用,不管用何种接收系统,测读精度是一致的. 绕线盘部分:由绕线圆盘和支架组成,接收系统和电池全置于绕线盘的芯腔内,腔外绕钢尺电缆. 沉降管(另购):由PVC工程塑料制成(我厂生产),包括主管和联接管,联接管套于

两节主管接头处,起着联接固定的作用. 底盖(另购):由注塑制成(我厂生产),安装在沉降管的底端和顶端,能有效地防止泥沙进入或异物掉入管内,从而影响测量. 4使用方法 测量时,拧松绕线盘后面的止紧螺丝,让绕线盘转动自由后,按下电源按钮(电源指示灯亮),把测头放入导管内,手拿钢尺电缆,让测头缓慢地向下移动,当测头接触到土层中的磁环时,接收系统的音响器会发出连续不断的蜂鸣叫声,此时读写出钢尺电缆在管口处的深度尺寸,这样一点一点地测量到孔底,称为进程测读,用字母J i表示,当在该导管内收回测量电缆时,也能通过土层中的磁环,接受到系统的音响仪器发出的音响,此时也须读写出测量电缆在管口处的深度尺寸,如此测量到孔口,称为回程测读,用字母H i表示.该孔各磁环在土层中的实际深度用字母S i表示. 其计算公式为: S i =( J i+ H i )/2 式中: i —为一孔中测读的点数,即土层中磁环的个数; S i —i测点距管口的实际深度(㎜); J i —i测点在进程测读时距管口的深度(㎜); H i —i测点在回程测读时距管口的深度(㎜); 若是在噪声比较大的环境中测量时,蜂鸣声听不见,可改用峰值指示,只要把仪器面板上的选择开关拨至电压档即可,测量方法同上,此时的测量精度与音响测得的精度相同. 用户在使用时必须注意事项: a) 当测头进入到土层中磁环时,音响器会立即发出声音或电压表有指示,此时应缓慢地收、放测量电缆,以便仔细地寻找到发音或指示瞬间的确切位置后读出该点距管口的深度. b) 读数的准确性,决定与如何判定发音或指示的起使位置,测量的精度与操作者的熟练程度有关,故应反复练习与操作. c)沉降测头进入每一只磁环时都有两次响声,但必须以第一次响声为标准,即进程

全自动机械式智能分层沉降仪的制作方法

本技术公开了一种全自动机械式智能分层沉降仪,包括测量装置、提升装置、数据采集装置及数据传输装置;其中,测量装置包括连接管、沉降管、沉降环和探头,其中所述沉降环随沉降管一起埋入预先完成的钻孔内,所述沉降环套在沉降管外侧,所述连接管竖直方向放置,所述连接管中空腔内的顶部沿中轴线通过电缆连接探头,所述探头使用磁敏传感器为核心元件,所述探头通过提升装置沿连接管及沉降管的中轴线下放至钻孔底部,所述探头在所述连接管的中空腔内做升降运动来探测沉降环的位置,深度测量编码器记录信号输出位置,数据采集盒将采集到的数据通过数据传输装置发送到终端。本技术数据误差小,不受测量深度的限制,远程监控。 技术要求 1.一种全自动机械式智能分层沉降仪,其特征在于,包括测量装置、提升装置、数据采集 装置、数据传输装置;

其中,所述测量装置包括连接管、沉降管、沉降环和探头,其中所述沉降环随沉降管一起埋在预先完成的钻孔内,所述沉降环套在所述沉降管外壁,所述连接管竖直方向放置,所述连接管套在所述沉降管外壁,将连接管与沉降管连接,以适应沉降管的高度并进行调整,所述探头使用传感器为核心元件,所述探头通过提升装置沿连接管及沉降管的中轴线在所述连接管空腔内做升降运动,通过所述探头的传感器来探测沉降环的位置; 所述提升装置包括电缆、电缆绞车、电缆盘电机和上滑轮装置,所述上滑轮装置悬挂在所述连接管的正上方,所述电缆绞车和所述电缆盘电机置于所述上滑轮装置的下方,所述电缆的一端连接着所述探头从所述电缆绞车上引出并绕过所述上滑轮装置放置在所述连接管空腔中,所述电缆盘电机控制电缆绞车的转动使电缆提升和下放; 在所述上滑轮装置上设置有深度检测编码器,所述深度测量编码器记录磁信号输出时沉降环的位置; 所述电缆绞车正上方的电箱内设置数据采集盒和数据传输装置,所述数据采集盒将采集到的数据通过所述数据传输装置发送到远程端口。 2.如权利要求1所述的一种全自动机械式智能分层沉降仪,其特征在于:所述上滑轮装置两侧斜上方设置压紧轮,所述电缆从所述上滑轮和所述压紧轮之间穿过,所述压紧轮压在所述上滑轮上使通过所述上滑轮装置的电缆处于绷紧状态。 3.如权利要求1所述的一种全自动机械式智能分层沉降仪,其特征在于:所述数据传输装置为内置在数据采集盒中的无线WIFI或SIM卡传输模块,根据现场条件通过WIFI传输方式或SIM通讯方式将数据实时传输至远程端口。 4.如权利要求1所述的一种全自动机械式智能分层沉降仪,其特征在于:所述数据采集盒上设置有外接接口,可与外接电脑连接,实现数据在现场的实时输出。 5.如权利要求1所述的一种全自动机械式智能分层沉降仪,其特征在于:所述沉降管位于稳定地层中的外侧设置第一沉降环和第二沉降环,所述第一沉降环作为分层沉降的基准点,通过所述第一沉降环和所述第二沉降环之间的高度差值测定稳定地层的稳定性。

液相色谱仪的原理和分析方法

液相色谱仪的原理及分析方法 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 特点: 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(这些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理

分层沉降仪安装使用说明

分层沉降仪安装使用说明 一概述 分层沉降仪是一种地基原为测试仪器,他适用于测量地基、基坑、堤防等底下各分层沉降量。根据测试数据变化,可以计算沉降趋势,分析其稳定性,监控施工过程等。与高精度钻孔测斜仪配合使用,是地基原位监测较理想的设备。 二主要工作原理及特点 分层沉降仪所用传感器是根据电磁感应原理设计,将磁感应沉降环预先通过钻孔的方式埋入地下待测各点位,当传感器通过磁感应沉降环时,产生电磁感应信号送至地表仪器显示,同时发出声光警报,读取孔口标记点的对应钢尺的刻度值即为沉降环的深度。每次测量值与前次测量值相减即为该测点的沉降量。 三沉降环的安装及操作 1、安装 钻¢90mm的孔,将沉降管按设计深度埋入孔中,用内径大于沉降管的塑料管将沉降环分别压入孔内待测各点深度位置,回填中砂加水密实见下图

2 测量方法: a 孔口标高法。在孔口作一标记,每次测试都应该以该标记为基准点,孔口标高由测量仪器测量(此法常用)。 b 孔底标高法。以孔底为基准点(条件是,沉降管应落在地下相对稳定点),从下往上逐点测试。 3、地面仪表操作方法 (1)测试前,打开仪器电源开关,用一沉降环套住探头移动,当沉降环遇到探头的感应点时,发出声光报警,同时仪表有指示,说明仪器工作正常。 (2)以孔口(或孔底)为标高,顺孔放入探头,当探头敏感中心与沉降环相交时,仪器发出“嘟”的响声,并伴有灯光指示,电表指示值同时变大。此时钢尺在参照点上的指示值即是沉降环所在深度值。比较每次的测试值(即差值),可得出不同深度的沉降量。 (3)测试结束后,关断电源,将钢尺擦净,以备再用。 (4)当报警声很小或无声时,表明电基本耗尽,应及时更换电池。换电池时应注意正负极性不要相碰,以免损坏电池。 四资料整理 测量时,拧松绕线盘后面的止紧螺丝,让绕线盘转动自由后,按下电源按钮(电源指示灯亮),把测头放入导管内,手拿钢尺电缆,让测头缓慢地向下移动,当测头接触到土层中的磁环时,接收系统的音响器会发出连续不断的蜂鸣叫声,此时读写出钢尺电缆在管口处的深度尺寸,这样一点一点地测量到孔底,称为进程测读,用字母Ji 表示,当在

相关主题
文本预览
相关文档 最新文档