当前位置:文档之家› 钢波纹管设计计算书

钢波纹管设计计算书

钢波纹管设计计算书
钢波纹管设计计算书

K26+140变更钢波纹管结构验算

工程情况:钢波纹管涵洞,波形300mm*110mm ;直径D=3.0m ;厚度t=4mm ;填土高度H=8.41m;材质Q345

1. 荷载计算

设计荷载主要考虑管顶以上填土高度恒载和行车荷载的综合作用,恒载用DL 表示,动载用LL 表示,总荷载用V P 表示。

a. 土体荷载DL: DL H ω==20KN/m 3*8.41m=168.2KN/m

2 b. 车辆荷载LL: LL=2.6

3 KN/m

2 c. 对于覆土高度H 大于等于管直径D 的情况,总荷载对涵管的作用有所减小,需要对总荷载进行折减,折减后的荷载可以通过总荷载乘以荷载系数K 来变换得到,荷载折减系数取值如图2所示。

2

1.8

1.6

1.4

1.2

1

0.8

0.6

657075859095100

802

图2 压实度与荷载系数K 的关系图

压实度和荷载系数之间有着紧密的联系,当覆土高度大于或者等于涵管的直径(跨径)时,恒载和活载的总荷载与填土压实度的关系可以用荷载系数K 来联系。实际工程中一般采用90%的压实度,对应的荷载系数取0.75。即:

当H D ≥时V P (DL LL)K =+,因此:

V P (DL LL)K =+=0.75*(168.2KN/m 2+2.63 KN/m 2)=128.1KN/m 2

2. 环向压力

为适应管材管壁受到径向压力下产生的变形,管结构必须有足够的强度。为防止管材产生屈服、弯曲或裂缝,根据管壁受到的径向压力,可确定出管壁的应力,并将其与容许值相比较。管壁应力的容许值一般是由室内破坏性试验获得。波纹管所能承受的总压力V P 的选取要考虑波纹管的抗变形能力,按实际工程的要求选择合理压实度,以确定钢波纹管的环向设计压力。

由于涵洞的受力是轴向对称的,可以采用上半部来分析受力情况。管壁上的推力(称为环向压力)由钢材承担,方向与管壁相切,数值上等于管壁的径向应力乘以管半径。对常规的管拱结构,顶部接近半圆,可采用跨径的一半代替半径。作用于管面的应力V P 和波纹管环向压力C 之间的关系为:

/2V C P D =?=128.1KN/m 2

*3.0m/2=192.18KN/m

3. 极限应力计算

对于钢波纹管涵洞,当回填土体的压实度达到90%的压实标准时,最小屈服应力为310MPa ,极限压应力b f 与D r 有如下关系: 当294D r ≤时,管壁区的极限应力为:

f b =310 当294500D r <<时,管壁区的极限应力为: ()2

2750.00058b f D r =- 当500D r >时,管壁区的极限应力为:

()273.410b f D =? 式中:D 为波纹管涵的直径;r 为波纹管涵的截面回转半径。

结合本工程实际情况,涵管D=3.0m ;波纹形状300mm*110mm 壁厚为4mm 的钢波纹管管取r =38.86mm ,即D r =3000/38.86=77.2<294,故取f b =310MPa 。

当取安全系数为2时,极限应力的计算值为:

c b f f ==310/2 MPa=155MPa=1550 kg/cm 2

4. 波纹管涵强度校核

根据设计要求,必须使得设计应力c P ≦c f ,而环向压力C 和设计应力c P 有如下关系,

P C =C/A=192.18/0.524=366.76<1550Kg/cm

2

故采用波形300mm*110mm ,直径D=3.0m ,厚度t=4mm 的钢波纹管涵洞在8.41m 填土高度公路—I 级荷载作用下能够满足截面强度要求。

5. 施工刚度

考虑到钢波纹管涵制作和安装的方便,在无支撑时不至于产生较大变形,波纹管结构需要达到一定的刚度要求。根据实际经验可得,柔度系数FF 一般与波形的组合以及金属层厚度有关,采用柔度系数FF 能够对各种波形和不同厚度组合的波纹管结构产生有效的控制。可以用式来表示其相关关系:

2/FF D EI = 本工程中采用波形300*110mm ,直径D=3.0m ,厚度t=4mm 的钢波纹管涵洞,I=7911.51

mm 4

/mm ,E 取20×104 kg/cm 2。根据设计与施工要求,须满足:FF ≦0.114,则

FF=D 2/(E*I)=30002/(20×104×7911.51)=0.0057<0.114

本工程中波纹管能够符合施工的刚度要求。

钢模板、拉杆l螺栓及模板连接螺栓计算

计算书 本工程施工所用模板主要用在箱涵的侧墙和顶板及桥墩和桥台,采用大模板可大大节省模板材料,加快施工进度。 一、新浇混凝土对模板侧面的压力计算 在进行侧模板及支承结构的力学计算和构造设计时,常需计算新浇混凝土对模板侧面的压力。混凝土作用于模板的压力,一般随混凝土的浇筑高度而增加,当浇筑高度达到某一临界值时,侧压力就不再增加,此时的侧压力即为新浇混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。 采用内部振捣器,当混凝土浇筑速度在6.0m/小时以下时,新浇混凝土作用于模板的最大侧压力,可按以下二式计算,并取二式中的较小值。 P m=4+1500K SKwV1/3 /(T+30)(3-1)P m=25H(3-2)式中:Pm——新浇混凝土的最大侧压力(KN/m2); T——混凝土的入模温度(oC); H——混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);K S——混凝土坍落度影响修正系数。当坍落度为50~90mm时取1.0,为110~150mm时取1.15; K W——外加剂影响修正系数。不掺外加剂时取1.0,掺有缓凝作用的外加剂时取1.2; V——混凝土的浇筑速度(m/h)。

已知混凝土每环最大为4m,采用坍落度为120mm的普通混凝土,浇筑速度为0.25m/h,浇注入模温度为30oC,则作用于模板的最大侧压力及有效压头高度为: 查表得:K S=1.15,K W=1.2 由公式(3-1),P m=4+1500×1.15×1.2×(1.2)1/3 /(30+30)=40.7 KN/m2由公式(3-2),P m=25×2=50KN/m2 取较小值,故最大侧压力为40.7KN/m2 。有效压头高度为:h=40.7/25=1.628m。 二、模板拉杆、螺栓计算 1、拉杆及栏杆上螺栓 模板拉杆用于连接内、外两组模板,保持内、外两组模板的间距,承受混凝土侧压力和其它荷载,使模板有足够的刚度和强度。本工程模板拉杆采用对拉螺栓,采用Φ16精轧螺纹钢制作。其计算公式为: F=P mA 式中:F——模板拉杆承受的拉力(N); P m——混凝土的侧压力(N/m2

潜孔式平面钢闸门设计

潜 孔 式 平 面 钢 闸 门 设 计 工程概况: 闸门是用来关闭、开启或者局部开启水工建筑物中过水孔口的活动结构。其主要作用是控制水位、调节流量。闸门是水工建筑物的重要组成部分,它的安全与适用,在很大程度影响着整个水工建筑物的原行效果。

设计目录: 1.水工刚结构潜孔式焊接平面钢闸门设计计算书。。。。。。。。1 (1)设计资料及有关规定。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 (2)闸门结构的形式及布置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 <1>闸门尺寸的确定。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 <2>主梁的布置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 (3)面板设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 (4)水平次梁、顶梁和底梁地设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 (5)主梁设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 (6)横隔板设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 (7)边梁设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 (8)行走支承设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 (9)胶木滑块轨道设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 (10)闸门启闭力和吊座验算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.水工刚结构潜孔式焊接平面钢闸门设计图。。。。。。。。。。(附图) 水工刚结构潜孔式焊接平面钢闸门设计计算书 一、设计资料及有关规定: 1.闸门形式: 潜孔式焊接平面钢闸门。 2.孔的性质: 深孔形式。 3.材料:

扣件式钢管模板支架的设计计算

扣件式钢管 模板支架的设计计算 ××省××市××建设有限公司 二O一四年七月十八日

前言 近几年,国内连续发生多起模板支架坍塌事故,尤其是2000年10月,南京电视台新演播大厅双向预应力井式屋盖混凝土浇筑途中,发生了36m高扣件式钢管梁板高支撑架倒塌的重大伤亡事故。从此以后,模板支架设计和使用安全问题引起了人们的高度注意。 虽然采用钢管脚手架杆件搭设各类模板支架已是现代施工常用的做法,但由于缺少系统试验和深入研究,因而尚无包括其设计计算方法的专项标准。几年来,钢管模板支架和高支撑架(h≥4m的模板支架),均采用《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)(以下简称《扣件架规范》)中“模板支架计算”章节提供的有关公式及相应规定来进行设计计算的,但是惨痛的“事故”教训和深入的试验研究,已经充分揭示了《扣件架规范》中“模板支架计算”对于高支撑架的计算确实尤其是存在重要疏漏,致使计算极容易出现不能完全确保安全的计算结果。 在新规范或标准尚未颁布之前,为了保证扣件式钢管梁板模板支架的使用安全,总工室参考近期发表的论文,论著以及相关的技术资料,收集整理了有关“扣件式钢管梁板模板支架”的设计计算资料,提供给公司工程技术人员设计计算参考使用;与此同时,《扣件架规范》中“模板支架计算”的相关公式、计算资料,相应停止使用。 特此说明! 总工程师室 二O一四年七月十八日

目录 CONTENTS 第一节模板支架计算………………………………………………1-1 第二节关于模板支架立杆计算长度L有关问题的探讨……………2-1 第三节模板支架的构造要求…………………………………………3-1 第四节梁板楼板模板高支撑架的构造和施工设计要求……………4-1 第五节模板支架设计计算实例………………………………………5-1 第六节附录:模板支架设计计算资料………………………………6-1 [附录A]扣件式钢管脚手架每米立杆承受的结构自重、常用构配件与材料自重[附录B]钢管截面特性 [附录C]钢材的强度设计值 [附录D]钢材和钢铸件的物理性能指标 [附录E]Q235-A钢轴心受压构件的稳定系数 [附录F]立杆计算长度L修正系数表

水工钢结构平面钢闸门设计计算书

水工钢结构平面钢闸门设计计算书 一、设计资料及有关规定: 1?闸门形式:潜孔式平面钢闸门。 2. 孔的性质:深孔形式。 3. 材料:钢材:Q235 焊条:E43;手工电焊;普通方法检查。 止水:侧止水用P型橡皮,底止水用条型橡皮。 行走支承:采用胶木滑道,压合胶布用MC—2。砼强度等级:C20b 启闭机械:卷扬式启闭机。 4. 规范:水利水电工程刚闸门设计规范(SL74-95),中国水利水电出版社1998.8 二、闸门结构的形式及布置 (一)闸门尺寸的确定(图1示) 1?闸门孔口尺寸: 孔口净跨(L) : 3.50m。孔口净高:3.50m。 闸门高度(H) : 3.66m。闸门宽度:4.20m。 2. 计算水头:50.00m。 (二)主梁的布置 1. 主梁的数目及形式 主梁是闸门的主要受力构件,其数目主要取决于闸门的尺寸。因为闸门跨度L=3.50m,闸门高度h=3.66m,L

三、面板设计 根据《钢闸门设计规范 SD — 78 (试行)》关于面板的设计,先估算面板厚度,在主梁截面选择以 后再验算面板的局部弯曲与主梁整体弯曲的折算应力。 1?估算面板厚度 假定梁格布置尺寸如图2所示。面板厚度按下式计算 匸9 ?OF :] 现列表1计算如下: 表1 根据上表计算,选用面板厚度。 2.面板与梁格的连接计算 已知面板厚度t=14mm ,并且近似地取板中最大弯应力c max=[c ]=160N/mn n ,则 p=0.07 x 14x 面板与主梁连接焊缝方向单位长度内地应力: 3 VS 790 10 1000 14 272 T = =— 21。 2 3776770000 面板与主梁连接的焊缝厚度: h f . P 2 T 2 /0.7 [ t w ] 398/0.7 113 5mm , 面板与梁格连接焊缝厚度取起最小厚度 h f 6mm 。 四、水平次梁,顶梁和底梁地设计 1. 荷载与内力地验算 水平次梁和顶,底梁都时支承在横隔板上地连续梁,作用在它们上面的水压力可 按下式计算,即 a 上 a 下 现列表2计算如下: 表2 当 b/a < 3 时,a=1.65,则 t=a kp =0.065 a% kp 0.9 1.65 160 当 b/a >3 时,a=1.55,则 t=a kp 0.9 1.55 160 =0.067 a., kp 398N / mm,

墙模板(组合式钢模板)计算书_20150716_101743984

墙模板(组合式钢模板)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《组合钢模板技术规范》GB 50214-2001 3、《混凝土结构设计规范》GB50010-2010 4、《建筑结构荷载规范》GB 50009-2012 5、《钢结构设计规范》GB 50017-2003 一、工程属性 新浇混凝土对模板的侧压力标准值G4k=min[0.22γc t0β1β2v1/2,γc H]=min[0.22×24×4×1×1×21/2,24×3.2]=min[29.87,76.8]=29.87kN/m2 承载能力极限状态设计值S承=0.9max[1.2G4k+1.4Q3k,1.35G4k+1.4×0.7Q3k]=0.9max [1.2×29.87+1.4×2,1.35×29.87+1.4×0.7×2]=0.9max[38.644,42.285]=0.9×42.285=38.056kN/m2 正常使用极限状态设计值S正=G4k=29.87 kN/m2 三、面板布置

模板设计立面图 四、面板验算 面板长向接缝方式为端缝齐平,根据《组合钢模板技术规范》GB50214,4.3.5和4. 4.4条,面板强度及挠度验算,宜以单块面板作验算对象。面板受力简图如下:

1、强度验算 q=0.95bS承=0.95×0.6×38.056=21.692kN/m 面板弯矩图(kN·m) M max=1.091kN·m σ=M max/W=1.091×106/21.1×103=51.724N/mm2≤[f]=205N/mm2 满足要求! 2、挠度验算 q=bS正=0.6×29.87=17.922kN/m 面板变形图(mm) ν=0.086mm≤[ν]=1.5mm 满足要求! 五、小梁验算

圆柱钢模计算书

直径1.4m圆柱计算书 1,基本情况 1.1该圆柱模高7.8米,直径1.4米。采用混凝土泵车下灰,浇注混凝土速度3m/h,混凝土入模温度约 25℃,采用定型钢模板:面板采用6mm钢板;横肋采用厚12mm,宽100 mm的圆弧肋板,间距400mm; 竖肋采用普通10#槽钢,间距353mm, 2.荷载计算 2.1混凝土侧压力 (1)新浇混凝土侧压力计算公式为下式中的较小值: 其中c——混凝土的重力密度,取24.000kN/m3; t ——新浇混凝土的初凝时间,为0时(表示无资料)取200/(T+15),取5.000h; T ——混凝土的入模温度,取25.000℃; V ——混凝土的浇筑速度,取3.000m/h; H ——混凝土侧压力计算位置处至新浇混凝土顶面总高度,取 7.800m; 1——外加剂影响修正系数,取1.200; 2——混凝土坍落度影响修正系数,取1.150。 根据公式计算的新浇混凝土侧压力标准值 F1=63.100kN/m2 考虑结构的重要性系数0.9,实际计算中采用新浇混凝土侧压力标准值F1=0.9×63.100=56.790kN/m2 考虑结构的重要性系数0.9,倒混凝土时产生的荷载标准值 F2=0.9×3.000=2.700kN/m2。 (2)进行荷载组合 F′=56.790+2.700= 59.49KN/㎡ 3板面计算:圆弧模板在混凝土浇注时产生的侧压力有横肋承担,在刚度计算中与与平模板相似。 3.1计算简图

3.2挠度计算 按照三边固结一边简支计算,取10mm宽的板条作为计算单元,荷载为q=0.0595*10=0.595N/mm 根据lX/lY=0.9,查表得 ωmax=0.00258ql4/k k=Eh3b/12(1-v2)=206000*63*10/12*(1-0.3*0.3)=40750000 V-钢的泊桑比=0.3 ωmax=0.57 mm≤[ω]=1/400=0.883 mm 故满足要求 4竖肋计算 4.1计算简图: 竖肋采用10#槽钢间距353 mm,因竖肋与横肋焊接,故按两端固定梁计算,面

钢模板计算书

湖畔郦百合苑9-13、14、15、18、19#楼及车库工程 模板工程施工方案 模板计算书 1.计算依据 1.参考资料 《建筑结构施工规范》 GB 50009—2001 《钢结构设计规范》 GB 50017—2003 《木结构设计规范》 GB 50005—2003 《混凝土结构设计规范》 GB 50010—2002 《钢结构工程施工质量验收规范》 GB 50205-2001 2.侧压力计算 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一 临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值 的浇筑高度称为混凝土的有效压头。通过理论和实践,可按下列二式计算,并取其最小值: 2/121022.0V t F c ββγ= H F c γ= 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m 2) γc ------混凝土的重力密度(kN/m 3),此处取26kN/m 3 t 0------新浇混凝土的初凝时间(h ),可按实测确定。当缺乏实验资料时,可采用 t0=200/(T+15)计算;假设混凝土入模温度为250C ,即T=250C ,t 0=5 V------混凝土的浇灌速度(m/h );取2.5m/h H------混凝土侧压力计算位置处至新浇混凝土顶面的总 高度(m );取9m β1------外加剂影响修正系数,不掺外加剂时取1;掺具 有缓凝作用的外加剂时取1.2。 β2------混凝土塌落度影响系数,当塌落度小于 30mm 时,取0.85;50—90mm 时,取1;110—150mm 时,取1.15。 大模板侧压力计算 2/121022.0V t F c ββγ=

水工钢闸门结构设计(详细计算过程)

6 金属结构设计 6.3 金属结构设计计算 6.3.1 设计资料 (1)闸门型式:露顶式平面钢闸门 (2)孔口尺寸(宽×高):6m ×3m (3)设计水头:3.16m (4)结构材料:Q235钢 (5)焊条:E43 (6)止水橡皮:侧止水型号采用P45-A ,底止水型号采用I110-16 (7)行走支承:采用胶木滑道,压合胶木为MCS-2 (8)混凝土强度等级:C25 (9)规范:《利水电工程钢闸门设计规范》(SL74-95) 6.3.2 闸门结构的形式及布置 6.3.2.1 闸门尺寸的确定 1.闸门高度:考虑风浪产生的水位超高,将闸门的高度确定为3m 。 2.闸门的荷载跨度为两侧止水的间距:L 0=6.0m 3.闸门计算跨度:L=L 0+2d=6.0+2×0.15=6.3m 6.3.2.2静水总压力 闸门在关闭位置的静水总压力如图6.1所示,其计算公式为: 2 29.8344.1/2 2gh P kN m ρ?= == 图6.1 闸门静水总压力计算简图 P

6.3.2.3 主梁的形式 主梁的形式应根据水头的大小和跨度大小而定,本设计中主梁采用实腹式组合梁。 6.3.2.4主梁的布置 根据主梁的高跨比,决定采用双主梁。两根主梁应布置在静水压力合力线上下等距离的位置上,并要求两主梁的距离值要尽量大些,且上主梁到闸门顶缘的距离c 小于0.45H ,且不宜大于3.6m ,底主梁到底止水的距离应符合底缘布置的要求。故主梁的布置如图6.2所示 图6.2 主梁及梁格布置图 6.3.2.5 梁格的布置和形式 梁格采用复式布置并等高连接,并使用实腹式竖向隔板兼作竖直次梁,使水平次梁穿过隔板上的预留孔而成为连续梁,其间距上疏下密,面板各区格需要的厚度大致相等,具体布置尺寸如图6.2所示。 6.3.3 面板设计 根据《利水电工程钢闸门设计规范》(SL74-95),关于面板的计算,先估算面板厚度,在主梁截面选择之后再计算面板的局部弯曲与主梁整体弯曲的折算应力。 初选面板厚度。面板厚度计算公式为: δ当b/a >3时,α=1.4;当b/a ≤3时,α=1.5。 列表进行计算,见表6.1:

怎样计算桥墩钢模板

一、基本资料: 1. 基本尺寸 全钢模板,面板为h=5mm厚钢板;内模竖肋6.3号槽钢,背楞为10号双槽钢,横边框100×8mm钢板;外模竖肋10号槽钢,背楞为14号双槽钢,横边框100×12mm钢板模板;内外模之间对拉螺栓及外模角部斜螺栓直径30mm。模板平面图如图1所示。 图1 模板平面图 2. 材料的性能 根据《建筑结构荷载规范GB 50009-2001》和《建筑工程大模板技术规程JGJ 74-2003》的规定,暂取: 砼的重力密度:26 kN/m3;砼浇筑时温度:20℃;砼浇筑速度:2m/h;掺外加剂。 钢材取Q235钢,重力密度:78.5kN/m3;容许应力为215MPa,不考虑提高系数;弹性模量为206GPa。 根据《混凝土施工技术指南050729》D.0.1之规定,人员机具荷载取2.5kPa。风荷载取1kN/m2。 3. 计算荷载 对模板产生侧压力的荷载主要有三种: 1) 振动器产生的荷载:4.0 kN/m2;或倾倒混凝土产生的冲击荷载:4.0km/m2;二者不同时计算。 2) 新浇混凝土对模板的侧压力; 荷载组合为:强度检算:1+2;刚度检算:2 (不乘荷载分项系数) 当采用内部振捣器,混凝土的浇筑速度在6m/h以下时,新浇的普通混凝土作用于模板的最大侧压力可按下式计算(《桥梁施工工程师手册》P171杨文渊): (1) 当v/T<0.035时,h=0.22+24.9v/T; 当v/T>0.035时,h=1.53+3.8v/T; 式中:P——新浇混凝土对模板产生的最大侧压力(kPa); H——有效压头高度(m);

V——混凝土浇筑速度(m/h); T——混凝土入模时的温度(℃); ——混凝土的容重(kN/m3); K——外加剂影响修正系数,不掺外加剂时取k=1.0,掺缓凝作用的外加剂时k=1.2; 根据前述已知条件: 因为 v/T=2.0/20=0.1>0.035, 所以 h=1.53+3.8v/T=1.53+3.8×0.1=1.91m 最大侧压力为: =1.2×26×1.91=59.59kN/m2 检算强度时最大荷载设计值为: 1.2×59.59+1.4×4.0=77.91 kN/m2; 检算刚度时最大荷载标准值为: 59.59 kN/m2; 4. 检算标准 1) 强度要求满足钢结构设计规范; 2) 结构表面外露的模板,挠度为模板结构跨度的1/500; 3) 钢模板面板的变形为1.5mm; 4) 钢面板的钢楞、柱箍的变形为3.0mm; 二、模板整体检算 (一)计算模型 建立整体模型,进行检算,模型示意图如下: 图2 模型平面图

设计计算书(止回阀)DN50

DN50 PN20 (A2″150Lb) 旋启式止回阀 设计计算书 计算朱德兴 校核 审定 天津市卡尔斯阀门有限公司 2010年06月

目录 一、阀体最小壁厚计算 (3) 二、密封面比压计算 (3) 三、中法兰螺栓抗拉强度 (4) 四、阀门流量系数计算 (5) 五、设计计算参考文献目录 (5)

㈠、阀体最小壁厚计算 依据美国国家标准ASME B16.34—2004《法兰、螺纹和焊接端连接的阀门》强制性附录Ⅵ最小壁厚的基本公式: 150磅级直径50<d≤100t m(150)=0.02d+4.50 (1.1) 式中:t m—最小厚度(mm) d—阀门公称通径(mm) 将d=300代入公式(1.2),经计算得出: t m (150)=0.02×50+4.5=5.5 (mm) 附加考虑因素: 考虑铸、锻造偏差、工艺性和流体腐蚀的附加裕量: 根据经验取C =2mm 因此确定阀体的壁厚值t t=t m+c =+2 =7.5mm 设计采用值:设计实际壁厚取t=8.5mm, 评定准则:t>t m 结论:设计实际壁厚t大于标准规定最小壁厚t m,阀体壁厚值安全,满足要求。 ㈡、密封面上总作用力Q MZ: 依据《2006版实用阀门设计手册》第四篇《设计与计算》表4-82 密封面上总作用力Q MZ=密封面处介质作用力Q MJ Q MJ =P(d M+b M)2π/4=2(90+10.5)2π/4=15857.39 q= Q MJ/π(d M+b M)b M=15857.39/π(90+10.5)10.5=4.79 MPa [q]=5 Mpa q MF= 1.8+0.9P/√b M/10=3.51 MPa q MF<q<[q] 符合设计要求

桥墩模板计算

3#墩墩身模板计算书 一、基本资料: 1. 桥墩模板的基本尺寸桥墩浇筑时采用全钢模板,模板由平面模板和平面模板带半弧模板对 接组 成,单块模板设计高度为2250mm面板为h=6伽厚钢板;竖肋[10#,水平间距为L i=300mm横肋为10mn厚钢板,高100mm竖向间距L2=500mm背楞:平面模板为双根[20#槽钢、平面模板带半弧模板为双根[14#槽钢,纵向间距为:800mm; 2. 材料的性能 根据《公路桥涵施工技术规范JTG/T F50-2011》和《钢结构焊接规范GB 5066-2011 》的规定,暂取: 砼的重力密度:26 kN/m3;砼浇筑时温度:10C;砼浇筑速度:2m/h;不掺外加剂。 钢材取Q235钢,重力密度:m;容许应力为215MPa不考虑提高系数;弹性模量为 206GPa。 3. 计算荷载 对模板产生侧压力的荷载主要有三种: 1)振动器产生的荷载:kN/m2;或倾倒混凝土产生的冲击荷载:4.0km/m2;二者不同时计算。 2)新浇混凝土对模板的侧压力; 荷载组合为:强度检算:1+2;刚度检算:2 (不乘荷载分项系数)当采用内部振捣器,混凝土的浇筑速度在6m/h以下时,新浇的普通混凝土作用于模板的最大侧压力可按下式计算(《桥梁施工工程师手册》P171杨文渊): P二kY (1) 当v/T< 时,h=+T; 当v/T> 时,h=+T; 式中:P—新浇混凝土对模板产生的最大侧压力(kPa); h—有效压头高度(m); v—混凝土浇筑速度(m/h);

T—混凝土入模时的温度(C); 3 丫―混凝土的容重(kN/m); k-外加剂影响修正系数,不掺外加剂时取k=,掺缓凝作用的外加剂时k=; 根据前述已知条件: 因为:v/T=10=> , 所以h = +T=+X = 最大侧压力为:P二k Y = 26X = tf 检算强度时荷载设计值为:q'二X + x = 77 kN/m 2; 检算刚度时荷载标准值为:q''= kN/m 2; 4. 检算标准 1)强度要求满足钢结构设计规范; 2)结构表面外露的模板,挠度为模板结构跨度的1/400 ; 3)钢模板面板的变形为1.5mm; 4)钢面板的钢楞的变形为3.0mm; 二、面板的检算 1. 计算简图 面板支承于横肋和竖肋之间,横肋间距为50cm,竖肋间距为30cm,取横竖肋间的面板为一个计算单元,简化为四边嵌固的板,受均布荷载q;则长边跨中支承处的负弯矩为最大,可按下式计算: M = Aq'l x2l y (2)式中:A—弯矩计算系数,与l x/l y有关,可查《建筑结构静力计算实用手册(第二版)》(中国建筑工业出版社2014)P154表得A=; l x、l y —分别为板的短边和长边; q' —作用在模板上的侧压力。 板的跨中最大挠度的计算公式为: 4 f =BXq''l x4/B c (3)

钢模板设计-验算

工程承台钢模板(侧模)计算 一、浇筑砼最大侧压力计算 已知:最高台身H=2.5 m,浇筑速度V=2.5/2.4 m/h=1.04m/h<6m/h,混凝土入模温度T=15℃,混凝土不掺外加剂,v/T=1.04/15=0.069>0.035,γ=25KN/m3 (1)P m=K*γ*h =1*25*(1.53+3.8*0.069)=44.8KN/m2; (2)振捣混凝土时对侧面模板的压力按4KPa计; 二、模板面板强度和刚度计算 (1)模板面板厚度的选定 钢结构对钢模板的要求,一般为其跨径的l/100,且不小于6~8mm,本钢模竖肋最大跨径为1000mm,故δ=1000/100=10mm,由于钢模板为临时结实结构,且本工程特殊—为旧模板利用,δ=6mm; (2)模板面板强度和刚度验算 P=48.8KN/m2(考虑动荷载4KN/m2); 竖肋间距:l1=1000mm; 横肋间距:l2=400mm;经初步查表估算1000mm太大,现采用400mm进行验算; 模板厚度:δ=6mm; 跨径l=l2=400mm=40cm;板宽b取1m,即 q=P*b=48.8*1=48.8KN/m; 考虑到板的连续性,其强度和刚度计算: M max=1/10*q*L2=1/10*48.8*402*10-4=0.781KN*m;

W=1/6*b*h2=1/6*100*0.62=6cm3; σ= M max/W=130.1MPa<[σw]=181MPa; f max=ql4/128*EI=0.237cm<0.3cm; 模板面板在内楞间距400mm显得比较薄,但考虑到实际情况,为旧模板利用,仍采用δ=6mm; 二、内钢楞计算 ]10槽钢:I=88.52*104,W=12.2*103,E=2.1*105MPa,f=215MPa (一)计算横肋间距: (1)按抗弯强度计算 b=(10*f*w/(P*a))1/2 =[(10*215*12.2*103)/(48.8*10-3*1000)]1/2=733mm; 取b=450mm, (2)按挠度计算 b=[(150*[W]*E*I)/(P*a)]1/4=1144mm; 按以上计算原来的[10槽钢,跨度1000mm,间距1000不能满足要求,需要加密,内钢楞间距建议加密为选择400mm的常用模数,符合要求; (二)纵肋、横肋强度和刚度计算 (1)均布荷载仍按48.8*0.40=19.52KN/m; (2)强度验算: 按简支梁简化近似计算,跨中位置弯矩最大值: M max=1/8*19.52*1002*10-4=2.44KN*m;

钢模板设计计算

府谷煤炭铁路专用线四标 模板计算书 编制: 复核: 审核: 中铁七局集团府谷铁路专用线项目部二O一一年十二月十八日

钢模板设计计算 参数选定: 混凝土浇注速度V=1.5m/h,混凝土初凝时间取3h,汽车路上消耗0.5小时,即混凝土入模到凝结取2小时。 混凝土入模温度取t0=20oC,掺外加剂,混凝土塌落度取160mm。混凝土塌落度影响系数1.5,外加剂修正系数1.2 1、混凝土对模板侧压力计算 则:F1=γc H=γc VΔT=25×1.5×2=75KN/m2=75 KPa F2=0.22γc t0?1?2V t0=200/(20+15)= 5.7 h 则:F2=0.22×25×5.714×1.2×1.5×5.1=53.12KPa 取基本荷载标准值F=53.12KPa 荷载组合: 标准值取1.2为保险系数,但以0.85予以折减,水平冲击荷载取1.4为保险系数,采用0.2~0.8m3 的灰斗进行浇注,取F倒=4KPa 1.则:混凝土侧压力值F=(53.12+4) ×1.2×0.85=58.26KPa 2、面板验算 模板面板采用6mm厚钢板,采用双向板结构,取方格间距为0.3×0.3m.以一边简支、三面固结计算。图中q=f×10×10-3=58.26KN/m 一面简支最为不利

取计算单元为10mm=1×10-3 m 则K=(Eh 3×b)/(12×(1-0.32))(建筑施工手册) =41.53846 W=61bh 2=61×10×10-3×(6×10-3)2=6×10-8m 3 δ=Mmax/W=0.06ql 2/W=0.06×58.26×0.32/(6×10-8 ) =52MPa <170MPa=[δ],可以 f max =0.0016ql 4/K=0.0016×58.26×0.34/41.538=0.18mm 发生与板中心 Fmax=0.18<[f]=L/400=300/400=0.75mm 满足要求 3.板内肋的布置及验算: 横向:内楞采用δ=6mm 厚,高0.07m 板作为内楞,间距0.4m q=58.26×0.3=17.478KN/m M=ql 2/8=17.478×0.32/8=196.6N ·M 则;W=6 1×b ×10-3×(0.07)2=4.9×10-6m 3 I=121bh 3=121×b ×10-3×(0.07)3=171.5×10-9m 4 [d]= Mmax/W=196.6/(4.9×10-6 )=40MPa <170MPa ,可以 f max =5ql 4/(384EI )=5×17.478×3004/(384×2.1×105×171.5×103)=0.051mm 4.竖肋验算 竖肋采用[8的槽钢,每1.0m 加一道外加强箍,外加强箍采用2根[16槽钢,[8的槽钢竖向间距0.3m , 截面参数:W=25.3cm 3 I=101.3cm 4

阀门强度计算

目录 1. 目的 (4) 2. 适用范围 (4) 3. 计算项目 (4) 4. 中法兰强度计算 (5) 5. 闸阀力计算 (17) 6. 闸板、阀杆拉断计算 (21) 7. 闸板应力计算 (26) 8. 压板、活节螺栓强度计算 (28) 9. 截止阀力计算 (30) 10. 止回阀阀瓣、阀盖厚度计算 (34) 11. 自紧密封结构计算 (38) 12. 阀体壁厚计算 (47) 附录A 参考资料 (48)

1.目的 为了保证本公司所设计的阀门的统一性和质量。 2.适用范围 本公司所设计的闸阀、截止阀、止回阀。 3.计算项目 ●3.1 闸阀需要计算项目4、5、6、7、8 ●3.2 截止阀需要计算项目4、8、9 ●3.3 止回阀需要计算项目4、10 ●3.4 自紧密封结构设计需要计算项目11 4.中法兰计算 ●4.1适用范围 该说明4.2~4.4适用于圆形中法兰的计算;4.5适用于椭圆形中法兰的计算 ●4.2输入参数 4.2.1 设计基本参数 4.2.1.1 口径(DN) 4.2.1.2 压力等级(CLASS) 4.2.1.3 阀种(TYPE) 4.2.1.4 设计温度(T0)取常温380C。 4.2.1.5 设计压力(P)按ASME B16.34-2004 P27,P29,P48取值如表1。

4.2.1.6法兰许用应力(FQB) 按ASME第Ⅱ卷(2004版)材料D篇表1A,乘以铸件系数0.8 WCB 110.4MPa (11.26Kgf/mm2) (P16第8行) LCB 102.4MPa (10.45Kgf/mm2) (P10第29行) CF8M 110.3MPa(11.26Kgf/mm2) (P66第18行) 4.2.1.7螺栓许用应力(BQB) 按ASME 第Ⅱ卷(2004版)材料D篇表3, B7 17.6 kgf/mm2. (P384第33行) L7M 14.08 kgf/mm2. (P384第31行) B8 17.6 kgf/mm2. (≤3/4) (P390第29行) 14.08 kgf/mm2. (3/4~1) (P390第27行) 13.3 kgf/mm2. (1以上) (P390第23行) 4.2.1.8 垫片密封压力(Y),按ASME 第Ⅷ卷(2004版)第一册P298表2-5.1,如表2。 4.2.1.9 垫片系数(M)按表2。

钢模板计算书

主墩大块钢模验算书 一、薄壁墩概况 1、两河口下游永久交通大桥主线2#、3#桥墩均采用双薄壁墩,薄壁墩宽8.0m ,厚2.0m ,双壁中心间距6.0m ,双壁净距为4.0m ; 2#墩身高度50m ,3#墩身高度54m 。 2、每次浇筑节段高度:4.5m (3.0m+1.5m )。 二、薄壁墩模板设计 1、按高度分为1.5m 、3.0m 两种模板,1.5m 高度的设8套,3.0m 高度的设4套。 2、块件组合:一套1.5m 高模板包括800×150cm 大板两块、200×150cm 大板两块;一 套3.0m 高模板包括800×300cm 大板两块、200×300cm 大板两块。 模板构造:面板采用6mm 钢板,背面设置竖向小肋(100×5mm 扁钢/间距0.25m ), 每隔0.5m 高度设置一层工10#工字钢水平肋,模板最外侧采用2[10#槽钢作竖向背杠,平向间距1.2m 。详见构造设计图。 三、模板验算依据 1、 计算依据: ⑴、《公路桥涵施工规范》对模板的相关要求; ⑵、《路桥施工计算手册》对模板计算的相关说明。 2、 荷载组合: ⑴、强度校核:新浇砼对侧模板的压力+振捣砼产生的荷载 ⑵、挠度验算:新浇砼对侧模板的压力 ⑶、采用Q235钢材: 轴向应力:140 1.25()175MPa ?=提高系数 弯曲应力:145 1.25()181MPa ?=提高系数 剪 应 力: 85 1.25()106MPa ?=提高系数 弹性模量:52.110E MPa =? 3、 变形量控制值: 结构外露模板,其挠度值为≤L/400 钢模面板变形≤1.5mm 钢模板的钢棱、柱箍变形≤L/500

水工钢结构平面定轮钢闸门设计计算书

目录 一.课程设计任务与要求 (1) 二.设计资料 (1) 三.闸门结构形式及布置 (1) 四、面板设计 (2) 五、水平次梁,顶梁和底梁地设计 (3) 六、主梁设计 (5) 七、横隔板设计 (10) 八、边梁设计 (11) 九、行走支承设计 (12) 十、胶木滑块轨道设计 (12) 十一、闸门启闭力和吊座验算 (13)

水工钢结构钢闸门课程设计计算书 一.课程设计任务与要求 1、《钢结构》课程设计的任务为某节制闸工作闸门的设计。 2、要求根据钢闸门设计规范与要求,设计出合理、可行的平面定轮钢闸门。 二.设计资料 某供水工程,工程等级为1等1级,其某段渠道上设有节制闸。节制闸工作闸门操作要求为动水启闭,采用平面定轮钢闸门。本闸门结构设计按SL74-95《水利水电工程钢闸门设计规范》进行。基本资料如下: 孔口尺寸:6.0m×6.0m(宽×高); 底槛高程:23.0m; 正常高水位:35.0m; 设计水头:12.0m; 门叶结构材料:Q235A。 三.闸门结构形式及布置 1.闸门尺寸的确定 闸门的高度:考虑风浪所产生的水位超高为0.5m,故闸门高度H=6+0.5=6.5m 闸门的荷载跨度为两侧止水的间距:L1=6.1m 闸门计算跨度:L=L0+2d=6+2×0.2=6.4m 闸门尺寸图见附图1 2.主梁的数目及形式 主梁是闸门的主要受力构件,其数目主要取决于闸门的尺寸。因为闸门跨度L=6.4,闸门高度H=6.5,L

闸门计算书(修改)

闸门计算书(修改)

一、基本资料 (1)孔口尺寸(宽×高): 4.0×4.0m (2)底槛高程(八五高程,下同):-0.300m (3)启闭机平台高程:10.200m (4)设计外江水位(20年一遇): 6.845m (5)设计最不利运行水头差: 2.800m (6)启闭方式:单吊点螺杆启闭机(7)行走支撑:滑动支撑 (8)主要构件采用材料及容许值 ①钢材Q235A A:门体梁系及其容许应力如下: 抗拉、抗压、抗弯容许应力[σ]=160N/mm2 抗剪[τ]=95N/mm2 局部紧接承压[σcj]=120N/mm2 B:零部件容许应力如下: 抗拉、抗压、抗弯容许应力[σ]=100N/mm2 抗剪[τ]=65N/mm2 局部紧接承压[σcj]=80N/mm2 孔壁抗拉[σk]=120N/mm2 ②铸件:选用ZG45,其容许应力如下: 抗拉、抗压、抗弯容许应力[σ]=140N/mm2

抗剪 [τ]=105N/mm 2 ③锻件:选用45#钢,其容许应力如下: 抗拉、抗压、抗弯容许应力 [σ]=145N/mm 2 抗剪 [τ]=95N/mm 2 ④电焊条:门槽轨道表面采用不锈钢焊条堆焊,焊条型号采用E 0-19-10Nb-16,其余构件均采用E43型焊条。 ⑤砼:二期砼采用C30细石砼。 ⑥梁系容许挠度: 主梁 7501 =?? ????l ω 次梁 2501=?? ????l ω ⑦止水:顶、侧止水采用P45×120型橡皮,底止水采用20×110条形橡皮。 ⑧制造条件:专业金属结构制造厂家制造,手工电弧焊。 ⑨执行规范:《水利水电工程钢闸门设计规范》(SL74-95) 《水利水电工程钢闸门制造安装及验收规范》(DL/T5018-94)。 二、布置 本闸门为潜孔式平面闸门,闸门面板设于迎水侧,梁格布置采用多主梁齐平连接,因闸门高宽比为1:1,且闸门跨度不大,故采用单吊点;为控制闸门反向、侧向移动,分别于闸门闸门反、侧向设置反滑块及限位块。

大钢模板计算书

全钢大模板计算书 一、已知条件: 剪力墙层高2900mm,钢模板面板为6mm厚钢板,肋为[8#,水平间距为300mm,背楞为双根[10#,最大间距为1200mm,穿墙螺栓最大间距为1200mm,吊钩为φ18圆钢。 二、面板计算: 故面板最大内力值为: σ=Mmax/(r x W x)=5400/(1×60)=90N/mm2

查表得挠度系数K f=0.677 f max=K f ql4/(100EI) 其中钢材弹性模量E=2.06×105N/mm2,I=bh3/12=10×63/12=180mm4 故f max=0.667×0.6×3004/(100×2.06×105×180)=0.874mm 三、肋计算: 故M max=K m ql2=0.125×18×12002=3.24×106N〃mm 查表得[8槽钢截面特征系数为:W=25.4×103mm3, I=101×104mm4 故肋最大内力值σmax=M max/W=3.24×106/(25.4×103)=128N/mm2

查表得挠度系数K f=0.912 f max=K f ql4/(100EI) 故f max=0.912×18×12004/(100×2.06×105×101×104)=1.636mm 四、背楞计算: 2根[10槽钢截面特征:W=79.4×103mm3,I=396×103mm4。 σA=M A/W=1.44×106/(79.4×103)=18.14N/mm2

8X4.5米钢闸门计算书(2012.8.7) 3

水库溢洪道金属结构设计计算书 1.1溢洪闸钢闸门设计 1.1.1溢洪闸钢闸门设计 1、基本资料 单向止水平面定轮露顶式钢闸门,孔口尺寸(宽×高)8×4.5m,双吊点,3孔,闸底板高程54.47m,设计水位4.1m。校核水位4.5m。闸门动水启闭。 2、主要构件采用材料及容许值 (1)主要构件采用材料 闸门选用Q235-B钢,埋件选用QU钢。 轮轴:45号优质钢。 轴承:自润滑轴承。 橡胶止水。 (2)材料容许应力 1)钢材:按《水利水电工程钢闸门设计规范》(SL74-95)4.2条规定执行。容许应力根据表4.2.1-1的尺寸分组按表4.2.1-2采用,连接材料的容许应力按表4.2.1-3、表4.2.1-4采用,大、中型工程的工作闸门及重要的事故闸门表4.2.1-2至表4.2.1-4的数值乘以0.9-0.95的系数。钢材的容许应力: 抗拉、压、弯[σ]=160N/㎜2×0.9=144N/㎜2 抗剪[τ]=95N/㎜2×0.9=85.5 N/㎜2 局部承压[σcd]=240 N/㎜2×0.9=216 N/㎜2

局部紧接承压应力[σcj]=120 N/㎜2×0.9=108 N/㎜22)焊缝 焊条采用E43××型 焊缝的容许应力抗压[σh c]=160 N/㎜2×0.9=144 N/㎜2抗拉(自动焊)[σh l]= 160 N/㎜2×0.9=144 N/㎜2(半自动焊或手工焊)精确方法检查: [σh l] = 160 N/㎜2×0.9=144 N/㎜2普通方法检查:[σh l] =135N/㎜2×0.9=121.5 N/㎜2抗剪[τh]=95N/㎜2×0.9=85.5 N/㎜2 贴角焊缝抗拉、压、剪[σh l]=115 N/㎜2×0.9=103.5 N/㎜23)普通螺栓连接的容许应力 精制螺栓: Q235碳素结构钢抗拉[σl l]=125 N/㎜2×0.9=112.5 N/㎜2(1类孔)抗剪[τl]=130N/㎜2×0.9=117 N/㎜2 (1类孔)承压[σl c]=290 N/㎜2×0.9=261 N/㎜2粗制螺栓: Q235碳素结构钢抗拉[σl l]= 125 N/㎜2×0.9=112.5 N/㎜2 抗剪[τl]=85N/㎜2×0.9=76.5 N/㎜2 承压[σl c]=190 N/㎜2×0.9=171 N/㎜2

相关主题
文本预览
相关文档 最新文档