当前位置:文档之家› 三位数字电容表

三位数字电容表

三位数字电容表
三位数字电容表

电子线路课程设计报告设计课题:三位数字电容表

专业班级:新能源科学与工程

学生姓名:

指导教师:

设计时间:2015.7.11-7.15

常熟理工学院

物理与电子工程学院

题目三位数字电容表

一、设计任务与要求

1.使用交流220V单相供电,经整流变压产生直流电,供给整个电路工作。

2.电容表测量范围1~999 F,使用3 位数码管显示。

3.电路设有启动按钮、复位按钮。按启动按钮后,电路开始测试,测试结束后,显示待测电容值。按复位按钮,电路复位,显示值清零,准备下一次测试。参考原理框图

图1 原理框图表示

参考原理:采用间接法测量电容的容量。电容器的充电时间和其容量大小有关,容量大的电容需要的充电时间长;容量小的电容需要的充电时间短。当选定固定电阻后,充电时间就与电容容量大小成正比。利用电容这一特性,将被测电容的充电时间作为门控信号,将基准脉冲发生电路所提供的脉宽作为测量尺度,在被测电容充电时间的同时,将控制闸门打开,让计数与显示电路统计并显示输入计数器脉冲的个数,电容充电结束的同时将控制闸门关闭,计数器显示的脉冲个数即为被测电容的容量。

二、方案设计与论证

1.因为电容器的充电时间和其容量大小有关,所以可以将待测电容放入电路中,通过测量电容充电时间来测量电容值,用555定时器组成单稳态触发器,所以单稳态的高电平持续时间就是电容充电时间。

2.用555定时器组成多谐振荡器产生标准脉冲,作为单稳态发生电路所提供的脉宽的测量标准测量尺度。

3.用计数器对一个脉宽时间内的脉冲个数计数,计数器显示的脉冲个数即为被测电容的容量。

4.基本原理计算公式

t c T c

三、单元电路设计与参数计算

1.使用交流220V 单相供电,经整流变压产生直流电5V

图2 直流电5V

2.555定时器构成的多谐振荡器

多谐振荡器的工作原理:

多谐振荡器是能产生矩形波的一种自激振荡器电路,由于矩形波中除基波外还含有丰富的高次谐波,故称作多谐振荡器。多谐振荡器没有稳态,只有两个暂稳态,在自身因素的作用下,电路就在两个暂稳态之间来回转换,故又称它为无稳态电路。

由555定时器构成的多谐振荡器如图1(a )所示,R1,R2和C 是外接定时元件,电路中将高电平触发端(6脚)和低电平触发端(2脚)并联后接到R2和C 的连接处,将放电端(7脚)接到R1,R2的连接处。

由于接通电源瞬间,电容C 来不及充电,电容器两端电压Uc 为低电平,小于(1/3)Vcc ,故高电平触发端与低电平触发端均为低电平,输出Uo 为高电平,放电管VT 截止。这时,电源经R1,R2对电容C 充电,使 电压Uc 按指数规律上升,当Uc 上升到(2/3)Vcc 时,输出Uo 为低电平,放电管VT 导通,把Uc 从(1/3)Vcc 上升到(2/3)Vcc 这段时间内电路的状态称为第一暂稳态,其维持时间Tph

的长短与电容的充电时间有关。充电时间常数T充=0.7(R

1+R

2

)C。

由于放电管VT导通,电容C通过电阻R2和放电管放电,电路进入第个暂稳态,其维持时间Tpl的长短与电容的放电时间有关,放电时间常数T放=0.7R2C 随着C的放电,Uc下降,当Uc下降到(1/3)Vcc时,输出Uo为高电平,放电管VT截止,Vcc再次对电容C充电,电路又翻转到第一暂稳态。不难理解,接通电源后,电路就在两个暂稳态之间来回翻转,则输出可得矩形波。电路一旦起振后,uc电压总是在(1/3~2/3)Vcc 之间变化。图1(b)所示为工作波形。

根据Uc的波形图可以确定振荡周期为 T=Tpl+Tph

Tph对应充电时间 Tph=0.7(R1+R2)C

Tpl对应放电时间 Tpl=0.7R2C

振荡周期 T=Tpl+Tph=0.7(R1+2R2)C 振荡频率 f=1/T

图3 555多谐振荡器

3.555定时器构成的单稳态触发器

单稳态触发器的工作原理:

单稳态触发器的特点是电路有一个稳定状态和一个暂稳状态。在触发信号作用下,电路将由稳态翻转到暂稳态,暂稳态是一个不能长久保持的状态,由于电路中RC延时环节的作用,经过一段时间后,电路会自动返回到稳态,并在输出端获得一个脉冲宽度为tw的矩形波。在单稳态触发器中,输出的脉冲宽度tw,就是暂稳态的维持时间,其长短取决于电路的参数值。

由555构成的单稳态触发器电路及工作波形如图2所示。图中R,C为外接定时元件,输人的触发信号Ui接在低电平触发端(2脚)

稳态时,输出Uo为低电平,即无触发器信号(Ui为高电平)时,电路处于稳定状态——输出低电平。在 Ui负脉冲作用下,低电平触发端得到低于(1/3)Vcc,触发信号,输出Uo为高电平,放电管VT截止,电路进入暂稳态,定时开始。

在暂稳态期间,电源+Vcc→R→C→地,对电容充电,充电时间T=1.1RC,Uc按指数规律上升。当电容两端电压Uc上升到(2/3)Vcc后,6端为高电平,输出Uo变为低电平,放电管VT导通,定时电容C充电结束,即暂稳态结束。电路恢复到稳态Uo为低电平的状态。当第二个触发脉冲到来,又重复上述过程。工作波形如图2(b)所示。

输出电压Uo的脉宽tw=1.1RC。由于R的取值在几百欧至几兆欧之间,电容取值在几百皮法到几百微法。这种电路产生的脉冲宽度可从几个微妙到数分钟,精度可达0.1%。由图2(b)可知,如果在电路的暂稳态持续时间内,加入心的触发脉冲(如图2(b)中的虚线所示),则脉冲对电路不起作用,电路为不可重复触发单稳触发器。

(a)单稳态触发器工作电路(b)工作波形

高电平脉宽时间T=1.1*R1*C

图4 555单稳态触发器

4.脉冲计数电路与数码显示

计数部分选用三片74LS192十进制计数器来实现计数功能。同时还需要考虑对MR清零处理,这也是部分的关键之一。

根据参考74LS192的芯片资料说明,以及查阅相关图书电路设计了如右图的电路用来实现计数功能。对于MR的清零处理,其实就是要在一个待测周期开始计数前产生一个短时间的高电平来实现清零,然后一直为低电位直到下一个周期脉冲开始为止的脉冲输入信号。

图5 74LS192引脚分布图

图6 CD4511引脚分布图

图7 脉冲计数与数码显示

5.待测电容计算公式

设单稳态电路产生脉宽时间为 T=1.1*R1*Cx

多谐振荡器脉冲周期为 t=0.7*(R5+2*R6)*C3

单稳脉宽下的脉冲个数为 D

待测电容的值为 Cx=D*10^(-6)

所以可得下列等式:

3*)6*25(*7.0)6(^10**1*1.13*)6*25(*7.0*1*1.1C R R D R C R R Cx R D +-=+=

所测的电容值默认单位为uF

四、总原理图及元器件清单

1.总原理图

图8 总原理图1.元件清单

五、安装与调试

六、结论与心得

本次的电子课程设计有一定的难度,虽然是两个人合作,但是困难还是重重。我们被分配到的任务是三位数字电容表。老师第一节课大概讲了一下我们这个实验的思路,刚开始真的无从下手,通过查阅各种各样的资料了解需要的元器件的引脚功能,自己通过看视频学习Multisim软件的使用方法,学习各种元器件的应用方法。设计电路是最难的部分,所以我们先一部分一部分的进行,先是555多谐振荡器,然后是555单稳态触发器,计数器,最后是数码管。在软件上仿真的时候因为数码管上多接了一个电阻,所以导致高位的计数器没有示数。仿真结果出来后,为了减少误差,我们又对多谐振荡器和单稳态触发器的电阻进行调整,尽量减小误差。前三天进行设计和仿真模拟,后两天进行实物连接与硬件调试。这也是我们第一次接触面包板,以前都是通过焊接来实现电路。用面包板最大的隐患就是可能会有虚接。所以我们做每一部分的时候都特别小心,井然有序,尽量不自乱阵脚。电路图与实物图之间还是有很大的差别的,要提前想好如何在面包板上摆放元器件的位置,尽量利用有限的面包板的空间,尽量减少交叉线,使整体看上去整齐一点。通过对课程设计的原理图,来确定需要的功能模块。再根据对应模块,来初步确定所需的器材。然后查找各个芯片的功能和建议电容表的工作原理,最终确定制作方案。本次方案的实施是有序进行的,我们小组通过对每个功能模块的讨论和研究,尽量把每个功能模块都做好,最后再将所有的功能模块整合在一起。这个系统的设计思路还是很清晰的,但是所需要的器件是比较多的,这就需要我们对每个器件的功能要深入地了解。就这样,我们的仿真部分做得还算顺利。在具体的硬件制作过程中就出现了一些问题。所需的器件较多,带来的后果就是要连的线就多,如果器件的摆放位置不合理,就会使面包板的制作变得异常艰难。所以我们又进行了一番讨论最终定硬件安装方案。

在连实物图的时候会出现各种各样的情况,这是就要充分利用身边现有的检验器件,如万用表,示波器。一定要善于借助仪器帮助分析判断电路中所存在的问题,如活用万能表,欧姆档判断所有的高低电平是否共线,芯片之间引脚连接是否有虚断等(在检测时可以用铅笔标出,方便下次查找),电压档的使用,都非常有用;然后就是示波器,分析动态电位信息,但对于示波器自认为用的不是很上手;函数发生器的使用等,有这些仪器能让自己排除出许多可疑点,最终还是

能找到原因的。(同时也一定要注意正确使用仪器)这样做可以为以后的连线扫除障碍。

在这次的实验中,也让我充分明白了团队合作的重要性。自己的能力是有限的,要善于与别人合作,发现别人身上的闪光点,进而更加清楚的认识自己,提升自己。在实验过程中,老师也给予了我们很多帮助,帮我们解决了很多困难。这次的实验让我得到了一次很深刻的锻炼,从仿真不出效果到最终的出效果,使己建立了信心;实物电路的波折不断,虚心探讨,主动请教,从无奈躁动、想放弃,到最后被迫熟悉仪器更多的使用,最后帮助2组检查排除错误的喜悦。更值得庆幸的是,了解了一番电子设计的一般思路方法,方案的讨论仿真,实际电路的步步为营、个个击破,积极的坚持而不是维持,自信心的建立…..

七、参考文献

[1] 张文荣.模拟电子技术课程教学新探[J]. 河北能源职业技术学院学报.2004,4(3).

[2] 余道衡,徐承和. 电子电路手册[M]. 北京:北京大学出版社,1996

[3]康华光.《模拟电子技术》(第四版)[ M ] .高等教育出版社 2006

[4] 康华光.《数字电子技术》(第五版) [ M ] . 高等教育出版社 2006

最新大量程电感表

大量程电感表

超大量程电感表 许剑伟莆田第十中学 一、引言: 无线电爱好者,经常要测量电感量,他们常常测量小到零点几uH或大到上千H的电感。除了商品数字电桥可以测量,其它仪表很难测出来。后来,在网上看到捷克人的作品,基于LM311制作了一个小电感测量仪,国内也有很多爱好者仿制。出于好奇,也动手仿制并做了改进,重新分析、设计电路,使得本表可以极宽范围测量,而且精度良好。最先使用洞洞板调试,后来打样PCB 板安装了数台,效果良好。 二、电路原理 本表利用LM393做为放大器,在正反馈回路加放LC选频回路,得到稳定的振荡,并由单片机测量出振荡频率F。当F和C已知,就可以计算出L的值。虽然LM393频响比LM311差5倍,但本表通过合理的补偿,可以消除 LM393速度上的不足,大幅减小了小电感测量误差。此外,由于采用了高阻耦合,使得本电路可以测量1000H以上的电感。 电路原理如下图。 Ca是基准电容,La是辅助谐振电感。Rf*C1应大于Rb*C2,以免低频自激或间歇振荡。C1、C2是隔直流电容。C4、C5是表笔高频干扰信号吸收电容(不是工频吸收电容)。C6是相位补偿电容(LM393无内置相位补偿)。 R1、R2、R3是1/3衰减器兼直流编置电压发生器。Rf是高阻同相耦合器。R4、R5是上拉电阻。Rf1、Rf2是负反馈电阻,7.2倍放大。R6是偏置电阻并产生数毫伏正偏压。R7、R8是给二极管施加测试电流的电阻

那个Rf耦合电阻,在超声波范围内并不是存阻的。当频率较高时,电阻两端的分布电容及LM393内的信号耦合是不可以忽略的。虽然是电容耦合量很小,但在密勒效应的作用下,等效到输入端的电容会被成百倍放大,有效谐振电容变小。当频率比较高时,谐振器的阻抗很小,所以反馈系数非常弱,这就造成密勒效应的影响严重,可影响2%以上,为此,高频率下有效谐振电容需要适当修正。此外,LM393的延迟也会造成振荡频率变小,引起测值变大。以上因素,结合起来,有效谐振电容还要修正 k=5e-8 * Rf * f,式中Rf是指反馈总电阻(单位M欧),f指频率(单位Hz)。 电感的计算公式变为: ?Skip Record If...? 实际上,可以理解为a就是考虑密勒效应及LM393延时后对频率修正的结果。

自制电容表

自制电容表(转) 2008年03月17日星期一 09:27 自制电容表 很多贴片电容都没有标明电容值,而我又舍不得扔了它们;自己做电路玩时,经常看到一些废电路板上有很多贴片电容,可以拆下来用,但是却看不到容量,很郁闷。所以我决定做一个电容表来测试它们的容量。 我用单片机8952和电压比较器339做了一个简单的电容容量测量表,参数大 致如下: 电容测量范围为1pF-9999.99uF,最小分辨力为1pF。分为5个量程,可以自 动切换量程,也可手动切换。 另外,有简单的频率计功能,能测量0-60MHz的数字信号频率(TTL电平);还可以产生几个单点频率的方波信号(比如1KHz)。 采用1602LCD作为显示器;4个按键控制;使用24C01保存当前设置值,不用 每次开机重新设置。可单5V供电,也可9V交流供电。 电容测试原理简介:根据电容的充电公式,可以计算出电容在充电到 1/nVcc(其中n>1,Vcc为充电电源电压)电压时充电时间跟电容的容量和电阻成正比,跟充电电源电压无关。(通过一个微分方程即可求得,具体的计算步骤这里省略,一般的电路教材上都有讲解)。 工作过程如下:首先,通过单片机选通放电三极管Q9,将电容上的电放掉,放电完毕之后,选通Q1-Q5中的一个三极管,经过一定的电阻,对电容进行充电;同时,打开单片机的计数器0,开始计数。然后单片机等待外部中断0的发生。当 电容充电达到参考电压值时,比较器翻转,发出充电完成信号到中断0端口,单片机响应中断,停止计数器0,并关闭充电电路,接通放电电路。接着读出计数器0的值,进行计算,适当的调整后,输出到LCD上显示。然后又开始一次新的测试,如此循环。 本电路通过一个电压比较器(LM339)来检测电容充电的终止。由电阻R31,R32及RW1构成一个分压器,产生一个基准电压。当电容两端电压超过比较电压时, 比较器翻转,产生一个低电平到单片机的中断0(INT0)引脚,通知单片机电容充电 完成。 RW1是精密可调电阻,用来调整电压比较器的参考电压。调整RW1,使P点

电容器参数大全

电容器 电容器通常简称其为电容,用字母C表示。电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。定义2:电容器,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。 相关公式 电容器的电势能计算公式:E=CU^2/2=QU/2 多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn 三电容器串联 C=(C1*C2*C3)/(C1*C2+C2*C3+C1*C3) 标称电容量和允许偏差 标称电容量是标志在电容器上的电容量。在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是:1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 容量大的电容其容量值在电容上直接标明,如10 μF/16V 容量小的电容其容量值在电容上用字母表示或数字表示 字母表示法:1m=1000 μF 1P2= 1n=1000PF 数字表示法:三位数字的表示法也称电容量的数码表示法。三位数字的前两位数字为标称容量的有效数宇,第三位数宇表示有效数字后面零的个数,它们的单位都是pF。如:102表示标称容量为1000pF。 221表示标称容量为220pF。 224表示标称容量为22x10(4)pF。 在这种表示法中有一个特殊情况,就是当第三位数字用"9"表示时,是用有效数宇乘上10的-1次方来表示容量大小。如:229表示标称容量为22x(10-1)pF=。 允许误差±1% ±2% ±5% ±10% ±15% ±20% 如:一瓷片电容为104J表示容量为μF、误差为±5%。 电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。常用的电容器其精度等级和电阻器的表示方法相同。用字母表示:D——005级——±%;F——01级——±1%;G——02级——±2%;J——I 级——±5%;K——II级——±10%;M——III级——±20%。 精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%) 一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级,根据用途选取。 注:用表中数值再乘以10n来表示电容器标称电容量,n为正或负整数。 主要参数的意义:标称容量以及允许偏差:目前我国采用的固定式标称容量系列是:E24,E12,E6系列。他们分别使用的允许偏差是+-5% +-10% +-20%。 额定电压:在最低环境温度和额定环境温度下可连续加在电容器的最高直流电压有效值,一般直接标注在电容器外壳上,如果工作电压超过电容器的耐压,电容器击穿,造成不可修复的永久损坏。常见的电容额定电压与耐压测试仪测量值的关系( 600V的耐压测试仪测量电压为760V以上550V的耐压测试仪测量电压为715V以上; 500V的耐压测试仪测量电压为650V以上; 450V的耐压测试仪测量电压为585V以上; 400V的耐压测试仪测量电压为520V以上; 250V的耐压测试仪测量电压为325V以上; 200V的耐压测试仪测量电压为260V以上;

数字万用表使用方法

数字万用表使用方法 2010-01-27 10:15 简介:数字万用表相对来说,属于比较简单的测量仪器。本篇,作者就教大家数字万用表的正确使用方法。从数字万用表的电压、电阻、电流、二极管、三极管、MOS场效应管的测量等测量方法开始,让你更好的掌握万用表测量方法。 一、电压的测量 1、直流电压的测量,如电池、随身听电源等。首先将黑表笔插进“com”孔,红表笔插进“V Ω ”。把旋钮选到比估计值大的量程(注意:表盘上的数值均为最大量程,“V-”表示直流电压档,“V~”表示交流电压档,“A”是电流档),接着把表笔接电源或电池两端;保持接触稳定。数值可以直接从显示屏上读取,若显示为“1.”,则表明量程太小,那么就要加大量程后再测量工业电器。如果在数值左边出现“-”,则表明表笔极性与实际电源极性相反,此时红表笔接的是负极。 2、交流电压的测量。表笔插孔与直流电压的测量一样,不过应该将旋钮打到交流档“V~”处所需的量程即可。交流电压无正负之分,测量方法跟前面相同。无论测交流还是直流电压,都要注意人身安全,不要随便用手触摸表笔的金属部分。 二、电流的测量 1、直流电流的测量。先将黑表笔插入“COM”孔。若测量大于200mA的电流,则要将红表笔插入“10A”插孔并将旋钮打到直流“10A”档;若测量小于200mA的电流,则将红表笔插入“200mA”插孔,将旋钮打到直流200mA以内的合适量程。调整好后,就可以测量了。将万用表串进电路中,保持稳定,即可读数。若显示为“1.”,那么就要加大量程;如果在数值左边出现“-”,则表明电流从黑表笔流进万用表。 交流电流的测量。测量方法与1相同,不过档位应该打到交流档位,电流测量完毕后应将红笔插回“VΩ”孔,若忘记这一步而直接测电压,哈哈!你的表或电源会在“一缕青烟中上云霄”--报废! 三、电阻的测量

数字万用表使用方法.pdf

数字万用表的基础知识 数字万用表亦称数字多用表DMM(digital multimeter) 一、数字万用表的特点 1、数字万用表采用数字化测量技术,将被测电量均转换成电压信号,并以数 字形式显示。 2、准确度高 3、测量范围宽 4、测量速度快2~5次/秒 5、微功耗 6、集成度高,体积小,重量轻,可靠性好 7、测量种类多,功能齐全,操作简便 二.技术特性 1.测量范围 ⑴交、直流电压(交流频率为45Hz~500Hz);量程分别为200mV、2V、20V、200V和1000五档,直流精度为±(读数的%+2个字)以下,交流精度为±(读数的1%+5个字);输入阻抗,直流档为10MΩ,交流档为10MΩ、100PF。 ⑵交、直流电流量程分别为200μA、2mA、200mA和10A五档,直流精度为±(读数的%+2个字),交流精度为±(读数的%+5个字),最大电压负荷为250mV(交流有效值)。 ⑶电阻:量程分别为:200Ω、2kΩ、200kΩ、2MΩ和20MΩ档。精度为±(读数的%+3个字)。

⑷二极管导通电压:量程为 0~,测试电流为1mA ±mA 。 ⑸三极管β值检测:测试条件为:V CE =,I B =10μA 。 ⑹短路检测:测试电路电阻< 20Ω±10Ω 2.采样时间:T S =。 三.使用方法 1.准备 2.按下电源开关,观察液晶显示是否正常,有否电池缺电标志出现,若有则要先更换电池。 3.使用 (1)交、直流电流的测量:根据测量电流的大小选择适当的电流测量量程和红表笔的插入孔,测量直流时,红表笔接触电压高一端,黑表笔接触电压低的一端,正向电流从红表笔流入万用表,再从黑表笔流出,当要测量的电流大小不清楚的时候,先用最大的量程来测量,然后再逐渐减小量程来精确测量。 (2)交、直流电压的测量:红表笔插入“V/Ω”插孔中,根据电压的大小选择适当的电压测量量程,黑表笔接触电路“地”端,红表笔接触电路中待测点。特别要注意,数字万用表测量交流电压的频率很低(45~500Hz ),中高频率信号的电压幅度应采用交流毫伏表来测量。1 23456789

简易数字式电阻、电容和电感测量仪设计

简易数字式电阻、电容和电感测量仪设计报告 摘要:本系统利用TI公司的16位超低功耗单片机MSP430F149和ICL8038精密函数发生器实现对电阻、电容和电感参数的测量。本系统以自制电源作为LRC数字电桥和各个主要控制芯片的输入电源,并采用ICL8038芯片产生高精度的正弦波信号流经待测的电阻、电容或者电感和标准电阻的串联电路,通过测量电阻、电容或者电感和标准电阻各自的电压,利用电压比例计算的方法推算出电阻值、电容值或者电感值。利用MSP430F149单片机控制测量和计算结果,运用自校准电路提高测量精度,同时用差压法,消除了电源波动对结果的影响。测量结果采用12864液晶模块实时显示。实验测试结果表明,本系统性能稳定,测量精度高。 关键词:LRC 数字电桥、电压比例法、液晶模块、MSP430F149、电阻电容电感测量 一、设计内容及功能 1.1设计内容 设计并制作一台简易数字式电阻、电容和电感参数测量仪,由测量对象、测量仪、LCD 显示和自制电源组成,系统模块划分如下图所示: 测量对象 LCD显示 电阻/电容/电感 简易的数字电阻、电容和电感测量仪 自制电源 1.2 具体要求 1. 测量范围 (1)基本测量范围:电阻100Ω~1MΩ;电容100pF~10000pF;电感100μH~10mH。 (2)发挥测量范围:电阻10Ω~10MΩ;电容50pF~10μF;电感50μH~1H。 2. 测量精度 (1)基本测量精度:电阻±5% ;电容±10% ;电感±5% 。 (2)发挥测量精度:电阻±2% ;电容±8% ;电感±8% 。 3. 利用128*64液晶显示器,显示测量数值、类型和单位。 4. 自制电源 5. 使用按键来设置测量的种类和单位 1.3系统功能 1. 基本完成以上具体要求 2. 使用三个按键分别控制R、C、L的测试 3. 采用液晶显示器显示测量结果 二、系统方案设计与选择 电阻、电容、电感测试仪的设计目前有多种方案可以实现,例如、使用可编程逻辑控制器(PLC)、振荡电路与单片机结合或CPLD与EDA相结合等等来实现。在设计前本文对各种方案进行了比较:

数字电容表设计-毕业设计

数字电容表设计 学生:XX 指导教师:XX 内容摘要:新时代,科学技术不断的腾飞中。电子仪器数不胜数,层层不出,同时,各种电子产品也不断更新完善。给人类带来了无穷的利益。大电容测量仪亦也是如此,品种种类繁多,功能强大完善.而以下所设计的是一种精度比较高,操作非常简便的电容测量仪。并且此电容表设计是基于单稳态触发器的输出脉宽tw与电容C成正比,是把电容C转换变成宽度为tw的矩形脉冲,接着将其作为闸门信号控制计数器计标准频率脉冲的个数,最后送锁存--译码--显示系统就可以得到电容量的数据 关键词:大电容测量仪电容表矩形脉冲

digital capacitance table design Abstract:The new age, the rapid development of science and technology continuously. Counting the electronic instrument, layer upon layer out, at the same time, various kinds of electronic products is also constantly updated perfect. Brought infinite interests. Large capacitance measuring instrument is also is such, breed varieties, powerful perfect. And the design is a kind of precision is higher, the operation is very simple capacitance measuring instrument. And the capacitance table design is based on a single state trigger the output pulse width tw and capacitance c is proportional to the capacitance C conversion is become the rectangular pulse width for tw, then as a gate signal control counter plan the number of standard frequency pulse, eventually give latch-decoding-show that the system can get electric capacity data Keywords: large capacitance measuring instrument capacitance table rectangular pulse .

altiumdesigner15设计三位数字显示电容检验测试表

/*
电路 CAD 课程设计
题 目: 三位数字显示电容测试表
学生姓名 专业 学号 班级 指导教师 成绩
工程技术学院
2016 年 1 月

/*
目录
一、电路结构与功能分析.................................. 1 1、 电路结构 ......................................... 1 2、 功能分析 ......................................... 1 3、 电路实用性 ....................................... 2
二、 电路原理图设计 ..................................... 2 1、 设计说明 ......................................... 2 2、 原理图............................................ 3
三、 网表文件 ........................................... 3 四、 PCB(单面板)设计 .................................. 6
1、 设计流程 ......................................... 6 2、 设计规则 ......................................... 6 3、 Bottom Layer 版图 ................................. 8 4、 Top OverLay 版图 .................................. 8 5、 3D 效果图 ......................................... 9

自动RCL电阻电容电感测量表

自动RCL(电阻电容电感)测量表 型号PM6303A 用户手册 美国FLUKE公司

目录 装箱单和初始检查 1 安装和安全须知………………………………………………………………………1-1 1.1 安全须知………………………………………………………………………………1-1 1.1.1 维护和维修………………………………………………………………………1-1 1.1.2 接地………………………………………………………………………………1-1 1.1.3 连接………………………………………………………………………………1-2 1.1.4 电压和保险管……………………………………………………………………1-2 1.2 仪器的工作位置………………………………………………………………………1-2 1.3 射频干扰抑制…………………………………………………………………………1-2 2 主要特点……………………………………………………………………………… 2-1 3 操作指导……………………………………………………………………………… 3-1 3.1 概况……………………………………………………………………………………3-1 3.2 开机……………………………………………………………………………………3-1 3.3 自检……………………………………………………………………………………3-1 3.4 简明检查步骤…………………………………………………………………………3-1 3.4.1 概述………………………………………………………………………………3-1 3.4.2 功能测试…………………………………………………………………………3-2 3.5 操作和应用………………………………………………………………………… 3-2 3.5.1 控制元素,显示和连接……………………………………………………… 3-2 3.5.2 测量设置和附件……………………………………………………………… 3-4 3.5.3 自动0修整…………………………………………………………………… 3-5 3.5.4 元件测量……………………………………………………………………… 3-6 3.5.5 益出与错误信息……………………………………………………………… 3-6 3.5.6 量程极限的元件测量……………………………………………………………3-7

数字万能表的使用方法

数字万能表的使用方法 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

数字万能表的使用方法 一、电压的测量 二、1、的测量,如电池、随身听电源等。首先将黑表笔插进“com”孔,红表笔插进“V Ω ”。把旋钮选到比估计值大的量程(注意:表盘上的数值均为最大量程,“V-”表示档,“V~”表示档,“A”是电流档),接着把表笔接电源或电池两端;保持接触稳定。数值可以直接从显示屏上读取,若显示为“1.”,则表明量程太小,那么就要加大量程后再测量工业电器。 三、如果在数值左边出现“-”,则表明表笔极性与实际电源极性相反,此时红表笔接的是负极。 2、的测量。表笔插孔与的测量一样,不过应该将旋钮打到交流档“V~”处所需的量程即可。无正负之分,测量方法跟前面相同。 3、无论测交流还是直流电压,都要注意人身安全,不要随便用手触摸表笔的金属部分。 4、二、电流的测量 5、1、直流电流的测量。先将黑表笔插入“COM”孔。若测量大于200mA的电流,则要将红表笔插入“10A”插孔并将旋钮打到直流“10A”档;若测量小于200mA的电流,则将红表笔插入“200mA”插孔,将旋钮打到直流200mA以内的合适量程。调整好后,就可以测量了。将万用表串进电路中,保持稳定,即可读数。若显示为“1.”,那么就要加大量程;如果在数值左边出现“-”,则表明电流从黑表笔流进万用表。

6、2、的测量。测量方法与1相同,不过档位应该打到交流档位,电流测量完毕后应将红笔插回“VΩ”孔,若忘记这一步而直接测电压,哈哈!你的表或电源会在“一缕青烟中上云霄”--报废! 7、三、 8、将表笔插进“COM”和“VΩ”孔中,把旋钮打旋到“Ω”中所需的量程,用表笔接在电阻两端金属部位,测量中可以用手,但不要把手同时两端,这样会影响测量精确度的--人体是电阻很大但是有限大的导体。读数时,要保持表笔和电阻有良好的接触;注意单位:在“200”档时单位是“Ω”,在“”到“200K“档时单位为“KΩ”,“2M”以上的单位是“MΩ”。 9、四、二极管的测量 10、可以测量发光二极管,……测量时,表笔位置与电压测量一样,将旋钮旋到“”档(如图所示);用红表笔接二极管的正极,黑表笔接负极,这时会显示二极管的。的压降是左右,普通硅整流管(1N4000、1N5400系列等)约为,发光二极管约为~。调换表笔,显示屏显示“1.”则为正常,因为二极管的反向电阻很大,否则此管已被击穿。 五、三极管的测量 六、表笔插位同上;其原理同二极管。先假定A脚为基极,用黑表笔与该脚相接,红表笔与其他两脚分别接触其他两脚;若两次读数均为左右,然后再用红笔接A脚,黑笔接触其他两脚,若均显示"1",则A脚为基极,否则需要重新测量,且此管为PNP管。那么集电极和发射极如何判断呢数字表不能像指针表那样利用指针摆幅来判断,那怎么办呢我们可以利用“hFE”档来判断:先将档位打到“hFE”档,可以看到档位旁有一排小插孔,分为

电感器的识读与万用表检测

电感器的识读与万用表检测

————————————————————————————————作者:————————————————————————————————日期:

电感器的识读与万用表检测

?(4)按绕线结构分类。a)单层线圈;b)多层线圈;c)峰房线圈 ?(5)按外形分类:空心线圈与实心线圈。 ?(6)按工作性质分类:高频电感器(各种天线线圈、振荡线圈)和低频电感器(各种扼 流圈、滤波线圈等)。 ?(7)按封装形式分类:普通电感器、色环电感器、环氧树脂电感器、贴片电感器等。 ?(8)按电感量是否能变化分类:固定电感器和可调电感器。 ?

?2.电感器的主要技术参数 ?(1)标称电感量L。电感量L也称为自感系数,是表示电感线圈自感应能力的一种 物理量。当通过某一面积的磁感线数(线圈的磁通)发生变化时,线圈中便会产生感应电势,这是电磁感应现象。当线圈中的通过变化的电流时,线圈产生变化的磁通,线圈两端便产生感应电势,这便是自感现象。 ?电感量L的单位用亨利(H),但亨(H)是较大的单位,所以我们常用微亨(μH)和毫亨 (mH)来作电感的单位,其换算关系为1H=1×103mH=1×106μH。1000μH=1mH。 电子技术中常用微亨(μH)这个单位。 ?(2)精度要求(偏差)用百分比(%)表示。 ?电感器的偏差要求,一般用Ⅰ级、Ⅱ级、Ⅲ级三个等级,同样用文字符号J 表示± 5%,K表示±10%,M表示±20%。注意:用途不同,对电感的精度要求不同:振荡线圈要求较高,为0.2~0.5%,对耦合线圈和高频扼流线圈要求较低,允许10~15%。 ?(3)品质因数。线圈中存储能量与消耗能量的比值称为品质因数,用Q表示,通 常定义为线圈的感抗ωL和直流等效电阻R之比,即Q=ωL/R ?(4)额定电流。电感线圈的额定电流指线圈长期工作所能承受的最大电流,其值与 材料和加工工艺有关。 ?(5)分布电容。线圈的匝间、线圈与底座之间均存在分布电容。它影响着线圈的有 效电感量及其稳定性,并使线圈的损耗增大,质量降低,一般总希望分布电容尽可能小

三位半数字万用表设计

建筑工程学院 课程设计报告 课程名称:电子技术综合课程设计 题目名称: 3位半数字万用表设计 学院:电气工程学院 专业:电子信息工程 班级:电子132 学号:2013315202 学生:天明 指导教师:建新 职称:高级实验师 成绩: 2015年7 月12日

一、摘要 万用表结构简单、便于携带、使用方便、用途多样、量程围广。它是维修电子设备和调试电路的重要工具,是电子工程技术人员最常用的一种测量仪表。设计目的是培养独立思考和创新意识,以及动手调试组装能力和分析解决问题的能力。通过对mc14433的设计,检验对基础知识的掌握程度。 二、关键字 1、三位半A/D转换器MC14433 在数字仪表中,MC14433电路是一个低功耗三位半双积分式A、D转换器。和其它典型的双积分A/D转换器类似,MC14433A/D转换器由积分器、比较器、计数器和控制电路组成。如果必要设计应用者可参考相关参考书。使用MC14433时只要外接两个电阻(分别是片RC 振荡器外接电阻和积分电阻RI)和两个电容(分别是积分电容CI和自动调零补偿电容C0)就能执行三位半的A/D转换。 MC14433部模拟电路实现了如下功能:(1)提高A/D 转换器的输入阻抗,使输入阻抗可达l00M僖陨希唬?2)和外接的RI、CI构成一个积分放大器,完成V /T 转换即电压-时间的转换;(3)构造了电压比较器,完成“0”电平检出,将输入电压与零电压进行比较,根据两者的差值决定极性输出是“1”还是“0”。比较器的输出 用作部数字控制电路的一个判别信号;(4)与外接电容器C0构成自动调零电路。

图1 MC14433原理框图 除“模拟电路”以外,MC14433 部含有四位十进制计数器,对反积分时间进行3位半BCD码计数(0~1999),并锁存于三位半十进制代码数据寄存器,在控制逻辑和实时取数信号(DU)作用下,实现A/D转换结果的锁定和存储。借助于多路选择开关,从高位到低位逐位输出BCD码Q0~Q3,并输出相应位的多路选通脉冲标志信号DS1~DS4实现三位半数码的扫描方式(多路调制方式)输出。 MC14433部的控制逻辑是A/D 转换的指挥中心,它统一控制各部分电路的工作。根据比较器的输出极性接通电子模拟开关,完成A/D转换各个阶段的开关转换,产生定时转换信号以及过量程等功能标志信号。在对基准电压VREF 进行积分时,控制逻辑令4位计数器开始计数,完成A/D 转换。 MC14433部具有时钟发生器,它通过外接电阻构成的反馈,井利用部电容形成振荡,产生节拍时钟脉冲,使电路统一动作,这是一种施密特触发式正反馈RC 多谐振荡器,一般外接电阻为360k偈保竦雌德饰?100kHz;当外接电阻为470k偈保竦雌德试蛭?66kHz,当外接电阻为750k偈保竦雌德饰?50kHz。若采用外时钟频率。则不要外接电阻,时钟频率信号从CPI(10脚)端输入,时钟脉冲

万用表的使用方法大全

万用表的使用方法大全 万用表的使用的注意事项 (1)在使用万用表之前,应先进行“机械调零”,即在没有被测电量时,使万用表指针指在零电压或零电流的位置上。 (2)在使用万用表过程中,不能用手去接触表笔的金属部分,这样一方面可以保证测量的准确,另一方面也可以保证人身安全。 (3)在测量某一电量时,不能在测量的同时换档,尤其是在测量高电压或大电流时,更应注意。否则,会使万用表毁坏。如需换挡,应先断开表笔,换挡后再去测量。 (4)万用表在使用时,必须水平放置,以免造成误差。同时,还要注意到避免外界磁场对万用表的影响。 (5)万用表使用完毕,应将转换开关置于交流电压的最大挡。如果长期不使用,还应将万用表内部的电池取出来,以免电池腐蚀表内其它器件。 欧姆挡的使用 一、选择合适的倍率。在欧姆表测量电阻时,应选适当的倍率,使指针指示在中值附近。最好不使用刻度左边三分之一的部分,这部分刻度密集很差。 二、使用前要调零。 三、不能带电测量。 四、被测电阻不能有并联支路。 五、测量晶体管、电解电容等有极性元件的等效电阻时,必须注意两支笔的极性。 六、用万用表不同倍率的欧姆挡测量非线性元件的等效电阻时,测出电阻值是不相同的。这是由于各挡位的中值电阻和满度电流各不相同所造成的,机械表中,一般倍率越小,测出的阻值越小。 万用表测直流时 一、进行机械调零。

二、选择合适的量程档位。 三、使用万用表电流挡测量电流时,应将万用表串联在被子测电路中,因为只有串连接才能使流过电流表的电流与被测支路电流相同。测量时,应断开被测支路,将万用表红、黑表笔串接在被断开的两点之间。特别应注意电流表不能并联接在被子测电路中,这样做是很危险的,极易使万表烧毁。 四、注意被测电量极性。 五、正确使用刻度和读数。 六、当选取用直流电流的2.5A挡时,万用表红表笔应插在2.5A测量插孔内,量程开关可以置于直流电流挡的任意量程上。 七、如果被子测的直流电流大于2.5A,则可将2.5A挡扩展为5A挡。方法很简单,使用者可以在“2.5A”插孔和黑表笔插孔之间接入一支0.24欧姆的电阻,这样该挡位就变成了5A电流挡了。接入的0.24A电阻应选取用2W以上的线绕电阻,如果功率太小会使之烧毁。 ? ? 目前的万用表分为指针式和数字式,它们各有方便之处,很难说谁好谁坏,最好是能够备有指针和数字式的各一个。业余电子制作有一个指针式的MF30型万用表也就可以了,这可是一种经典型号。还有元老级的MF500型万用表,廉价的MF50万用表,一般都可以在电讯商店买到。 万用表的三个基本功能是测量电阻、电压、电流,所以老前辈们叫它三用表。现在的万用表添加了好多新功能,尤其是数字式万用表,如测量电容值,三极管放

用万用表测量电感

用万用表怎么样测量电感 作者:佚名日期:2010年06月28日来源:不详【字体:大中小】我要评论(0)用万用表怎么样测量电感电感器、变压器检测方法与经验色码电感器的的检 右摆动。根据测出的电阻值大小,可具体分下述三种情况进行鉴别:被测色码电感器电阻值为零,其内部有短路性故障。被测色码电感器直流电阻值的大小与绕制电 电感器是正常的。中周变压器的检测将万用表拨至R 用万用表怎么样测量电感 电感器、变压器检测方法与经验 色码电感器的的检测 将万用表置于R×1挡,红、黑表笔各接色码电感器的任一引出端,此时指针应向右摆动。根据测出的电阻值大小,可具体分下述三种情况进行鉴别: 被测色码电感器电阻值为零,其内部有短路性故障。被测色码电感器直流电阻值的大小与绕制电感器线圈所用的漆包线径、绕制圈数有直接关系,只要能测出电阻值,则可认为被测色码电感器是正常的。 中周变压器的检测 将万用表拨至R×1挡,按照中周变压器的各绕组引脚排列规律,逐一检查各绕组的通断情况,进而判断其是否正常。检测绝缘性能 将万用表置于R×10k挡,做如下几种状态测试: (1)初级绕组与次级绕组之间的电阻值; (2)初级绕组与外壳之间的电阻值; (3)次级绕组与外壳之间的电阻值。 上述测试结果分出现三种情况: (1)阻值为无穷大:正常; (2)阻值为零:有短路性故障; (3)阻值小于无穷大,但大于零:有漏电性故障。 电源变压器的检测 通过观察变压器的外貌来检查其是否有明显异常现象。如线圈引线是否断裂,脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。 绝缘性测试。用万用表R×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。否则,说明变压器绝缘性能不良。 线圈通断的检测。将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。 判别初、次级线圈。电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。再根据这些标记进行识别。

三位半数字电压表

四、 设计原理及电路图 (1)数字电压表原理框图如下: 方案的原理框图如图b 所示; 图b 鉴于选用方案一,由数字电压表原理框图可知,数字电压表由五个模块构成,分别是基准电压模块, 3 1/2位A/D 电路模块,字形译码驱动电路模块,显示电路模块,字位驱动电路模块. 各个模块设计如下: 量程转换模块 采用多量程选择的分压电阻网络,可设计四个分压电阻大小分别为900K Ω,90K Ω,9K Ω和1K Ω。用无触点模拟开关实现量程的切换。 基准电压模块

这个模块由MC1403和电位器构成, 提供精密电压,供A/D 转换器作参考电压. 3 1/2位A/D电路模块 直流数字电压表的核心器件是一个间接型A / D转换器,这个模块由MC14433和积分元件构成,将输入的模拟信号转换成数字信号。字形译码驱动电路模块

这个模块由MC4511构成 ,将二—十进制(BCD)码转换成七段信号。 显示电路模块 这个模块由LG5641AH构成,将译码器输出的七段信号进行数字显示,读出A/D 转换结果。 (2)实验芯片简介: 数字显示电压表将被测模拟量转换为数字量,并进行实时数字显示。该系统(如图1 所示)可采用MC14433—三位半A/D 转换器、MC1413七路达林顿驱动器阵列、CD4511 BCD到七段锁存-译码-驱动器、能隙基准电源MC1403和共阴极LED发光数码管组成。本系统是

三位半数字电压表,三位半是指十进制数0000~1999。所谓3位是指个位、十位、百位,其数字范围均为0~9,而所谓半位是指千位数,它不能从0变化到9,而只能由0变到l,即二值状态,所以称为半位。 各部分的功能如下: 三位半A/D转换器(MC14433):将输入的模拟信号转换成数字信号。基准电源(MC1403):提供精密电压,供A/D 转换器作参考电压。 译码器(MC4511):将二—十进制(BCD)码转换成七段信号。 驱动器(MC1413):驱动显示器的a,b,c,d,e,f,g七个发光段,驱动发光数码管(LED)进行显示。 显示器:将译码器输出的七段信号进行数字显示,读出A/D转换结果。工作过程如下: 三位半数字电压表通过位选信号DS1~DS4进行动态扫描显示,由于MC14433电路的A/D转换结果是采用BCD码多路调制方法输出,只要配上一块译码器,就可以将转换结果以数字方式实现四位数字的LED 发光数码管动态扫描显示。DS1~DS4输出多路调制选通脉冲信号。DS 选通脉冲为高电平时表示对应的数位被选通,此时该位数据在Q0~Q3端输出。每个DS选通脉冲高电平宽度为18个时钟脉冲周期,两个相邻选通脉冲之间间隔2个时钟脉冲周期。DS和EOC的时序关系是在EOC 脉冲结束后,紧接着是DS1输出正脉冲。以下依次为DS2,DS3和DS4。其中DS1对应最高位(MSD),DS4则对应最低位(LSD)。在对应DS2,DS3和DS4选通期间,Q0~Q3输出BCD全位数据,即以8421码方

数字万能表的使用方法

数字万能表的使用方法 Revised as of 23 November 2020

数字万能表的使用方法 一、电压的测量 二、1、的测量,如电池、随身听电源等。首先将黑表笔插进“com”孔,红表笔插进“V Ω ”。把旋钮选到比估计值大的量程(注意:表盘上的数值均为最大量程,“V-”表示档,“V~”表示档,“A”是电流档),接着把表笔接电源或电池两端;保持接触稳定。数值可以直接从显示屏上读取,若显示为“1.”,则表明量程太小,那么就要加大量程后再测量工业电器。 三、如果在数值左边出现“-”,则表明表笔极性与实际电源极性相反,此时红表笔接的是负极。 2、的测量。表笔插孔与的测量一样,不过应该将旋钮打到交流档“V~”处所需的量程即可。无正负之分,测量方法跟前面相同。 3、无论测交流还是直流电压,都要注意人身安全,不要随便用手触摸表笔的金属部分。 4、二、电流的测量 5、1、直流电流的测量。先将黑表笔插入“COM”孔。若测量大于200mA的电流,则要将红表笔插入“10A”插孔并将旋钮打到直流“10A”档;若测量小于200mA的电流,则将红表笔插入“200mA”插孔,将旋钮打到直流200mA以内的合适量程。调整好后,就可以测量了。将万用表串进电路中,保持稳定,即可读数。若显示为“1.”,那么就要加大量程;如果在数值左边出现“-”,则表明电流从黑表笔流进万用表。

6、2、的测量。测量方法与1相同,不过档位应该打到交流档位,电流测量完毕后应将红笔插回“VΩ”孔,若忘记这一步而直接测电压,哈哈!你的表或电源会在“一缕青烟中上云霄”--报废! 7、三、 8、将表笔插进“COM”和“VΩ”孔中,把旋钮打旋到“Ω”中所需的量程,用表笔接在电阻两端金属部位,测量中可以用手,但不要把手同时两端,这样会影响测量精确度的--人体是电阻很大但是有限大的导体。读数时,要保持表笔和电阻有良好的接触;注意单位:在“200”档时单位是“Ω”,在“”到“200K“档时单位为“KΩ”,“2M”以上的单位是“MΩ”。 9、四、二极管的测量 10、可以测量发光二极管,……测量时,表笔位置与电压测量一样,将旋钮旋到“”档(如图所示);用红表笔接二极管的正极,黑表笔接负极,这时会显示二极管的。的压降是左右,普通硅整流管(1N4000、1N5400系列等)约为,发光二极管约为~。调换表笔,显示屏显示“1.”则为正常,因为二极管的反向电阻很大,否则此管已被击穿。 五、三极管的测量 六、表笔插位同上;其原理同二极管。先假定A脚为基极,用黑表笔与该脚相接,红表笔与其他两脚分别接触其他两脚;若两次读数均为左右,然后再用红笔接A脚,黑笔接触其他两脚,若均显示"1",则A脚为基极,否则需要重新测量,且此管为PNP管。那么集电极和发射极如何判断呢数字表不能像指针表那样利用指针摆幅来判断,那怎么办呢我们可以利用“hFE”档来判断:先将档位打到“hFE”档,可以看到档位旁有一排小插孔,分为

用数字万用表测电容

用数字万用表的欧姆档, 测电容:用电阻档,根据电容容量选择适当的量程,并注意测量时对于电解电容黑表笔要接电容正极。①、估测微波法级电容容量的大小:可凭经验或参照相同容量的标准电容,根据指针摆动的最大幅度来判定。所参照的电容不必耐压值也一样,只要容量相同即可,例如估测一个100μF/250V的电容可用一个100μF/25V的电容来参照,只要它们指针摆动最大幅度一样,即可断定容量一样。②、估测皮法级电容容量大小:要用R×10kΩ档,但只能测到1000pF以上的电容。对1000pF或稍大一点的电容,只要表针稍有摆动,即可认为容量够了。 ③、测电容是否漏电:对一千微法以上的电容,可先用R×10Ω档将其快速充电,并初步估测电容容量,然后改到R×1kΩ档继续测一会儿,这时指针不应回返,而应停在或十分接近∞处,否则就是有漏电现象。对一些几十微法以下的定时或振荡电容(比如彩电开关电源的振荡电容),对其漏电特性要求非常高,只要稍有漏电就不能用,这时可在R×1kΩ档充完电后再改用R×10kΩ档继续测量,同样表针应停在∞处而不应回返。 首先将万用表打到测试二极管端(蜂鸣端),用万用表的红表笔接触三极管的其中一个管脚,而用万用表另外的那支表笔去测试其余的管脚,直到测试出如下结果: 1、如果三极管的黑表笔接其中一个管脚,而用红表笔测其它两个管脚都导通有电压显示,那么此三极管为PNP三极管,且黑表笔所接的脚为三极管的基极B,用上述方法测试时其中万用表的红表笔接其中一个脚的电压稍高,那么此脚为三极管的发射极E,剩下的电压偏低的那个管脚为集电极C。 2、如果三极管的红表笔接其中一个管脚,而用黑表笔测其它两个管脚都导通有电压显示,那么此三极管为NPN三极管,且红表笔所接的脚为三极管的基极B,用上述方法测试时其中万用表的黑表笔接其中一个脚的电压稍高,那么此脚为三极管的发射极E,剩下的电压偏低的那个管脚为集电极C。

三位半数字万用表设计

河北建筑工程学院 课程设计报告 课程名称:电子技术综合课程设计 题目名称: 3位半数字万用表设计 学院:电气工程学院 专业:电子信息工程 班级:电子 132 学号: 2013315202 学生姓名:李天明 指导教师:魏建新 职称:高级实验师 成绩: 2015年7 月 12日

一、摘要 万用表结构简单、便于携带、使用方便、用途多样、量程范围广。它是维修电子设备和调试电路的重要工具,是电子工程技术人员最常用的一种测量仪表。设计目的是培养独立思考和创新意识,以及动手调试组装能力和分析解决问题的能力。通过对mc14433的设计,检验对基础知识的掌握程度。 二、关键字 1、三位半A/D转换器MC14433 在数字仪表中,MC14433电路是一个低功耗三位半双积分式A、D转换器。和其它典型的双积分A/D转换器类似,MC14433A/D转换器由积分器、比较器、计数器和控制电路组成。如果必要设计应用者可参考相关参考书。使用MC14433时只要外接两个电阻(分别是片内RC 振荡器外接电阻和积分电阻RI)和两个电容(分别是积分电容CI和自动调零补偿电容C0)就能执行三位半的A/D转换。 MC14433内部模拟电路实现了如下功能:(1)提高A/D 转换器的输入阻抗,使输入阻抗可达l00M僖陨希唬?2)和外接的RI、CI构成一个积分放大器,完成V /T 转换即电压-时间的转换;(3)构造了电压比较器,完成“0”电平检出,将输入电压与零电压进行比较,根据两者的差值决定极性输出是“1”还是“0”。比较器的输出 用作内部数字控制电路的一个判别信号;(4)与外接电容器C0构成自动调零电路。 图 1 MC14433原理框图

相关主题
文本预览
相关文档 最新文档