当前位置:文档之家› 材料科学与工程进展(1)

材料科学与工程进展(1)

材料科学与工程进展(1)
材料科学与工程进展(1)

材料科学与工程进展

2019.04.14

——多孔材料1、在新能源领域中多孔材料有哪些?关注其什么特点?

答:在新能源领域方面,多孔材料常在锂离子电池的电极材料中有较多的应用,比如最常见的有多孔金属材料——泡沫镍电极,主要因为泡沫镍具有很大的比表面积,它在电化学中被利用来制造电化学电极,可以大大提高电化学反应过程中能量的释放。同时还有多孔碳电极材料,主要由于多孔碳材料由于具有高的电导率、酸碱及水热稳定性强、比表面积大和孔结构发达等特点而被广泛用作电极材料。

在自己最近关于水污染控制的研究课题中,关注比较多的一种多孔材料就是多孔陶瓷材料,多孔陶瓷在水污染控制方面的应用主要是将其作为过滤材料,利用其截留、吸附、表面络合、离子交换等作用机理。同时由于多孔陶瓷材料具有相对密度小、比表面积大、热导率低、比强度高及吸附性能好等特性,与一般多孔材料相比还具有化学稳定性好、机械强度和刚度高、耐热性佳、孔隙率高、体积密度小、自身洁净状态好,无毒无味、无异物脱落、不会产生二次污染等优点。

2、常用的多孔材料的制备方法?如何控制孔结构?

答:多孔材料的制备方法比较多,针对不同的材料有不同的制备方法。

对于目前多孔泡沫金属的制备工艺有十几种,其中一部分与制备泡沫高分子材料的工艺方法相近,还有一些与金属材料的传统加工方法有所相近,这些方法有发泡法、铸造法、烧结法和沉积法。其中发泡法是制备闭孔泡沫金属材料的常用方法也是较为成熟的泡沫金属材料制备方法,其基本原理是在液态金属中通入气体或加入发泡剂产生多孔结构,所以可以通过改变发泡剂的种类、数量来控制孔的结构;铸造法的基本原理是提供一定形状和空隙率的模具,然后将液态金属注入模具中,待冷却凝固后再用一定的方法将模具去除,所以不同的模具可以产生不同的孔结构。

1

对于多孔陶瓷材料最常用的制备方法有发泡法、添加造孔剂法、固态烧结法、溶胶-凝胶法、微波烧结,同时还可以烧结具有孔道结构的原料制备多孔陶瓷。发泡法是向陶瓷组分中添加有机或无机化学物质,在处理期间形成挥发性气体,产生泡沫,经干燥和烧成制得多孔陶瓷(包括网眼型和泡沫型两种);添加造空剂法通过在陶瓷配料中添加造孔剂,利用这些造孔剂在高温下燃尽或挥发而在陶瓷体中留下孔隙,造孔剂种类和用量的选择制得形状复杂、气孔结构各异的多孔制品;最新的冷冻干燥工艺首先用于制备各种高活性超微离子,现在这种方法也应用于制备多孔陶瓷,该工艺通过控制金属盐溶液的冷冻方向来控制孔的结构以获得了方向性极好、气孔率很高的多孔陶瓷。

——石墨烯3、根据微机械法的原理,其他材料的薄片是否也能由此制备,有哪些?

答:微机械剥离是一种传统的制备薄片材料的方法,它通过使用胶带对层状结构块体进行剥离。这种方法最初是通过胶带的机械力来削弱块状晶体的层间范德瓦耳斯力的,因为这并不会破坏面内的共价键,因此可以得到单层或多层的二维晶体。即使不同材料的成分和晶体结构有差别,但还是可以将它们分为两大类别:层状和非层状材料。对于层状材料来说,每一层中的原子通过相互间强烈的化学键相连接,同时层间通过较弱的范德瓦尔斯力结合组成块状晶体。

石墨就是典型的层状材料。除了石墨外,还有很多其他层状材料,例如六方氮化硼(h-BN)、过渡金属硫化物、石墨氮化碳、硅烯、黑磷、过渡金属氧化物和层状双氢氧化物等。这些物质的层状结构决定了它们可以通过自上而下的剥离方法得到超薄二维纳米片,所以这些材料的薄片可以根据微机械法的原理制备。

2

4、根据液相剥离法的原理,如何在制备其他材料的薄片时,控制其厚度?

答:石墨烯的液相剥离法将是将石墨分散到特定的溶剂或表面活性剂中,通过超声波的能量将单层或多层石墨稀从石墨表面直接剥离,得到石墨烯分散液,保持了石墨烯完整的形貌和性能,可在多种环境和不同的基体上沉积石墨烯。

可以看出在制备一些层状材料时,通过研究在液相剥离石墨烯薄片时,控制其厚度的方法来控制其他薄片的厚度。所以,可以根据超声波辅助剥离的机理,比如超声波功率、超声时间等因素的影响,通过机理控制所制备石墨烯片层的厚度和大小,来控制其他材料的薄片厚度。同时,也可以通过改变材料的溶液浓度或者溶剂的种类来控制其厚度。

3

材料科学与工程学科的发展历程和趋势

材料科学与工程学科发展历程和趋势 摘要:本文结合国内几所高校材料学科的具体实例,综述了材料科学与工程学科的国内外发展的历史进程,讨论了材料科学与工程学科的发展趋势,同时展望了材料科学与工程学科在未来的发展前景。 关键词:材料科学与工程,发展历程,趋势 Abstract In this paper,on the basis of practice of materials science and engineering discipline in several domestic universities, the development process of materials science and engineering at home and abroad were reviewed, and the development trend of this discipline were discussed. Meanwhile, the prospect of this subject in the future were prospected. Keywords:materials science and engineering,development process,trend 1 引言 上个世纪70年代以来,人们把信息、材料和能源作为社会文明的支柱。80年代又把新材料、信息技术和生物技术并列为新技术革命的重要标志。随着科学技术的高速发展,新技术、新产品及新工艺对新材料的要求越来越强烈,也促进了当代材料科学技术的飞速发展。现在,材料学科及教育的重要性已被人们认识,国内外许多工科院校及综合性大学都相继成立了材料科学与工程学院(系)。 2 材料科学与工程学科发展历程 “材料科学”这个名词在20世纪60年代由美国学者首先提出。1957年,苏联人造地球卫星发射成功之后,美国政府及科技界为之震惊,并认识到先进材料对于高技术发展的重要性,于是一些大学相继成立了十余个材料科学研究中心,从此,“材料科学”这一名词开始被人们广泛使用。 材料学科的发展过程遵循了现代科学发展的普遍规律,也是从细分走向综合。各门材料学科通过相互交叉、渗透、移植,由细分最终走向具有共同理论和技术基础的全材料科学[1]。20世纪40年代以前,基础科学和工程之间的联系并不十分紧密。在20世纪20年代固体物理和材料工程两学科是分离的,到40年代两学科才有交叉。从60年代初开始出现了材料科学,到了70年代,材料科学和材料工程的学科内涵大部分重叠,材料科学兼备自然科学和应用科学的属性,故“材料科学与工程”(MSE)作为一个大学科逐步为科技界和教育界所接受[2]。 2.1 国外材料科学与工程学科发展历程 美国西北大学M.E.Fine教授等人首先于20世纪60年代初提出了材料科学与 工程(MSE)这一概念。在上20世纪60年代以前,国内外高校均没有明确完整的MSE教育。此时,材料科学与技术人才的培养分属冶金、化工或机械等专业。从60年代初起,欧美等国家高校中冶金、机械或化工等与材料有关的系或相关的专业及学科开始改设“材料科学与工程系”、“材料科学系”、“材料工学系”。至80年代中后期,欧美等国大部分高校已完成此项工作。这种教育符合材料科学技术发展趋势。近年来,美国与欧洲在材料教育方面的最显著特点就是把材料科学与工程看作是一门学科。在大学不再需要专门的材料主题。这些材料不再是冶金、陶瓷或电子材料学,而统称为材料,材料教育涉及的范围包括金属、陶瓷、高分子、

材料科学与工程概述

第1节材料科学与工程概述 1.1.1材料科学的内涵 材料科学就是从事对材料本质的发现、分析认识、设计及控制等方面研究的一门科学。其目的在于揭示材料的行为,给予材料结构的统一描绘或建立模型,以及解释结构与性能之间的内在关系。材料科学的内涵可以认为是由五大要素组成,他们之间的关联可以用一个多面体来描述(图1-1)。其中使用效能是材料性能在工作状态(受力、气氛、温度)下的表现,材料性能可以视为材料的固有性能,而使用效能则随工作环境不同而异,但它与材料的固有性能密切相关。理论及材料与工艺设计位于多面体的中心,它直接和其它5个要素相连,表明它在材料科学中的特殊地位。 材料科学的核心内容是结构与性能。为了深入理解和有效控制性 能和结构,人们常常需要了解各种过程的现象,如屈服过程、断裂 过程、导电过程、磁化过程、相变过程等。材料中各种结构的形成 都涉及能量的变化,因此外界条件的改变也将会引起结构的改变, 从而导致性能的改变。因此可以说,过程是理解性能和结构的重要 环节,结构是深入理解性能的核心,外界条件控制着结构的形成和 过程的进行。 材料的性能是由材料的内部结构决定的,材料的结构反映了材料 的组成基元及其排列和运动的方式。材料的组成基元一般为原子、 离子和分子等,材料的排列方式在很大程度上受组元间结合类型的 影响,如金属键、离子键、共价键、分子键等。组元在结构中不是 静止不动的,是在不断的运动中,如电子的运动、原子的热运动等。 描述材料的结构可以有不同层次,包括原子结构、原子的排列、相 结构、显微结构、结构缺陷等,每个层次的结构特征都以不同的方 式决定着材料的性能。 物质结构是理解和控制性能的中心环节。组成材料的原子结构,电子围绕着原子核的运动情况对材料的物理性能有重要影响,尤其是电子结构会影响原子的键合,使材料表现出金属、无机非金属或高分子的固有属性。金属、无机非金属和某些高分子材料在空间均具有规则的原子排列,或者说具有晶体的格子构造。晶体结构会影响到材料的诸多物理性能,如强度、塑性、韧性等。石墨和金刚石都是由碳原子组成,但二者原子排列方式不同,导致强度、硬度及其它物理性能差别明显。当材料处于非晶态时,与晶体材料相比,性能差别也很大,如玻璃态的聚乙烯是透明的,而晶态的聚乙烯是半透明的。又如某些非晶态金属比晶态金属具有更高的强度和耐蚀性能。此外,在晶体材料中存在的某些排列的不完整性,即存在结构缺陷,也对材料性能产生重要影响。 我们在研究晶体结构与性能的关系时,除考虑其内部原子排列的规则性,还需要考虑其尺寸的效应。从聚集的角度看,三维方向尺寸都很大的材料称为块体材料,在一维、二维或三维方向上尺寸变小的材料叫做低维材料。低维材料可能具有块体材料所不具备的性质,如零维的纳米粒子(尺寸小于100nm)具有很强的表面效应、尺寸效应和量子效应等,使其具有独特的物理、化学性能。纳米金属颗粒是电的绝缘体和吸光的黑体。以纳米微粒组成的陶瓷具有很高的韧性和超塑性。纳米金属铝的硬度为普通铝的8倍。具有高强度特征的一维材料的有机纤维、光导纤维,作为二维材料的金刚石薄膜、超导薄膜等都具有特殊的物理性能。 1.1.2 材料科学的确立与作用 (1)材料科学的提出 “材料科学”的明确提出要追朔到20世纪50年代末。1957年10月4日前苏联发射了第一颗人造卫星,重80千克,11月3日发射了第二颗人造卫星,重500千克。美国于1958年1月31日发射的“探测者1号”人造卫星仅8千克,重量比前苏联的卫星轻得多。对此美国有关部门联合向总统提出报告,认为在科技竞争中美国之所以落后于苏联,关键在先进材料的研究方面。1958年3月18日总统通过科学顾问委员会发布“全国材料规划”,决定12所大学成立材料研究实验室,随后又扩大到17所。从那时起出现了包括多领域的综合性学科--“材料科学与工程学科”。 (2)材料科学的形成 材料科学的形成主要归功于如下五个方面的基础发展: 各类材料大规模的应用发展是材料科学形成的重要基础之一。18世纪蒸汽机的发明和19世纪电动机的发明,使材料在新品种开发和规模生产等方面发生了飞跃,如1856年和1864年先后发明了转炉和平炉炼钢,大大促进了机械制造、铁路交通的发展。随之不同类型的特殊钢种也相继出现,如1887年高锰钢、1903年硅钢及1910年镍铬不锈钢等,与此同时,铜、铅、锌也得到大量应用,随后铝、镁、钛和稀有金属相继问世。20世纪初,人工合成高分子材料问世,如1909年的酚醛树脂(胶木),1925年的聚苯乙烯,1931年的聚氯乙烯以及1941年的尼龙等,发展十分迅速,如今世界年产量在1亿吨以上,论体积产量已超过了钢。无机非金属材料门类较多,一直占有特殊的地位,其中一些传统材料资源丰富,性能价格比在所有材料中最有竞争能力。20世纪中后期,通过合成原料和特殊制备方法,制造出一系列具有不可替代作用的功能材料和先进结构材料。如电子陶瓷、铁氧体、光学玻璃、透明陶瓷、敏感及光电功能薄膜材料等。先进结构

材料科学进展

石墨烯制备的研究进展及其应用领域 摘要:石墨烯是目前发现的唯一存在的二维自由态原子晶体,是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2杂化碳的基本结构单元。石墨烯因具有独特的结构和优异的性能,吸引了不同领域科学家的关注,极具应用前景。近来石墨烯制备方法的研究取得了很大的发展,出现了许多关于石墨烯制备的新工艺。大量引用近几年的参考文献,综述了石墨烯的结构和性能并介绍了一些制备方法,主要包括机械剥离法、化学气相沉积法等。并对未来应用领域的发展趋势进行了展望。 关键词: 石墨烯; 制备方法; 发展 ABSTRCT: Graphene is the only two-dimensional free atomic crystal found at present, which is the basic structure unit of the sp2 hybrid carbon, such as zero-verfullerene, one-dimensional carbon nanotube, and three-dimensional phase graphite. Because of its unique structure and excellent performance, graphene has attracted the attention of scientists from different fields. Recent research on the preparation of graphene has made great progress, and many new processes have been developed for graphene preparation. Reference of a large number of references in recent years, summarizes the structure and properties of graphene and introduces some preparation methods, mainly including the mechanical stripping method, chemical vapor deposition method, oxidation - reduction method etc. The development trend of future applications is prospected Keywords: graphene; Preparation method; Development

材料科学与工程A卷[1][1]

重庆大学试卷 教务处08版 第 1 页 共 1 页 重庆大学《材料科学与工程基础》课程试卷 课程试卷juan 2007 ~2008 学年 第 2 学期 开课学院: 材料 课程号: 13014040 考试日期: 2008-6-16 考试方式: 考试时间: 100 分题 号 一 二 三 四 五 六 七 八 九 十 总 分 得 分 注:1.大标题用四号宋体、小标题及正文推荐用小四号宋体;2.按A4纸缩小打印 一、 名词解释(3分/每小题,共15分) 马氏体,淬透性,加工硬化,调质,过冷现象, 二、 铁碳相图(共25分) (1)标出如图(1)~(5)区域的组织组成物(5分) (2)简述含碳1.2%钢的平衡结晶过程,并绘出室温下的平衡组织示意图(5 分) (3)计算此钢在室温下的相组成物的重量百分比(5分) (4)计算此钢在室温下的组织组成物的重量百分比(5分) (5)某铁碳合金平衡组织由珠光体和铁素体组成,且珠光体和铁素体各占 50%,求该合金的含碳量(5分) 三、 简答题(共45分) (1)晶体与非晶体在结构和性能上的主要区别是什么?(6分) (2)钢中加入合金元素的主要目的与作用是什么?(7分) (3)晶体缺陷有哪三类,各至少举一列说明。(6分) (4)共析钢加热形成奥氏体时,要经历哪4个基本过程?(6分) (5)淬火马氏体分为哪两类,组织性能各有何特点?(7分) (6)高速钢的热处理有什么特点?(6分) (7)简述塑性变形对金属的组织与性能的影响(7) 四、 填空题(共15分) 从下列牌号中选出相应用途的材料,并写出热处理状态(如:淬火+低温回火)及含碳量(“—”表示不需要填写)(15分) Q235A, 20CrMnTi, 40Cr, 60Si2Mn, GCr15, T10, W18Cr4V , 3Cr2W8V , 1Cr18Ni9Ti, HT200, 用途 牌号 热处理状态 含碳量(%) 建筑钢筋 — — 手工锯条 家用餐具 — — 高速切削刀具 车床基座 — ≧ 齿轮 汽车板簧 机床主轴 热压模具 滚动轴承 命 题人:徐幸梓、 组题人:韩志范 审 题 人: 命 题时间: 教务处制 学院 专业、班 年级 学号 姓名 公平竞争、诚实守信、严肃考纪、拒绝作弊 封 线 密 A B C D E F N G S P K Q J H w c (%) Fe 6.69 (1) (2) (3) (4) (5)

材料科学与工程网址大全

中国材料研究学会 国际材料研究学会联合会成员,中国材料科学与工程领域国家级学会。https://www.doczj.com/doc/8713952249.html, 中国硅酸盐学会 https://www.doczj.com/doc/8713952249.html, 中国颗粒学会 含学会建设,学会会员,学会活动,科学普及。 https://www.doczj.com/doc/8713952249.html, 中国科学院纳米科技网 从事纳米科技研究、开发的研究单位。 https://www.doczj.com/doc/8713952249.html, 纳米科技基础数据库 中科院数据库网站,提供国内外纳米科技基础数据研究信息的平台。https://www.doczj.com/doc/8713952249.html, 纳米科技网 含纳米新闻、纳米科技、纳米论坛、纳米产业等内容。https://www.doczj.com/doc/8713952249.html, 纳米科技网 介绍纳米科技。 https://www.doczj.com/doc/8713952249.html, 电子材料大市场 含电子材料新闻、资讯、科技、论文、产业等内容。 https://www.doczj.com/doc/8713952249.html, 浙江纳米 提供纳米行业信息、科研发展动态。 https://www.doczj.com/doc/8713952249.html, 中国超硬材料网 介绍人造金刚石原料、人造金刚石及其制品的行业信息。 https://www.doczj.com/doc/8713952249.html, 中国电子材料网 提供信息产业基础产品及材料信息。 https://www.doczj.com/doc/8713952249.html, 中国粉体工业信息网 介绍超细粉体研究、动态信息与工程技术开发。 https://www.doczj.com/doc/8713952249.html, 中国功能材料网 主要报导中国功能材料领域的现状、动态与信息。 https://www.doczj.com/doc/8713952249.html, 材料复合新技术信息门户 提供材料学科的各类文献资源以及导航。 https://www.doczj.com/doc/8713952249.html, 材料与测试网 提供材料与测试领域的信息服务。

https://www.doczj.com/doc/8713952249.html, 纳米数据中心 提供纳米科研成果信息、资源,查询、学术交流的平台。 https://www.doczj.com/doc/8713952249.html, 奈米科学网 提供纳米科学相关新闻、活动、文献。 https://www.doczj.com/doc/8713952249.html,.tw 中国玻璃工业网 提供行业信息。 https://www.doczj.com/doc/8713952249.html, 中国激光玻璃 中国科学院上海光学精密机械研究所激光玻璃研究室,批量制造激光玻璃及相关玻璃的研究生产机构。https://www.doczj.com/doc/8713952249.html, 中国纳米网 纳米技术的行业信息。 https://www.doczj.com/doc/8713952249.html, 中国银 专门介绍纳米银、纳米技术、胶银、银溶液等产品及应用。 https://www.doczj.com/doc/8713952249.html, 材料科学 介绍材料科学的基础知识。 https://www.doczj.com/doc/8713952249.html,/bjkpzc/kjqy/clkx/index.shtml 材料科学 关于材料科学各方面的介绍。 https://www.doczj.com/doc/8713952249.html,/gkjqy/clkx/index.htm 材料索引 提供世界各地25000多种材料的目录。 https://www.doczj.com/doc/8713952249.html,/works/iii 放电等离子烧结 介绍放电等离子烧结工艺、机制及原理,提供国外放电等离子烧结相关研究部门的研究应用。https://www.doczj.com/doc/8713952249.html, 广州市纳米技术信息中心 含新闻中心,广州纳米科技,纳米产业,纳米人才等。 https://www.doczj.com/doc/8713952249.html, 贵州新材料信息网 材料新闻与科研动态,及贵州材料基地介绍。 https://www.doczj.com/doc/8713952249.html, 华中科技大学材料科学与工程学院吴树森研究室 主要研究领域是材料成形工艺技术,材料成形过程的计算机模拟等。 https://www.doczj.com/doc/8713952249.html, 华中师范大学纳米研究院(实验室) 承担完成了多项国家级重大项目。 https://www.doczj.com/doc/8713952249.html,/spm 晶体论坛

材料科学与工程专业简介

材料科学与工程专业简介 材料科学与工程专业简称材料专业。 大千世界中的材料无所不包、无处不在。吃、穿、住、行,每个人每天会碰到诸如金属、橡胶、磁性、光电等众多材料,小到一根针、一张纸、一个塑料袋、一件衣服,大到交通工具、医疗器械、工程建筑、信息通讯、航天航空,处处都有材料科学的身影。 材料科学与工程是一个涉及材料学、工程学和化学等方面的较宽口径专业。该专业以材料学、化学、物理学为基础,主要研究的是材料成分、结构、加工工艺与其性能和应用。事实上,人类文明发展史,就是一部如何更好地利用材料和创造材料的历史,材料的不断创新和发展,也极大地推动了社会经济的发展。 材料科学与工程专业依据各地区的发展历史,专业教学的侧重点略有不同。比如,材料专业中材料可以分为金属、无机非金属、高分子材料等。辽宁省各个高校由于历史沿乘的原因,多以金属材料为主。金属材料包括钢铁、有色金属及新型金属材料。 各高校材料专业学生,在大学二年级下学期会接触到本专业课程。主要的专业课程有:材料科学基础、金属学、金属学与热处理、材料力学性能等。 在专业课学习之前,需要学习一些涉及化学、机械的相关课程。 比如:工程制图、机械设计、电工电子技术、普通化学、物理化学等。

材料专业的学生除了需要掌握材料的相关知识和技能,还需掌握机械、电子等知识及技能。 材料专业学生除了要掌握课程内容外,还需掌握建模软件、有限元分析软件、科学分析软件等工具。 就业去向 材料科学与工程专业的毕业生多从事工艺、技术、质检、检验、研发等工作。除此之外,还有从事采购、高精尖大型设备的技术售后等工作。职业发展较好,由于材料专业的特点,使得材料专业的用处存在于产品的研发、性能的保障、产品的质量检验等重要的核心环节中,从业人员可快速展现自己的专业优势。

材料科学与工程基础习题答案 (1)

第一章 原子排列与晶体结构 1. [110], (111), ABCABC…, 0.74 , 12 , 4 , a r 42= ; [111], (110) , 0.68 , 8 , 2 , a r 43= ; ]0211[, (0001) , ABAB , 0.74 , 12 , 6 , 2a r = 。 2. 0.01659nm 3 , 4 , 8 。 3. FCC , BCC ,减少 ,降低 ,膨胀 ,收缩 。 4. 解答:见图1-1 5. 解答:设所决定的晶面为(hkl ),晶面指数与面上的直线[uvw]之间有hu+kv+lw=0,故有: h+k-l=0,2h-l=0。可以求得(hkl )=(112)。 6 解答:Pb 为fcc 结构,原子半径R 与点阵常数a 的关系为a r 42 = ,故可求得a =0.4949×10-6 mm 。则(100)平面的面积S =a 2 = 0.244926011×0-12mm 2,每个(100)面上的原子个数为2。 所以1 mm 2上的原子个数 s n 1 = =4.08×10 12 。 第二章 合金相结构 一、 填空 1) 提高,降低,变差,变大。 2) (1)晶体结构;(2)元素之间电负性差;(3)电子浓度 ;(4)元素之间尺寸差别 3) 存在溶质原子偏聚 和短程有序 。 4) 置换固溶体 和间隙固溶体 。 5) 提高 ,降低 ,降低 。 6) 溶质原子溶入点阵原子溶入溶剂点阵间隙中形成的固溶体,非金属原子与金属原子半径的比值大于0.59时形成的复杂结构的化合物。 二、 问答 1、 解答: α-Fe 为bcc 结构,致密度虽然较小,但是它的间隙数目多且分散,间隙半径很小,四面体间隙半径为0.291Ra ,即R =0.0361nm ,八面体间隙半径为0.154Ra ,即R =0.0191nm 。氢,氮,碳,硼由于与α-Fe 的尺寸差别较大,在α-Fe 中形成间隙固溶体,固溶度很小。α-Fe 的八面体间隙的[110]方向R=0.633 Ra ,间隙元素溶入时只引起一个方向上的点阵畸变,故多数处于α-Fe 的八面体间隙中心。B 原子较大,有时以置换方式溶入α-Fe 。 由于γ-Fe 为fcc 结构,间隙数目少,间隙半径大,四面体间隙半径为0.225 Ra ,即R =0.028nm ,八面体间隙半径为0.414 Ra ,即R =0.0522nm 。氢,氮,碳,硼在γ-Fe 中也是形成间隙固溶体,其固溶度大于在α-Fe 中的固溶度,氢,氮,碳,硼处于γ-Fe 的八面体间隙中心。 2、简答:异类原子之间的结合力大于同类原子之间结合力;合金成分符合一定化学式;低于临界温度(有序化温度)。 第三章 纯金属的凝固 1. 填空 1. 结构和能量。 2 表面,体积自由能 , T L T r m m ?-= σ2, ()2 2 3316T L T G m m k ??=?σπ。 3 晶核长大时固液界面的过冷度。 4 减少,越大,细小。 5. 快速冷却。 二、 问答 1 解答: 凝固的基本过程为形核和长大,形核需要能量和结构条件,形核和长大需要过冷度。细化晶粒的基本途径可以通过加大过冷度,加入形核剂,振动或搅拌。 2 解答: 根据金属结晶过程的形核和长大理论以及铸锭的散热过程,可以得出通常铸锭组织的特点为最外层为细小等轴晶,靠内为柱状晶,最内层为粗大等轴晶。 3 解答: 液态金属结晶时,均匀形核时临界晶核半径r K 与过冷度?T 关系为 T L T r m m ?-= σ2,临界形核功?G K 等于 ()22 3316T L T G m m k ?? =?σπ。异质形核时固相质点可作为晶核长大,其临界形核功较小, ()k m m k G T L T G ?+-=??+-=?4cos cos 323164cos cos 3232 2 33* θθσπθθ,θ为液相与非均匀形核核 心的润湿角。 形核率与过冷度的关系为: ]exp[)( kT G kT G C N k A ?+?-=,其中N 为形核率,C 为常数,ΔG A 、ΔG k 分别表示形核时原子 扩散激活能和临界形核功。在通常工业凝固条件下形核率随过冷度增大而增大。

《材料科学进展》课程学习心得

《材料科学进展》课程学习心得 在大学里我们自由,轻松,我们活的很自得,完全摆脱了高考时的压力。但在这种环境中我们也会对今后的路该怎么走、毕业后干什么而惆怅,对所学专业不甚了解,大有不知路在何方的迷茫。但在几个月的专业基础课程学习后,我的心境豁然开朗了,对自己的未来有了明确的目标。也许大一对我来说就是一个过渡的过程,我们现在的专业课不再是高中的那种应试了,大学我们需要的是一种质的提升,我们需要学会自己去学习、去专研。 虽然这学期的专业课是各位老师从大体上介绍相关知识的,但这却让我受益匪浅。**老师给我们详细的讲了一些基础知识,主要有有以下内容:材料的定义、材料的分类、材料的结构、材料科学与工程的四个基本要素、与材料相关的仪器与设备、金属与塑料的加工方法、以及四种热处理工艺等,最后一节课他还详细的给我们介绍了复合材料的知识。 **老师的课让我明确了今后专业需要学习的内容,对材料相关知识有了初步的认识。但在谢炜老师的课上我觉得最大的收获是让我学会了如何自主学习,他每节课都会留一至两个问题,让我们自己去找相关资料从而找到答案。在自己去找答案的过程中,经常会发现其它一些新知识以及老师没有讲到的知识,这也让我知道了要学好专业课光靠课堂上学习是远远不够的,老师讲的内容不可能面面俱到,必须从课后去查找一些资料来补充,这样才能把它学好、学精。

***老师的课主要给我们讲了有关金属合金方面的知识。主要内容是镁、铝、铜等金属合金的一些物理性质,如密度、熔点、延展性等。他还给我们详细的讲了一些与我们专业有关的制图软件,如CAD、Prole、UG,其中prole是倾向于塑料模具三维制图的软件,而UG更适合金属材料的制图。在他的课上我最大的收获是明确了我以后从事工作,那就是模具设计。而作为一个模具设计者必须掌握一些制图软件,因此我打算在大一把CAD学好,大二把Prole、UG学好,多掌握一门技术多一份知识,这样对我以后的工作将有很大的帮助。 ***老师的课给我们讲了有关电磷光的一些知识,其中主要是讲红光。她给我们介绍了液晶、等离子显示屏的原理以及其优点与不足,据此她还介绍了当今更先进的可折叠显示屏。她上课的PPT几乎全部是英文,虽然其中许多都是专业术语,但经过她耐心解释我们基本上都能听懂。她的课让我对电磷光产生了浓厚的兴趣,材料竟然如此神奇,同时也让我扩展了知识面,以后学习中我会更加注意这方面的学习,增加自身的学习水平。还有让我体会到了学习英语对专业的重要性,只有学好了英语才能阅读外国的一些资料,才能了解当前材料科学领域的研究热点,学科前沿和最新进展,为今后进一步深造、材料的研究开发以及相关投资决策等打下基础。 **老师的课主要给我们讲述了他在国外的所见所闻以及结合自 己的研究讲解了相关知识。他上课认真负责并且授课幻灯片条理非常清晰简明,同时具体的实例和图片让我们有了更形象的了解。他的课让我知道原来材料还有这么多可研究的方向,并不像我以前所想的那

材料科学与工程(金属材料科学与工程)

材料科学与工程(金属材料科学与工程) Materials Science & Engineering (Metallic Materials Science & Engineering) 专业代码: 080205 学制: 4年 Speciality Code: 080205 Schooling Years: 4 years 培养目标: 培养具有良好素质,德智体全面发展的材料科学与工程方面的高级工程技术人才。 目标1:(扎实的基础知识)培养学生掌握扎实的材料科学与工程学科的基础知识,特别是金属材料的成分—加工—组织—性能之间的关系,掌握各种材料的表征方法及应用,掌握材料设计、制备、加工、检测和评价等方面的先进理论和方法。 目标2:(解决问题能力)培养学生能够创造性地利用材料科学与工程基本原理和方法解决研发和工业生产中遇到的问题。 目标3:(团队合作与领导能力)培养学生在团队中的沟通和合作能力,进而能够具备材料科学与工程领域的管理能力。 目标4:(工程系统认知能力)使学生认识到材料科学与工程在国民经济以及科学技术领域中所起的重要作用,并通过学习和实践成为解决与材料有关的理论与实际问题的人才。 目标5:(专业的社会影响评价能力)培养学生正确看待材料选择、设计和应用对人们日常生活、工商业的经济结构以及人类健康所产生的潜在影响。 目标6:(全球意识能力)培养学生能够在全球化的环境里保持清晰意识,有竞争力地、负责任地行使自己的职责。 目标7:(终身学习能力)培养具有良好素质,德智体全面发展的材料科学与工程方面的高级工程技术人才。学生毕业后既能从事各种传统材料、先进材料、特殊新材料的研制开发与应用,又能从事与制造、信息、汽车、生物、能源等领域和行业相关材料的工程设计及生产管理,具备终身学习的能力。 Educational Objectives: To become advanced engineering and technical personnel with good quality, comprehensive physical and moral qualities in the aspect of materials science and engineering.The students should be able to reach the following goals upon the completion of the degree program: Objective 1:[Foundations] To gain a solid understanding of the fundamental knowledge of materials science and engineering discipline, in particular of the composition-processing-microstructure-performance relationships in metallic materials;

材料工程进展课程论文(智能高分子)

智能高分子材料的研究进展 摘要:智能高分子材料又称机敏材料,也被称为刺激-响应型聚合物或环境敏感聚合物,是智能材料的一个重要的组成部分,已成为功能高分子研究的前沿领域。本文对一些有代表性的智能高分子材料在各个领域的研究及应用进展作了简单的综述,并展望了其发展前景。目前,具有各种智能的高分子材料在信息、电子、宇宙、海洋科学、生命科学等领域得到了应用。智能高分子材料的开发与应用孕育着新一代的技术革命。它将是21世纪使用的重要材料之一,并将促进新理论的产生和新产品的开发。 关键词:智能高分子;智能材料;复合材料;研究进展 1.智能高分子材料概述 智能高分子材料是指能够感知环境变化,通过自我判断和结论,实现指令和执行的新材料。它在模仿生命系统中同时具有感知和驱动双重功能的材料,即不仅能够感知外界环境或内部状态所发生的变化,而且能够通过材料自身的或外界的某种反馈机制,实时地将材料的一种或多种性质改变,做出所期望的具有某种响应的材料,又称机敏材料。其中环境刺激因素很多,如温度、PH值、离子、电场、磁场、溶剂、反应物、光或紫外光、应力和识别等,对这些刺激产生有效响应的智能聚合物自身性质会随之发生变化。由于它具有反馈功能,与仿生和信息密切相关,其先进的设计思想被誉为材料科学史上的一大飞跃,已引起世界各国政府和多种学科科学家的高度重视[1]。美国麻省理工学院的田中丰一教授1975年提出了“灵巧凝胶”或“智能凝胶”,迄今已过去20余年。现在各先进国家的官、产、学对此高度刺激的响应材料的研究与开发甚为关注。他们试图将生物体组织所具有的智能型刺激响应功能引入工业材料,利用智能材料节省能源并与环境协调。目前,有些开发中的智能高分子材料的应用有待理论研究的深入和拓宽,进一步改善智能高分子材料对刺激的响应特性,如响应速率、力度及可靠性等。智能高分子材料的发展日月异,有人预计21世纪可望向模糊高分子材料发展。所谓模糊材料,其刺激响应性不限于一一对应,材料本身能判断,依次发挥其调节功能,像动物的脑那样能记忆和判断。

“材料科学与工程基础”习题答案题目整合版

“材料科学与工程基础”第二章习题 1. 铁的单位晶胞为立方体,晶格常数a=0.287nm ,请由铁的密度算出每个单位晶胞所含的原子数。 ρ铁=7.8g/cm31mol 铁=6.022×1023个=55.85g 所以,7.8g/1(cm)3=(55.85/6.022×1023)X/(0.287×10-7)3cm3 X =1.99≈2(个) 2.在立方晶系单胞中,请画出: (a )[100]方向和[211]方向,并求出他们的交角; (b )(011)晶面和(111)晶面,并求出他们得夹角。 (c )一平面与晶体两轴的截距a=0.5,b=0.75,并且与z 轴平行,求此晶面的密勒指数。 (a )[211]和[100]之夹角θ=arctg 2=35.26。 或 cos θ==35.26θ=o (b ) cos θ==35.26θ=o (c )a=0.5b=0.75z=∞ 倒数24/30取互质整数(320) 3、请算出能进入fcc 银的填隙位置而不拥挤的最大原子半径。 室温下的原子半径R =1.444A 。(见教材177页) 点阵常数a=4.086A 最大间隙半径R’=(a-2R )/2=0.598A 4、碳在r-Fe (fcc )中的最大固溶度为2.11﹪(重量百分数),已知碳占据r-Fe 中的八面体间隙,试计算出八面体间隙被C 原子占据的百分数。 在fcc 晶格的铁中,铁原子和八面体间隙比为1:1,铁的原子量为55.85,碳的原子量为12.01 所以(2.11×12.01)/(97.89×55.85)=0.1002 即碳占据八面体的10%。

5、由纤维和树脂组成的纤维增强复合材料,设纤维直径的尺寸是相同的。请由计算最密堆棒的堆垛因子来确定能放入复合材料的纤维的最大体积分数。 见下图,纤维的最密堆积的圆棒,取一最小的单元,得,单元内包含一个圆(纤维)的面积。 2 0.9064==。 即纤维的最大体积分数为90.64%。 6、假设你发现一种材料,它们密排面以ABAC 重复堆垛。这种发现有意义吗?你能否计算这种新材料的原子堆垛因子? fcc 和hcp 密排面的堆积顺序分别是ABCABC……和ABAB…,如果发现存在ABACABAC……堆积的晶体,那应该是一种新的结构,而堆积因子和fcc 和hcp 一样,为0.74。 7.在FCC 、HCP 和BCC 中最高密度面是哪些面?在这些面上哪些方向是最高密度方向? 密排面密排方向 FCC{111)}<110> HCP(0001)(1120) BCC{110)}<111> 8.在铁中加入碳形成钢。BCC 结构的铁称铁素体,在912℃以下是稳定的,在这温度以上变成FCC 结构,称之为奥氏体。你预期哪一种结构能溶解更多碳?对你的答案作出解释。 奥氏体比铁素体的溶碳量更大,原因是1、奥氏体为FCC 结构,碳处于八面体间隙中,间隙尺寸大(0.414R )。而铁素体为BCC 结构,间隙尺寸小,四面体间隙0.291R ,八面体间隙0.225R ;2、FCC 的间隙是对称的,BCC 的间隙是非对称的,非对称的2

材料科学进展的心得

材料科学进展的心得 在科学技术迅猛发展的今天,材料科学、能源科学、信息科学被列为科学技术的三大支柱,其发展水平已成为一个国家综合国力的主要标志之一。材料的发展推动着人类社会的进步,奠定了人类赖以生存的基础 通过材料科学进展这门课程,我们可以从材料的发展史、分类、重要性来充分了解材料 发展史:材料经历了使用纯天然材料的级阶段,人类单纯利用火来制造材料的阶段,利用物理和化学原理合成材料的阶段,材料的复合化阶段,材料的智能化阶段 分类:1.按材料晶体状态分:单晶体、多晶体、准晶体、非晶体。 2.按化学组成分类:金属材料、无机非金属材料、高分子材料、复合材料。 3.按材料功能用途分类:结构材料、功能材料 4.按物理性质分类:导电材料、半导体材料、绝缘材料、磁性材料等等。 5. 从用途来分:又分为电子材料、航空航天材料、核材料、建筑材料、能源材料,生物材料 重要性:材料是人类生存,社会发展,科技进步的坚实基础,是现代化革命的先导,是当代三大文明支柱之一,

上世纪七十年代,人们把信息,能源,材料作为社会文明支柱,随着高技术的兴起,又把新材料与信息技术,生物技术并新革命技术的重要标志,如今,材料已成为国民经济建设,国防建设和人民群众生活的重要组成部分。 下面是我对功能材料的认识:功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。 功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。 超导材料、微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料、生物医用材料等都可称为功能材料。这些都是材料发展的主流。 尾声:通过对材料科学课程的认知,使我们懂得材料对社会的重要性,对人类发展的意义,也加深了我们对自己专业的认知,我们初步确定了我们未来的发展方向。明确了我

计算材料学进展与趋势

计算材料学进展与趋势 计算材料学是近20年来,随着计算科学与技术的飞速发展,材料科学与物理、化学、数学、工程力学诸多学科相互交叉与渗透产生的一门新兴学科。计算材料学的内涵可以粗略概括为:根据材料科学和相关科学基本原理,通过模型化与计算实现对材料制备、加工、结构、性能和服役表现等参量或过程的定量描述,理解材料结构与性能和功能之间的关系,引导材料发现发明,缩短材料研制周期,降低材料过程成本。 根据研究对象的空间和时间尺度不同,材料计算的方法也有很大差别:研究材料的电子结构的方法有基于密度泛函理论的第一原理,常见的有计算固体材料的周期性体系的能带计算方法和孤立体系如分子簇方法,这些方法主要用于求解体系的基态电子结构和性质,近年来也发展了一些用以研究含时间的或激发态的电子结构方法。第一性原理方法由于直接基于基本的物理原理而不依赖于经验参数,因而具有很强的预测性,在未来合成材料之前先预测其可能的性质,因而对材料的设计具有很强的指导意义,近年其应用得到迅速发展,如金属中合金化效应的预测、金属间化合物中合金原子占据位置的预测、缺陷复合体的电子结构与性质的预测等,但由于其计算中考虑了电子的自由度,其运算量极大,所能研究的体系的尺度很小;在原子层次上研究材料行为常常采用原子力学或分子动力学方法,这些方法考虑原子间以一定的势函数相互作用,忽略了电子的自由度,可对更大的体系进行计算模拟,并可对静态或动态的原子机制提供了有效的途径;介观层次上对体系的模拟近年来有较快的发展,如合金中的相变微观组织演化过程可采用相场动力学或原胞自动化方法,这些方法使人们能够定量地描述不同过程中的组织变化的动力学规律,探索不同因素对微观组织形成的作用;宏观层次上的计算模拟常常采用有限元和有限差分方法,这些方法已经被广泛用语解决材料工程的实际问题,可为实际工艺的设计提供定量化的指导。对于不同的过程其发生的时间尺度也是迥然不同的,相应需要采用不同的模拟方法。对于许多材料的性质,常常由几个层次的结构来决定,因而近年来将不同方法结合起来的多尺度方法受到广泛的重视。关于近年来材料模拟的全面发展和具体研究方法可参考文献(YIP S(editor). Handbook of Materials ,New York: Springer,2005)。计算材料学的最终目标是实现新材料设计和材料制备与加工相关工艺的优化。 进展 美国 在关键材料集成设计基础研究方面,美国21世纪初启动了著名的“材料加速熟化”计划,组织了数十家产学研机构,选定喷气发动机用高温金属材料和飞机用先进复合材料两大目标,针对共性基础问题和难点问题,开展计算模拟与实验验证密切结合的集成设计与研制,其总目标是加速材料熟化,使新材料从启动研究到工程应用的周期缩短1/2,总成本降低1/3。该计划列出了需重点研究的材料集成设计相关基础问题,如1跨尺度计算模拟的关联方法;2金属—金属界面结构与物理性质及环境影响;3复杂合金体系中微观组织演化动力学4多晶体塑性与应力状态的动力学描述。 美国西北大学G.B.Olson等人采用多层次计算模拟方法,发展了由纳米晶粒计算直至结构性能预测的自下而上耦合程序,先后设计出性能优异的航天飞机轴承用耐热碳钢和新型高强度飞机起落架(OLSON G https://www.doczj.com/doc/8713952249.html,putational design of

材料科学与工程一级学科.doc

学院概况 西安建筑科技大学材料与矿资学院,其前身可追溯到1956年在建筑工艺系开设的“混凝土及建筑制品工艺”专业。学院师资力量雄厚,目前共有教职工147人,其中中国工程院院士1人,教授及教授级高级工程师16人,副教授及高级工程师34人,设有陕西省“三秦学者”岗位,此外还聘有一大批国内外材料学科的专家学者为学院兼职教授。 学院目前拥有材料科学与工程、矿业工程和安全科学与工程三个一级学科,拥有材料科学与工程一级学科博士点,材料物理与化学、材料学、建筑材料、资源循环科学与工程4个二级博士点,硕士学位授予权覆盖学院全部专业。学院设有材料科学与工程博士后科研流动站。 学院下设粉体工程研究所、高温陶瓷研究所、建筑工程材料研究所、材料科学研究所、劳动安全卫生研究所和矿物资源工程研究所6个具有教学、科研和技术服务等职能的实体研究所。拥有国家干法水泥回转窑预热预分解技术研究推广中心、教育部生态水泥工程中心、国家与地方联合生态建筑材料工程技术中心、陕西省(13115)生态水泥、混凝土工程技术研究中心、陕西省新型干法水泥工程研究中心、陕西省水泥新技术推广中心、国家建材设计甲级资质、矿山设计乙级资质和陕西省建筑工程材料质量检测中心。莱钢集团、陕西尧柏集团、陕西声威集团、河南海格尔集团、济南新峨嵋、北京新奥混凝土集团有限公司等企业在我院设立了工程技术研究中心。 近年来,学院在科学研究方面取得了丰硕的成果,形成了新型干法水泥工艺理论与技术、粉体工程、新型超细粉磨技术、工业废弃物资源化、高强与高性能混凝土、陶瓷基复合材料制备技术和新型功能耐火材料研制等研究方向。发表高水平学术论文960余篇,其中三大检索收录330篇,出版专著7部,教材35部。先后获得国家科技进步二等奖1项、国家发明四等奖1项、省部级奖20余项,获国家发明专利180项,年均科研经费3000万元。与德国亚琛工业大学、澳大利亚新南威尔士大学、挪威科技大学等国外知名大学建立了友好合作关系。 学院以独特的地理条件、行业渊源,立足西部,面向全国,为国家培养了一大批新型水泥工艺及装备、耐火材料、工业废弃物资源化、高强与高性能混凝土方面的专门人才,解决了大量的工程技术关键问题,为国家经济建设和陕西地方

材料科学发展的历史

材料科学发展的历史: 材料是人类生活和生产的物质基础,是人类认识自然和改造自然的工具。人类文明曾被划分为旧石器时代、新石器时代、青铜器时代、铁器时代等,由此可见材料的发展对人类社会的影响——没有材料就是没有发展。 人类诞生以前其实就有了材料,材料的历史与人类史一样久远,可能还要比之久远呢! 在人类文明的进程中,材料大致经历了以下五个发展阶段,他们是 1.使用纯天然材料的初级阶段:旧石器时代,人类只能使用天然材料(如兽皮、甲骨、羽毛、树木、草叶、石块、泥土等),之后也都只是纯天然材料的简单加工而已。 2.人类单纯利用火制造材料的阶段:新石器时代、铜器时代和铁器时代,是人类利用火来对天然材料进行煅烧、冶炼和加工的时代,主要材料有:陶、铜和铁。 3.利用物理与化学原理合成材料的阶段:20世纪初,由于物理和化学等科学理论在材料技术中的应用,从而出现了材料科学。在此基础上,人类开始了人工合成材料的新阶段,主要材料:人工合成塑料、合成纤维及合成橡胶等合成高分子材料的出现,加上已有的金属材料和陶瓷材料(无机非金属材料)构成了现代材料(除合成高分子材料以外,人类也合成了一系列的合金材料和无机非金属材料。超导材料、半导体材料、光纤等材料都是这一阶段的杰出代表)。 4.材料的复合化阶段:20世纪50年代金属陶瓷的出现标志着复合材料时代的到来。人类已经可以利用新的物理、化学方法,根据实际需要设计独特性能的复合材料(只要是由两种不同的相组成的材料都可以称为复合材料)。 5.材料的智能化阶段:如形状记忆合金、光致变色玻璃等等都是近年研发的智能材料(自然界中的材料都具有自适应、自诊断合资修复的功能,而目前研制成功的智能材料还只是一种智能结构)

相关主题
文本预览
相关文档 最新文档