当前位置:文档之家› 大功率四象限变流器微机实时控制原理

大功率四象限变流器微机实时控制原理

大功率四象限变流器微机实时控制原理

株洲电力机车研究所王挺泽

摘要:本文主要介召了大功率四象限变流器微机控制的基本原理及控制方法

关键词:四象限变流器、微机控制、原理、方法

前言

大功率四象限变流器微机实时控制原理是在AC4000原型车四象限变流器控制的基础上进行的。在此基础上,结合微机控制的优点,又进一步作了的完善,增加了功率因数角控制和具有改善直流电压动态调节性能的直流电流反馈环节。在控制的硬件上则采用了TMS320C31和80C196双CPU的方案,其中80C196负责:(1)与电网电压的同步控制、(2)充电接触器和短接充电接触器的控制、(3)与有关计算机的通迅、(4)功率因数角的探测、(5)跳弓的检测。而微处理器DSP320C31则负责:(1)电压、电流的采样、(2)电压、电流调节器的计算、(3)变压器直流磁化控制、(4)功率因数角的控制、(5)调制电压的计算、(6)PWM脉冲计算、(7)PWM脉冲输出控制。

1、四象限变流器主电路工作原理

如图1所示为交直交电力机车一个转向架带有两个网侧四象限变流器的主电路

图1 四象限变流器的主电路原理图

原理图。为了更好地说明四象限变流器的工作原理,下面对网侧只有一个四象限变流器回路进行分析。为了简化起见,变压器用一个等效电路表示,变压器的漏抗和内阻用一个电感和一个电阻表示。原理上四象限变流器的两对桥臂(包括两个GTO和两个二极管)可用转换开关代替。当网侧四象限变流器在中间回路直流电压U d大于u st峰值下运行时,4qs就作升压调压器工作。图2为用转换开关代替的网侧四象限变流器等效电路图。

图2 四象限变流器的等效电路原理图

4qs是一个脉冲整流器,因此按转换开关的位置,四象限变流器有以下几种工作方式:

(1)、u st=0 :电能在电网与变压器漏抗之间交换能量,此时u L=u N,i d0=0

(2)、u st=+U d:电能在电网、变压器漏抗与中间回路之间交换能量,此时u L=u N-U d,

I d0=I N

(3)、u st=-U d:电能在电网、变压器漏抗与中间回路之间交换能量,此时u L=u N+U d,

I d0=-I N

用脉宽调制产生各开关元件的PWM信号,在变流器输入端形成了基波频率与网频一样的脉宽调制电压。现假设该调制电压为理想的正弦波,当u N和调制电压u st

图3 牵引工况和制动工况下的四象限变流器基波矢量图

同相同幅时,则R-L电路上就没有电压差,因而四象限变流器的输入电流为零;如

果u st滞后u N一个角度,那么有一个经4qs整流过的正电流流入中间直流回路,即4qs 处于牵引工况;相应地u st超前u N一个角度时,由中间直流回路来的电能流入电网,即4qs处于制动工况。理论上给定任意的调制电压u st,就可产生任意的4qs输入电

流i N。但通常在牵引工况下,网压u N与4qs输入电流i N的相位角θ控制在0°。在制动工况下,θ控制在180°,即机车以±1的功率因数运行。图3为牵引工况和制动工况下的四象限变流器基波矢量图。

2、四象限变流器微机控制系统结构

基于以上分析,四象限变流器微机控制采用中间回路直流电压调节器输出控制4qs的输入电流的幅值、网侧回路电流调节器控制4qs的输入电流功率因数的串行调节控制方式。为了改善动态调节性能,将中间回路直流电流经功率平衡变换接到电压

图4 四象限变流器微机控制系统框图

调节器输出端。图4为四象限变流器微机控制原理框图,主要由以下几个部份组成:a、直流电压调节器,其输出控制四象限变流器输入电流幅值;b、电流调节器,用来控制四象限变流器输入电流的功率因数;c、四象限变流器微机同步控制,则用来保证四象限变流器输入电流与电网电压同步;d、调制电压的计算,用来计算调制电压的瞬时值;

e、PWM交点计算。

3、对几个主要问题的处理

3.1、电压调节器和电流调节器的工作原理

中间回路直流电压调节器是按PI-调节器原理工 作,用双线性原理(梯形积分或Tustin 近似)作离散

变换。在模拟电路中PI 调节器通常按图5所示,得: 图5 PI 调节器原理图

式中Kp=R2/R1为比例放大系数,Tn=R 2C 为调节时间常数,Ti=R 1C 为积分时间常数,ΔV=WUD-XUD 为给定电压与反馈电压之差。根据双线性原理作离散变换如下:

式中T 为计算步长。

四象限变流器电流调节器采用P 调节,其计算公式为: V 0(K)=K I ×ΔV(K) ; K I 为电流调节器比例放大系数。 2、

同步控制原理

四象限变流器不论采用什么样的控制方式,其控制器必须和网压同步。对于数模控制电路,通常采用硬件进行锁相倍频。而用微机进行实时控制时,四象限变流器的同步方法通常采用软件锁相环方式。下面将介绍一下软件锁相环的原理:

如图6所示,t 0、t 1、t 2相应于电网电压同步信号在80C196的HSI 中断到达时刻,t 3为一个计算周期结束时刻。在t 1时刻,电网电压计算周期通过测量先前的周期T S (=t 1-t 0)进行更新,这个值用于决定在下一次HSI 中断即t 2的载波理论再同步时间。由于同步是软件同步,与硬件同步不一样。在硬件同步中,在t 2处并不削掉脉冲。在软件同步

??+?=dt C R V V R R V 2210??+?=

dt)C

R V V (R R 212?

?+?=dt)Tn

V

V Kp(?

??

????+?=?KT 00dt T n V V(K)Kp K)(V ?

??

??

??+?=?1)T -(K 00dt T n V 1)-V(K Kp 1)-(K V 1)-(K V 1)-V(K Kp)Tn

T

(0.5Kp V(K)Kp)Tn T (0.5Kp

(K)V 00+?-+?+=

中,下一个电源周期的脉冲是由上一个周期的大小来控制的,假如在每个电源周期的载波周期的末端有任何误差产生,则该误差会均匀地扩大到下一个电源周期的整个M R 载波周期。例如,由于电源频率发生变化,T S变得较长,那么最后一个载波周期将比下一个同步中断先早一些到达,则误差tr=t3-t2是可以计算的,并把误差均匀地分摊到下一个M R载波周期,显然对于这种误差是较易计算的。但当电网电压周期T S变得较短时,则在t3到达时,t2还没有到达,即下一个同步中断时刻还没来,而t3 巳到达,因此这种误差就没法计算。要解决这个问题,只有一个办法,把周期的计算起始点选择在同步电压的下降沿,这样当电网电压频率变化不超过1/2的载波周期时,任何由电网电压频率变化所引起的误差总是可以计算的,其计算公式如下:

tr=t3-t2-T S/2 , T S=t1-t0

计算得到的误差则均匀地分摊在下一个计算周期中,从而实现计算周期与网压变化同步。

图6 同步控制原理示意图

3、PWM交点计算原理

四象限变流器的PWM信号的发生是通过控制电压wu st与三角波求交点得到的。而求交点的方法,在微机控制中通常采用的是非对称发生脉冲的脉宽调制方法,即对于每一相的PWM信号,都是在三角波的转换点中进行wu st的探测,然后三角波电压再与固定的探测电压求交点,如图7所示。然而这种求交点的方式,交点的误差比较大,PWM信号不太真实。一个相对较为简单而又行之有效的办法是取相邻两个wu st的探测点的平均值与三角波求交点,用这种方式求交点得到的PWM信号相对比较真实,但是必须对下一点的wu st值进行预估。

对于网侧有多个四象限变流器时,通常采用三角载波互相错开一定的角度,这样做的好处是可以使4qs的输入电流的高次谐波互相错开,在变压器原边的谐波总量中部分抵消。当一个转向架有3个四象限变流器时,三角载波互相错开120度;当只有

图7 交点计算原理

2个四象限变流器时,三角载波互相错开90度。下面介绍一下一个转向架只有2个四象限变流器时是如何求取GTO的开关时间的。

当一个转向架只有2个四象限变流器时,三角载波只需划分成四个区,而这四个

图8 两个四象限变流器计算分区划分示意图

表1:计算区域表

区通过设置区计数器来判断现在位于那个区。除了进行区域判断之外,还必须知道各个相的三角载波的状态,即每个三角载波现在所在的位置。表1给出了四个区的U、V、W、X相所在边的状态。在计算开关时间时,除了要知道各相三角载波的状态外,还必须检查wu st是否与所在的边相交,下面给出四个边的交点计算公式:

a边:t1=(wu st/A)×T

b边: t

2

=(1-wu st/A)×T

c边: t

3

=(-wu st/A)×T

d边: t

4

=(1+wu st/A)×T

式中:A为三角载波的幅值图9 每次求交点起始时刻示意图

3、电流值的预估

由于在交点计算时需要知道下一点的wu st值,而wu st的值是由网压同步信号和相当于电抗器电压的等效值及电流调节器输出三项组成。所以,要知道下一点的wu st值就必须对下一次开关的电流值进行预估。

掌握变压器的微分方程和上一周期的各个开关的角度或时间值,就能对4qs的输入电流进行一些简单的预估。预估的公式推导如下:

di

N /dt=(u

N

-u st-i

N

×R)/L

用矩形近似的离散变换为:

di

N /dt=[i

N

(K+1)-i

N

(K)]/Δt

代入微分方程为式:

[i

N (K+1)-i

N

(K)]/Δt=[u

N

(K)-u st(K)-i

N

(K)×R]/L

得: i

N (K+1)=i

N

(K)×(1-M)+N×[u

N

(K)-u st(K)]

其中M=Δt×R

i /L ,N=Δt/L ,Δt为预先计算的时间间隔;u

N

为预知的电网电压;

u st为预知的调制电压,在Δt内认为是恒定的;i

N

为网侧回路的电流;L、R为变压器阻抗;K为扫描时间点。

4、磁化电流控制原理

由于控制偏差或跳弓等原因,网侧四象限变流器的输入电流常产生波形不对称,因而在变压器次边绕组里产生直流偏移,即变压器直流磁化。为防止这种情况的产生,通常通过求取变压器的直流磁化电流输入到PI 调节器将其调到零,调节量的输出是一个直流偏置值,它与电压调节器的输出相加。调节器的计算方法与电压调节器相同。下面介绍一下直流磁化电流滤波器的设计方法:

直流磁化电流滤波器为一低通滤波器,其变换函数为:

F(p)=1/(1+PT1) ,T1为滤波器的时间常数。 用矩形近似计算的离散变换公式为:

X 0(K)=a ×X I (K)+b ×X 0(K-1)

式中X I (K)为直流磁化电流,X 0(K)为直流磁化电流调节器输出,系数a 和b 则按下式计算:

5、 控制电压wu st 的计算

控制电压wu st 主要由三部份组成,即由网压同步信号和相当于电抗器电压的等效电压值及电流调节器输出三项组成,其计算公式如下:

wu st =XU N -ωLI N ×COS ωt ×K1+ΔV1×K2

其中K1、K2为比例系数。ΔV1为电流调节器输出。 3、结论

四象限变流器微机控制在采用了上述方案后进行了大量试验,其试验结果完全

附合要求。至于试验结果巳在另一篇文章中作了说明,这儿不再阐述。

T1

T T1

b ,T1T T +=+=

a

变频器中直流母线电容的纹波电流计算

變頻器中直流母線電容的紋波電流計算 1 引言 各類電動機是我們發電量的主要消耗設備,而變頻器作為電動機的驅動裝置成為當前“節能減排”的主力設備之一。它一方面可以起到節約能源消耗的作用,另一方面也可以實現對原有生產或處理工藝過程的優化。目前應用最多也最廣的是交-直-交電壓型變頻器,即中間存在直流儲能濾波環節,一般採用大容量電解電容器實現此功能。 使用電解電容器的作用主要有以下幾個[1]: (1)補償以電源頻率兩倍或六倍變化的逆變器所需功率與整流橋輸出功率之差; (2)提供逆變器開關頻率的輸入電流; (3)減小開關頻率的電流諧波進入電網; (4)吸收急停狀態時所有功率開關器件關斷下的電機去磁能量;(5)提供暫態峰值功率; (6)保護逆變器免受電網暫態峰值衝擊。 電解電容器設計選型所需要考慮的主要因素有以下幾個:電容器的電壓、電容器量、電容器的紋波電流、電容器的溫升與散熱、電容器的壽命等等。這些因素對變頻器滿足要求的平均無故障時間(MTBF)十分重要。然而電解電容器的紋波電流的計算如何能明確給出計算依據,這是本文所要解決的問題。

2 直流母線電容紋波電流的計算 紋波電流指的是流過電解電容器的交流電流,它使得電解電容器發熱。紋波電流額定值的確定方法是在額定工作溫度下規定一個允許的溫升值,在此條件下電容器符合規定的使用壽命要求。當工作溫度小於額定溫度時,額定紋波電流可以加大。但過大的紋波電流會大大縮短電容器的耐久性,當紋波電流超過額定值,紋波電流所引起的內部發熱每升高5℃,電容器器的壽命將減少50%。因此當要求電容器器具有長壽命性能時,控制與降低紋波電流尤其重要。 但在實際設計過程中,電解電容器的紋波電流由於受變頻器輸入輸出各物理量變化以及控制方式等的影響很難直接計算得到[2],一般多採用根據實際經驗估算大小,如每μf電容器要求20ma紋波電流之類的經驗值,或者通過電腦模擬來估算[3~6]。 本文根據對變頻器電路拓撲與開關調製方式的分析,並借鑒已有文獻資料,歸納出一個直接的計算電解電容器紋波電流的方法,供大家參考。 圖1 變頻器拓撲示意圖 由圖1可以得到直流母線電容的紋波電流ic=il-i,il和i分別是整流器

第五章微机原理课后习题参考答案_2012

习题五 一. 思考题 ⒈半导体存储器主要分为哪几类?简述它们的用途和区别。 答:按照存取方式分,半导体存储器主要分为随机存取存储器RAM(包括静态RAM和动态RAM)和只读存储器ROM(包括掩膜只读存储器,可编程只读存储器,可擦除只读存储器和电可擦除只读存储器)。 RAM在程序执行过程中,能够通过指令随机地对其中每个存储单元进行读\写操作。一般来说,RAM中存储的信息在断电后会丢失,是一种易失性存储器;但目前也有一些RAM 芯片,由于内部带有电池,断电后信息不会丢失,具有非易失性。RAM的用途主要是用来存放原始数据,中间结果或程序,与CPU或外部设备交换信息。 而ROM在微机系统运行过程中,只能对其进行读操作,不能随机地进行写操作。断电后ROM中的信息不会消失,具有非易失性。ROM通常用来存放相对固定不变的程序、汉字字型库、字符及图形符号等。 根据制造工艺的不同,随机读写存储器RAM主要有双极型和MOS型两类。双极型存储器具有存取速度快、集成度较低、功耗较大、成本较高等特点,适用于对速度要求较高的高速缓冲存储器;MOS型存储器具有集成度高、功耗低、价格便宜等特点,适用于内存储器。 ⒉存储芯片结构由哪几部分组成?简述各部分的主要功能。 答:存储芯片通常由存储体、地址寄存器、地址译码器、数据寄存器、读\写驱动电路及控制电路等部分组成。 存储体是存储器芯片的核心,它由多个基本存储单元组成,每个基本存储单元可存储一位二进制信息,具有0和1两种状态。每个存储单元有一个唯一的地址,供CPU访问。 地址寄存器用来存放CPU访问的存储单元地址,该地址经地址译码器译码后选中芯片内某个指定的存储单元。通常在微机中,访问地址由地址锁存器提供,存储单元地址由地址锁存器输出后,经地址总线送到存储器芯片内直接进行译码。 地址译码器的作用就是用来接收CPU送来的地址信号并对它进行存储芯片内部的“译码”,选择与此地址相对应的存储单元,以便对该单元进行读\写操作。 读\写控制电路产生并提供片选和读\写控制逻辑信号,用来完成对被选中单元中各数据位的读\写操作。 数据寄存器用于暂时存放从存储单元读出的数据,或暂时存放从CPU送来的要写入存储器的数据。暂存的目的是为了协调CPU和存储器之间在速度上的差异。

微机原理课后练习题-答案

1、 2、B 3、十,非压缩的BCD码 4、 5、微型计算机、微型计算机系统 6、,, 二、 B D B 三、 1、微型计算机系统的基本组成。 答案:以微型计算机为主体,配上相应的系统软件、应用软件和外部设备之后,组成微型计算机系统。 2、简述冯.诺依曼型计算机基本组成。 答案:冯.诺依曼型计算机是由运算器,控制器,存储器,输入设备和输出设备组成的。其中,运算器是对信息进行加工和运算的部件;控制器是整个计算机的控制中心,所以数值计算和信息的输入,输出都有是在控制器的统一指挥下进行的;存储器是用来存放数据和程序的部件,它由许多存储单元组成,每一个存储单元可以存放一个字节;输入设备是把人们编写好的程序和数据送入到计算机内部;输出设备是把运算结果告知用户。 3、什么是微型计算机 答案:微型计算机由CPU、存储器、输入/输出接口电路和系统总线构成。 4、什么是溢出 答案:在两个有符号数进行家减运算时,如果运算结果超出了该符号数可表示的范围,就会发生溢出,使计算出错。

1、4、100ns 2、Ready ,Tw(等待) 3、ALE 4、INTR 5、85010H 6、存储器或I/O接口未准备好 7、非屏蔽中断 8、指令周期 9、4 二、 1、在内部结构上,微处理器主要有那些功能部件组成 答案:1) 算术逻辑部件2) 累加器和通用寄存器组 3) 程序计数器4) 时序和控制部件 2、微处理器一般应具有那些基本功能 答案:1.可以进行算术和逻辑运算2.可保存少量数据 3.能对指令进行译码并完成规定的操作4.能和存储器、外部设备交换数据 5.提供整个系统所需的定时和控制6.可以响应其他部件发来的中断请求 3、什么是总线周期 答案:CPU通过外部总线对存储器或I/O端口进行一次读/写操作的过程;一个基本的总线周期包含4个T状态,分别称为T1、T2、T3、T4。 三、×、×、×、×、×、√、√

变频器直流母线电容纹波电流计算方法

变频器直流母线电容纹波电流计算方法 各类电动机是我们发电量的主要消耗设备,而变频器作为电动机的驱动装置成为当前“节能减排”的主力设备之一。它一方面可以起到节约能源消耗的作用,另一方面也可以实现对原有生产或处理工艺过程的优化。目前应用最多也最广的是交-直-交电压型变频器,即中间存在直流储能滤波环节,一般采用大容量电解电容器实现此功能。 使用电解电容器的作用主要有以下几个: (1)补偿以电源频率两倍或六倍变化的逆变器所需功率与整流桥输出功率之差; (2)提供逆变器开关频率的输入电流; (3)减小开关频率的电流谐波进入电网; (4)吸收急停状态时所有功率开关器件关断下的电机去磁能量; (5)提供瞬时峰值功率; (6)保护逆变器免受电网瞬时峰值冲击。 电解电容器设计选型所需要考虑的主要因素有以下几个:电容器的电压、电容器量、电容器的纹波电流、电容器的温升与散热、电容器的寿命等等。这些因素对变频器满足要求的平均无故障时间(mtbf)十分重要。然而电解电容器的纹波电流的计算如何能明确给出计算依据,这是本文所要解决的问题。 直流母线电容纹波电流的计算 纹波电流指的是流过电解电容器的交流电流,它使得电解电容器发热。纹波电流额定值的确定方法是在额定工作温度下规定一个允许的温升值,在此条件下电容器符合规定的使用寿命要求。当工作温度小于额定温度时,额定纹波电流可以加大。但过大的纹波电流会大大缩短电容器的耐久性,当纹波电流超过额定值,纹波电流所引起的内部发热每升高5℃,电容器器的寿命将减少50%。因此当要求电容器器具有长寿命性能时,控制与降低纹波电流尤其重要。 但在实际设计过程中,电解电容器的纹波电流由于受变频器输入输出各物理量变化以及控制方式等的影响很难直接计算得到,一般多采用根据实际经验估算大小,如每μf电容器要求20ma纹波电流之类的经验值,或者通过计算机仿真来估算[3~6]。 本文根据对变频器电路拓扑与开关调制方式的分析,并借鉴已有文献资料,归纳出一个直接的计算电解电容器纹波电流的方法,供大家参考。

风电变流器简介

风电变流器简介 快速浮点运算能力的“双DSP的全数字化控制器”;在发电机的转子压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有防尘、防盐雾等运行要求。 变流器可根据海拔进行特殊设计,可以按客户定制实现低温、高温、和最大功率点跟踪控制功能。功率模块采用高开关频率的IGBT功率QHVERT-DFIG型风电变流器基本原理 器件,保证良好的输出波形。这种整流逆变装置具有结构简单、谐波制,是目前双馈异步风力发电机组的一个代表方向。 变流器工作原理框图如下所示: 统,实现了基于风机最大功率点跟踪的发电机有功和无功的解耦控能质量。这种电压型交-直-交变流器的双馈异步发电机励磁控制系含量少等优点,可以明显地改善双馈异步发电机的运行状态和输出电变流器提供实时监控功能,用户可以实时监控风机变流器运行状态。侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电本文将针对市场上主流的双馈型风电变流器进行简介。 型风电变流器系统功能 变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机关,目前已实现规模化的生产。 06年成功研制第一台风电变流器以来,不断寻求技术革新严把质量风能作为一种清洁的可再生能源,越来越受到世界各国的重视,我国变流器配电系统提供雷击、过流、过压、过温等保护功能。 的定子侧输出电压的幅值、频率和相位与电网相同,并且可根据需要风能资源丰富,近几年来国家政策也大力扶持风电产业。我公司自求扩展),用户可通过这些接口方便的实现变流器与系统控制器及风进行有功和无功的独立解耦控制。 机和电网造成的不利影响。 变流器提供多种通信接口,如Profibus, CANopen等(可根据用户要场远程监控系统的集成控制。 变流器控制双馈异步风力发电机实现软并网,减小并网冲击电流对电转子侧逆变器、直流母线单元、电网侧整流器。 原理图如下: 控制器、监控界面等部件。 变流器主回路系统包含如下几个基本单元: QHVERT-DFIG型风电变流器系统构成 变流器由主电路系统、配电系统以及控制系统构成。包括定子并网开关、整流模块、逆变模块、输入/输出滤波器、有源Crowbar电路、功率柜主要由功率模块、有源Crowbar等构成。 功率柜:主要负责转子滑差能量的传递。 并网柜:主要用于变流器与发电机系统和电网连接控制、一些控制信控制柜主要由主控箱、PLC、滤波器、电源模块等组成。 并网柜主要由断路器、接触器、信号采集元件、UPS、加热器、信号变流器控制结构框图如下: 接口部分等构成。 号的采集以及二次回路的配置。 上述各功能分配到控制柜、功率柜、并网柜中: 约了机舱空间,柜中还可提供现场调试的220V电源。 成有并网控制系统,用户无须再配置并网柜,提高了系统集成度,节制指令,控制变流器的运行状态 控制系统由高速数字信号处理器(DSP)、人机操作界面和可编程逻配电系统由并网接触器、主断路器、继电器、变压器等组成,自身集辑控制器(PLC)共同构成。整个控制系统配备不间断电源(UPS),控制柜:控制柜主要对采集回的各种模拟数字信号进行分析,发出控便于电压跌落时系统具有不间断运行能力。 成功满发,截止目前运行状态稳定。 附:北京清能华福风电技术有限公司简介 目前在赤峰、大安等风场正陆续进行变流器吊装施工。 限公司自主研发的1.5MW风电变流器在国电联合动力技术有限公司北京清能华福风电技术有限公司成立于2006年7月,由“国内高压变求。 2009年12月28日经过2天的现场调试,北京清能华福风电技术有及其现场调试所相关技术人员的支持下,已于哲里根图风场全部并网公司坐落于中关村科技园,依托清华大学电力系统国家重点实验室的厚的资金、科研、市场、服务实力,为国家大力鼓励、扶持的风力发电事业,提供其拥有自主知识产权的核心装备——兆瓦级风力发电机变流器及其电控系统。一流技术以及利德华福专业化、规模化、现代化的生产厂房,凭借雄以达到满功率发电和连续运行的要求,系统品质达到了风场应用的要资控股,是专门从事开发、制造风电变流器与控制系统产品的高新技术企业。 频器领域最具影响力的企业”——北京利德华福电气技术有限公司投3月至今,在河北建设投资公司和东方汽轮机有限公司的支QHVERT-DFIG型风电变流器具有以下一些特点: 优异的控制性能 完备的保护功能 少发电机损耗,提高运行效率,提升风能利用率。 风速范围内的变速恒频发电,改善风机效率和传输链的工作状况,减 型风电变流器技术特征 型风电变流器可以优化风力发电系统的运行,实现宽良好的电网适应能力 具备高可靠性,适应高低温、高海拔等恶劣地区运行 变流器在河北海兴风电场成功并网发电,通过240小时验收,目前已无故障连续运行8000多小时。成功经历了夏季高温、冬季降雪后的持下,北京清能华福风电技术有限公司自主研发生产的1.5MW风电QHVERT-DFIG型风电变流器最新动态 模块化设计,组合式结构,安装维护便捷 2丰富的备品备件;专业、快速的技术服务 低温、海边盐雾等运行环境的考验,事实证明了:清能华福变流器可

(完整版)微机原理课后习题参考答案

第一章 2、完成下列数制之间的转换。 (1)01011100B=92D (3)135D=10000111B (5)10110010B=262Q=B2H 3、组合型BCD码和非组合型BCD码有什么区别?写出十进制数254的组合型BCD数和非组合型数。 答:组合型BCD码用高四位和低四位分别对应十进制数的个位和十位,其表示范围是0~99;非组合型BCD码用一个字节的低四位表示十进制数,高四位则任意取值,表示范围为0~9。 组合型:254=(001001010100)BCD 非组合型:254=(00000010 00000101 00000100)BCD 7、计算机为什么采用补码形式存储数据?当计算机的字长n=16,补码的数据表示范围是多少? 答:在补码运算过程中,符号位参加运算,简化了加减法规则,且能使减法运算转化为加法运算,可以简化机器的运算器电路。+32767~ -32768。 9、设计算机字长n=8,求下列各式的[X+Y]补和[X-Y]补,并验证计算结果是否正确。 (1)X=18,Y=89 [X+Y]补=00010010+01011001=01101011B=107D 正确 [X-Y]补=10111001B=00010010+10100111=(-71D)补正确 (2)X=-23,Y=-11 [X+Y]补=11101001+11110101=11011110B=(-34D)补正确[X-Y]补=11101001+00001011=11110100B=(-12D)补正确 (3)X=18,Y=-15 [X+Y]补=00010010+11110001=00000011B=(3D)补正确 [X-Y]补=00010010+00001111=00100001B=(33D)补正确 (4)X=-18,Y=120 [X+Y]补=11101110+01111000=01100110B=(102D)补正确[X-Y]补=11101110+10001000=01110110B=(123D)补由于X-Y=-138 超出了机器数范围,因此出错了。 13、微型计算机的主要性能指标有哪些? 答:CPU字长、存储器容量、运算速度、CPU内核和IO工作电压、制造工艺、扩展能力、软件配置。 第二章 2、8086标志寄存器包含哪些标志位?试说明各标志位的作用。 答:进位标志:CF;奇偶校验:PF;辅助进位:AF;零标志:ZF;符号标志:SF;溢出标志:OF。 5、逻辑地址与物理地址有什么区别?如何将逻辑地址转换为物理地址? 答:物理地址是访问存储器的实际地址,一个存储单元对应唯一的一个物理地址。逻辑地址是对应逻辑段内的一种地址表示形式,它由段基址和段内偏移地址两部分组成,通常表示为段基址:偏移地址。 物理地址=段基址*10H+偏移地址。 6、写出下列逻辑地址的段基址、偏移地址和物理地址。 (1)2314H:0035H (2)1FD0H:000AH 答:(1)段基址:2314H;偏移地址:0035H;物理地址:23175H。 (2)段基址:1FD0H;偏移地址:000AH;物理地址:1FD0AH。 8、设(CS)=2025H,(IP)=0100H,则当前将要执行指令的物理地址是多少? 答:物理地址=(CS)*10H+(IP)=20350H 9、设一个16字的数据区,它的起始地址为70A0H:DDF6H(段基址:偏移地址),求这个数据区的首字单元和末字单元的物理地址。

微机原理 第4章作业答案

第3章指令系统 3.9 设段寄存器DS=1000H,SS=2000H,ES=3000H,通用寄存器BX=4000H,BP=5000H,SI=6000H,DI=7000H。在下列各指令中指出存储器操作数的寻址方式,求出有效地址EA、物理地址PA,并分别用物理地址和逻辑地址说明指令执行结果。(1)MOV CX, [2300H] 直接寻址 EA=2300H PA=DS*16+EA=1000H*16+2300H=12300H 执行结果:(12300H)→CL,(12301H)→CH (2)MOV BYTE PTR [BX], 8FH 寄存器间接寻址 EA=BX=4000H PA=DS*16+EA=1000H*16+4000H=14000H 执行结果:8FH→(14000H) (3)MOV DH, [BP+3000H] 基址寻址 EA=BP+3000H=8000H PA=SS*16+EA=2000H*16+8000H=28000H 执行结果:(28000H)→DH (4)MOV ES: [SI+1210H], AX 变址寻址 EA=SI+1210H=7210H PA=ES*16+EA=3000H*16+7210H=37210H 执行结果:AL→(37210H),AH→(37211H) (5)MOV [BX+DI+50H], AL 基址变址位移寻址 EA=BX+DI+50H=0B050H PA=DS*16+EA=1000H*16+0B050H=1B050 H 执行结果:AL→(1B050H) (6)INC WORD PTR [BX+SI] 基址变址寻址 EA=BX+SI=0A000H PA=DS*16+EA=1000H*16+0A000H=1A000 H 执行结果:(1A000H)中存放的字的值加1 3.11 指出下列指令中源操作数的寻址方式。(1)MOV BL, 0F9H 立即寻址(2)ADD [BX], SI 寄存器寻址(3)SUB CL, [4000H] 直接寻址(4)CMP DX, [SI] 寄存器间接寻址 (5)AND SL, [BX+1] 基址寻址(6)OR BP, [DI+2100H] 变址寻址(7)XOR AX, [BP+SI] 基址变址寻址 (8)MOV CX, 300 立即寻址 3.12 下列指令都是非法的,指出各指令错在哪里? (1)MOV SI, AH 两个操作数字长不一致 (2)MOV 70H, BL 立即数不能做目的操作数 (3)MOV CX, F123H 十六进制的数以字母打头必须在前面补0 (4)MOV [BX], 6AH 两个操作数的字长不确定 (5)MOV ES, 5000H 立即数不能直接送段寄存器 (6)MOV [DI], [3000H] 两个操作数不能同为内存操作数 (7)MOV DS, SS 两个操作数不能同为段寄存器 (8)MOV CS, AX 不能对CS赋值 (9)MOV AL, [CX] 寄存器间接寻址中不能使用CX (10)MOV [BX+BP], DX 存储器寻址方式中表示有效地址不能同为两个基址寄存器 (11)MOV BH, [SI+DI+2] 存储器寻址方式中表示有效地址不能同为两个变址寄存器 (12)PUSH AL 入栈出栈操作必须以字为单位 (13)LEA AX, BX LEA指令中源操作数必须为存储器寻址方式 (14)LDS BL, [5100H] LDS指令中目的操作数必须为16位的通用寄存器 (15)IN AH, DX

FREQCON变流器简介-17页word资料

FREQCON变流简介 ——by郭锐FREQCON变流器总体结构图 各部分简介 变压器支架 620/400V自耦变压器——提供机组动力用电和控制用电。总容量40KVA,副边22.4KVA 提供主控柜,变流柜用电。17.5KVA 提供机舱用电。 IGBT2冷却风扇——风冷系统循环动力 制动电阻 制动电阻箱——消耗直流母线上过高的能量。网侧故障后的能量消耗,低电压穿越。 电抗器支架 网侧空开——风机的并网与脱网控制。过流、短路等保护功能。注意保护后复位按钮弹出需回复。 电流互感器——完成电流变送。变比:1/2000。原理:二次侧短路的特殊变压器,二次侧相当于一个电压源。 3组(六个)交流电抗器——与网侧电容、变压器构成LCL滤波。 3个直流电抗器——直流斩波升压电抗器。 第 1 页

变流柜 变流柜由低压配电柜、主控柜、IGBT柜1、IGBT柜2、电容柜5部分组成。 变流柜背后风道 变流柜模块图 每只IGBT模块包含一个智能半桥模块(半桥由串联的两个IGBT和与之反并联的二极管组成,分别称为上桥臂和下桥臂)、16只支撑电容、4只吸收电容、4只均压电阻、1块过压保护板、直流端2只快熔组成。 构成三相全桥不可控整流。 变流器在整个风机的作用 叶轮系统在风作用下受到气动扭矩Ta,叶轮——发电机系统转动会因轴承滚动摩擦、风阻等受到与选中方向相反的摩擦力矩Tf,叶轮带动发电机转动,转子上的永磁体旋转切割定子绕组产生感应电势,如果如果定子绕组中有电流流过将产生电枢反应,通过磁场的作用产生阻碍转子转动的电磁力矩Te。在这几个扭矩作用下,叶轮——发电机系统刚体动力学方程如如上所示。由方程可知当Ta>Tf+Te时,叶轮——发电机系统将在启动力矩作用下转速上升。反之转速将下降。Tf基本为恒量。因此想要调节叶轮转速可以通过调节Ta、Te。由此产生了两种调节方法:一个是变桨调节起动扭矩;另一个是调节发电机电磁扭矩。因此从控制角度来看,变流器需要具有调节发电机电磁扭矩的作用。从能量角度来看风能转化成叶轮系统旋转机械能再通过发电机转换成电能,变流系统需要将发电机发出电能转换成与电网频率、相位、幅值相对应的交流电。完 第 2 页

四象限变流器控制策略的探讨1

四象限变流器控制策略的探讨 1,概述 交流传动技术是我国铁路牵引动力发展的主要方向。对于单相供电牵引主变流器来说,电源侧四象限变流器是整个牵引系统的重要组成部分,对四象限变流器的控制策路对电网中的动率因数和电网电流中的高次谐波的含量有着决定性的影响。对四象限变流器的控制必须达到以下两个目的:①但电网电压或负载发生变化时,维持中间回路直流电压的恒定;②使电网电流接近正弦波,电网功率因数接近于1,电网电流中的高次谐波的含量尽可能小,满足轨道电路对谐波电流限值的要求。 2,单相四象限变流器工作原理 2.1,单相四象限变流器主电路原理图 图1 单个四象限变流器主电路原理图 图1中:方框部分是变压器牵引绕组的等效电路,L N 和R N 分别为折合到二次侧的牵引变压器绕组的漏感和电阻。L2 和C2 构成二次滤波回路, C d 为直流侧支撑电容。U N 为变压器二次侧电压矢量, I N1 为变压器二次侧电流的基波矢量, V1~V4 为可关断电力电子开关器件, D1~D4 为功率二极管, 通过对V1~V4 进行适当的导通与关断控制可以对直流侧电压进行调制, 从而在四象限变流器的输入端A、B生成一个与电网同步的脉宽调制波,记为 U S 。 2.2,单相四象限变流器交流电网侧等效电路 对于图1所示的单相四象限变流器主电路原理图,交流电网侧电路可以等效为图2。 图2 四象限变流器交流电网侧等效电路图

图2 四象限变流器交流电网侧等效电路图 2.3, 二次侧交流回路电压方程 由图2可以得到二次侧交流回路的矢量电压方程: U N= U s-I N R N-jωL N I N ⑴ 假设U N和U S之间的相位差为Ψ,在牵引工况下, U N和I N的相位差应为0°,则用该方程表示牵引工况的矢量如图3(a) 所示,此时U S滞后I N;而对于再生制动工况, U N和I N的相位差应为180°,该工况下的矢量如图3 (b) 所示,此时US超前U N。 (a) 牵引工况 (b) 再生工况 图3 四象限变流器控制矢量图 由方程(1) 和矢量图可知: 如果变压器二次侧电压U N和电感I N为已知量,那末只要控制了U S的幅值和相位,也就控制了I N的幅值和相位。反之,只要控制了I N的幅值和相位,也就控制了U S的幅值和相位,因此方程(1) 是实现四象限变流器控制的基本公式。通常采用的双闭环控制的原理就是由此而来,它是通过控制U S的幅值来调节I N的相位,保证交流侧电网的基波功率因数为1;而通过调节U S的相位来调节I N的幅值,保证直流侧电压U d的稳定。 3,单相四象限变流器控制策略 要使四象限变流器工作时达到单位功率因数,必须对电流进行控制,保证其为正弦且与电压同相或反相。根据有没有引入电流反馈可以将这些控制方法分为两种:没有引入交流电流反馈的称为间接电流控制,间接电流控制也称为相位幅值控制;引入交流电流反馈的称为直接电流控制。 3.1间接电流控制 ⑴间接电流控制工作原理 间接电流控制没有引入交流电流控制信号,而是通过控制四象限变流器的交流输入端电压,间接控制输入电流,故称间接电流控制。又因其直接控制量为电压,所以又称为相位幅值控制。间接电流控制具体的数学公式为: I N1=K p(U dg-U d)+1/T i∫(U dg-U d)dt I N2= I d I d /U N I N= I N1 + I N2

最有效的开关电源纹波计算方法

对滤波效果而言,电容的ESL和ESR参数都很重要,电感会阻止电流的突变,电阻则限制了电流的变化率,这些影响对电容的充放电显然都不利。优质的电容在设计及制造时都采取了必要的手段来降低ESL和ESR,故而横向比较起来,同样的容量滤波效果却不同。

漏电流小,ESR小,一般都是认为要选择低ESR的系列,不过也与负载有关,负载越大,ESR不变时,纹波电流变大,纹波电压也变大。我们从公式上来看看,dV=C*di*dt;dv就是纹波,di是电感上电流的值,dt是持续的时间。一般的开关电源书籍都会讲到怎么算纹波,大题分解为:滤波电容对电压的积分+滤波电容的ESR+滤波电容的ESL+noise,如下图: 一般对纹波的计算通常是估算 有关开关电源纹波的计算,原则上比较复杂,要将输入的矩形波进行傅立叶展开成各次谐波的级数,计算每个谐波的衰减,再求和。最后的结果不仅与滤波电感、滤波电容有关,而且与负载电阻有关。当然,计算时是将滤波电感和滤波电容看成理想元件,若考虑电感的直流电阻以及电容的ESR,那就更复杂了。所以,通常都是估算,再留出一定余量,以满足设计要求。对样机需要实际测试,若不能满足设计要求,则需要更改滤波元件参数。 以Buck电路为例,电感中电流连续和断续,开关电源的传递函数完全不同。电流连续时环路稳定,电流断续时未必稳定。而电感中电流是否连续,除与电感量等有关外,还与负载有关。更严重的是,电流是否连续还与占空比有关,而占空比是由反馈电路控制的。不仅Buck,其它如Boost以及由基本拓扑衍生出来的正激、反激等也是一样。 若要求所有可能产生的工作状态下都稳定,通常要加假负载以保证Buck电路电感电流总是连续(对Buck/Boost或反激则保证不会在连续断续之间转变),或者把反馈环路时间常数设计得非常大(这会在很大程度上降低开关电源的响应速度)。对输出电压可调整的开关电源(例如实验室用的0~30V输出电源),环路稳定的难度更大。对这类电源,往往要在开关电源之后再加一级线性调整。 电解电容的选择很重要 在输出端采用高频性能好、ESR低的电容,高频下ESR阻抗低,允许纹波电流大。可以在高频下使用,如采用普通的铝电解电容作输出电容,无法在高频(100kHz以上的频率)下工作,即使电容量也无效,因为超过10kHz时,它已成电感特性了。

风电变流器简介

风电变流器简介 风能作为一种清洁得可再生能源,越来越受到世界各国得重视,我国风能资源丰富,近几年来国家政策也大力扶持风电产业。我公司自06年成功研制第一台风电变流器以来,不断寻求技术革新严把质量关,目前已实现规模化得生产。 本文将针对市场上主流得双馈型风电变流器进行简介。 QHVERT-DFIG型风电变流器系统功能 变流器通过对双馈异步风力发电机得转子进行励磁,使得双馈发电机得定子侧输出电压得幅值、频率与相位与电网相同,并且可根据需要进行有功与无功得独立解耦控制。 变流器控制双馈异步风力发电机实现软并网,减小并网冲击电流对电机与电网造成得不利影响。 变流器提供多种通信接口,如Profibus, CANopen等(可根据用户要求扩展),用户可通过这些接口方便得实现变流器与系统控制器及风场远程监控系统得集成控制。 变流器配电系统提供雷击、过流、过压、过温等保护功能。 变流器提供实时监控功能,用户可以实时监控风机变流器运行状态。变流器可根据海拔进行特殊设计,可以按客户定制实现低温、高温、防尘、防盐雾等运行要求。 QHVERT-DFIG型风电变流器基本原理 变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有快速浮点运算能力得“双DSP得全数字化控制器”;在发电机得转子侧

变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网与最大功率点跟踪控制功能。功率模块采用高开关频率得IGBT功率器件,保证良好得输出波形。这种整流逆变装置具有结构简单、谐波含量少等优点,可以明显地改善双馈异步发电机得运行状态与输出电能质量。这种电压型交-直-交变流器得双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪得发电机有功与无功得解耦控制,就是目前双馈异步风力发电机组得一个代表方向。 变流器工作原理框图如下所示: QHVERT-DFIG型风电变流器系统构成

微机原理第四章课后习题答案

第四章课后作业(6—27) 6.试按下列要求分别编制程序段。 (1)把标志寄存器中符号位SF置“1”。 (2)寄存器AL中高、低四位互换。 (3)由寄存器AX、BX组成一个32位带符号数(AX中存放高16位),试求这个数的负数。 (4)现有三个字节存储单元A、B、C,在不使用ADD和ADC指令的情况下,实现(A)+(B) C。 (5)用一条指令把CX中的整数转变为奇数(如原来已是奇数,则CX中数据不变,如原来是偶数,则(CX)+1 形成奇数)。 答: (1) LAHF OR AH,80H SAHF (2) MOV CL,4 ROL AL,CL (3) MOV CX,0 NEG BX JC CHG JMP GO CHG: MOV CX,1 GO: NEG AX SUB AX,CX (4) MOV CL,A MOV AL,B MOV X,AL CHECK:INC X DEC CL JNZ CHECK (5) OR CX,0001H 7.试给出下列各指令的机器目标代码。 (1)MOV BL,12H [SI] (2)MOV 12H [SI],BL (3)SAL DX,1 (4)AND 0ABH [BP] [DI],1234H

答:(1)100010 1 0 01 011 100 00010010=8A5C12H (2)100010 0 0 01 011 100 00010010=885C12H (3)110100 0 1 11 100 010=0D1E2H (4)100000 0 1 10 100 011 10101011 00000000 00110100 00010010 =81A3AB003412H 8.执行下列指令: STR1 DW ‘AB’ STR2 DB 16DUP(?) CNT EQU $-STR1 MOV CX,CNT MOV AX,STR1 HLT 执行完成之后,寄存器CL的值是多少?寄存器AX的值是多少? 答:因为CNT=16+2=18,所以CX=18=0012H,所以CL=12H=0001,0010; AX中装入的是‘AB’的ASCII码值,其中‘A’在高位AH中,‘B’在低位AL中,所以AX=4142H=0100,0001,0100,0010。 9.JMP FAR PTR ABCD (ABCD是符号地址)的转移方式是什么? 答:段间直接转移。 10.按下列指令写出相应指令或程序段。 (1)写出两条使AX寄存器内容为0的指令。 (2)使BL寄存器中的高、低4位互换。 (3)现有两个带符号数分别在X1和X2变量中,求X1/X2,商和余数分别送入Y1和Y2中。 (4)屏蔽BX寄存器中的b4、b6、b11位。 (5)将AX寄存器的b4、b14位取反,其它位不变。 (6)测试DX寄存器的b0、b9位是否为“1”。 (7)使CX寄存器中的整数变为奇数(如原已经是奇数,则不变)。 答:(1)MOV AX,0 XOR AX,AX (2)MOV CL,4 ROL BL,CL (3)MOV AX,X1 CWD IDIV X2 MOV Y1,AX MOV Y2,DX (4)AND BX,1111 O111 1O10 1111 (5)XOR AX,0100 0000 0001 0000 (6)MOV AX,DX RCR AX,1 JC B0Y ;转向表示b0是1的标号为B0Y的程序段

DCDC Buck Converter输入电容纹波电流有效值

输入电容纹波电流有效值 相信很多人都知道Buck Converter 电路中输入电容纹波电流有效值,在连续工作模式下可以用一下两个公式来计算: Icin.rms =Io × ()D D ×?1 或Icin.rms =Io × 2 )(Vin Vo Vo Vin ? 然而,相信也有很多人并不一定知道上面的计算公式是如何推导出来的,下文将完成这一过程。 众所周知,在Buck Converter 电路中Q1的电流(Iq1)波形基本如右图所示(或见第二页Q1电流波形):0~DTs 期间为一半梯形,DTs ~Ts 期间为零。当0~DT 期间Iq1⊿足够小时,则Iq1波形为近似为一个高为Io 、宽为DTs 的矩形,则有: ?? ?=<<<<)() (01DTs t o Io Ts t DTs Iq 而对于Iin ,只要Cin 容量足够大,则在整个周期中是基本恒定的【见输入电流(Iin)波形】,Iin 值由下式得出: Iin =(V o/Vin)*Io =DIo 由KCL 得:Iin+Icin =Iq1,这里定义Icin 流出电容为正向。所以在整个周期中有: 输入电流(Iin)波形: Icin =Iq1-Iin 即: { )0() (DTs t DIo Io T t DTs DIo Icin <

的,所以有Icin =-DIo 根据有效值的定义,不难得出输入电容的纹波电流有效值Icin.rms 的计算公式: ])()([1.022 ∫∫ ?+?=DTs Ts DTs dt DIo dt DIo Io Ts rms Icin )]()()[(1 .22DTs Ts DIo DTs DIo Io Ts rms Icin ?×+×?= 即: 又因为有D D Io rms Icin ×?=)1(.Vin Vo D =,所以得: 2 )(.Vin Vo Vo Vin Io rms Icin ?= Q1电流(Iq1)波形:

大功率四象限变流器微机实时控制原理

大功率四象限变流器微机实时控制原理 株洲电力机车研究所王挺泽 摘要:本文主要介召了大功率四象限变流器微机控制的基本原理及控制方法 关键词:四象限变流器、微机控制、原理、方法 前言 大功率四象限变流器微机实时控制原理是在AC4000原型车四象限变流器控制的基础上进行的。在此基础上,结合微机控制的优点,又进一步作了的完善,增加了功率因数角控制和具有改善直流电压动态调节性能的直流电流反馈环节。在控制的硬件上则采用了TMS320C31和80C196双CPU的方案,其中80C196负责:(1)与电网电压的同步控制、(2)充电接触器和短接充电接触器的控制、(3)与有关计算机的通迅、(4)功率因数角的探测、(5)跳弓的检测。而微处理器DSP320C31则负责:(1)电压、电流的采样、(2)电压、电流调节器的计算、(3)变压器直流磁化控制、(4)功率因数角的控制、(5)调制电压的计算、(6)PWM脉冲计算、(7)PWM脉冲输出控制。 1、四象限变流器主电路工作原理 如图1所示为交直交电力机车一个转向架带有两个网侧四象限变流器的主电路 图1 四象限变流器的主电路原理图

原理图。为了更好地说明四象限变流器的工作原理,下面对网侧只有一个四象限变流器回路进行分析。为了简化起见,变压器用一个等效电路表示,变压器的漏抗和内阻用一个电感和一个电阻表示。原理上四象限变流器的两对桥臂(包括两个GTO和两个二极管)可用转换开关代替。当网侧四象限变流器在中间回路直流电压U d大于u st峰值下运行时,4qs就作升压调压器工作。图2为用转换开关代替的网侧四象限变流器等效电路图。 图2 四象限变流器的等效电路原理图 4qs是一个脉冲整流器,因此按转换开关的位置,四象限变流器有以下几种工作方式: (1)、u st=0 :电能在电网与变压器漏抗之间交换能量,此时u L=u N,i d0=0 (2)、u st=+U d:电能在电网、变压器漏抗与中间回路之间交换能量,此时u L=u N-U d, I d0=I N (3)、u st=-U d:电能在电网、变压器漏抗与中间回路之间交换能量,此时u L=u N+U d, I d0=-I N 用脉宽调制产生各开关元件的PWM信号,在变流器输入端形成了基波频率与网频一样的脉宽调制电压。现假设该调制电压为理想的正弦波,当u N和调制电压u st 图3 牵引工况和制动工况下的四象限变流器基波矢量图

微机原理第4章练习题及答案

第4章 80x86指令系统 一、自测练习题 ㈠选择题 1.MOV AX,[BX+SI]的源操作数的物理地址是( )。 A.(DS)×16+(BX)+(SI) B. (ES)×16+(BX)+(SI) C.(SS)×10H+(BX)+(SI) D.(CS)×10H+(BX)+(SI) 2.MOV AX,[BP+Sl]的源操作数的物理地址是( )。 A.(DS)×10H+(BP)+(SI) A. (ES)×16+(BP)+(SI) C.(SS)×16+(BP)+(SI) D.(CS)×10H+(BP)+(SI) 3.MOV AX,ES:[BX+SI]的源操作数的物理地址是( )。 A.(DS)×16+(BX)+SI) B.(ES)×10H+(BX)+(SI) C.(SS)×10H+(BX)+SI) D.(CS)×16+(BX)+(SI) 4.JMP WORD PTR[DI]是( )。 A.段内间接转移B.段间间接转移 C.段内直接转移D.段间直接转移 5.JMP FAR PTR BlOCK(BLOCK是符号地址)是( )。 A.段内间接转移B.段间间接转移 C..段内直接转移D.段间直接转移 6.INC指令不影响( )标志。 A.OF B.CF C.SF D.ZF 7.条件转移指令JNE的测试条件是( )。 A.ZF=1 B.CF=0 C.ZF=0 D.CF=1 8.下列指令中,有语法错误的是( )。 A.MOV [SI],[DI] B.IN AL,DX C.JMP WORD PTR[BX+8] D.PUSH WORD PTR 20[BX+S1] 9.假定(SS)=2000H,(SP)=0100H,(AX)=2107H,执行指令PUSH AX后,存放数据21H的物理地址是()。 A.20102H B.20101H C.200FEH D.200FFH 10.对于下列程序段: AGAIN:MOV AL,[SI] MOV ES:[DI],AL INC SI INC DI LOOP AGAIN 也可用指令()完成同样的功能。 A.REP MOVSB B.REP LODSB C.REP STOSB D.REPE SCASB 11.对于下列程序段: AGAIN:MOV ES:[DI],AL INC DI LOOP AGAIN 可用指令()完成。

风电变流器简介

风电变流器简介 风能作为一种清洁的可再生能源,越来越受到世界各国的重视,我国风能资源丰富,近几年来国家政策也大力扶持风电产业。我公司自06年成功研制第一台风电变流器以来,不断寻求技术革新严把质量关,目前已实现规模化的生产。 本文将针对市场上主流的双馈型风电变流器进行简介。 QHVERT-DFIG型风电变流器系统功能 变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机的定子侧输出电压的幅值、频率和相位与电网相同,并且可根据需要进行有功和无功的独立解耦控制。 变流器控制双馈异步风力发电机实现软并网,减小并网冲击电流对电机和电网造成的不利影响。 变流器提供多种通信接口,如Profibus, CANopen等(可根据用户要求扩展),用户可通过这些接口方便的实现变流器与系统控制器及风场远程监控系统的集成控制。 变流器配电系统提供雷击、过流、过压、过温等保护功能。 变流器提供实时监控功能,用户可以实时监控风机变流器运行状态。 变流器可根据海拔进行特殊设计,可以按客户定制实现低温、高温、防尘、防盐雾等运行要求。 QHVERT-DFIG型风电变流器基本原理 变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有快速浮

点运算能力的“双DSP的全数字化控制器”;在发电机的转子侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网和最大功率点跟踪控制功能。功率模块采用高开关频率的IGBT功率器件,保证良好的输出波形。这种整流逆变装置具有结构简单、谐波含量少等优点,可以明显地改善双馈异步发电机的运行状态和输出电能质量。这种电压型交-直-交变流器的双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪的发电机有功和无功的解耦控制,是目前双馈异步风力发电机组的一个代表方向。 变流器工作原理框图如下所示: QHVERT-DFIG型风电变流器系统构成 变流器由主电路系统、配电系统以及控制系统构成。包括定子并网开关、整

相关主题
文本预览
相关文档 最新文档