当前位置:文档之家› 一种新的鲁棒非线性卡尔曼滤波

一种新的鲁棒非线性卡尔曼滤波

一种新的鲁棒非线性卡尔曼滤波
一种新的鲁棒非线性卡尔曼滤波

几种非线性滤波算法的研究-内附程序

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:雷达系统导论 学生所在(系):电子与信息工程学院 学生所在学科:电子与同学工程 学生姓名: 学号: 学生类别: 考核结果阅卷人 第 1 页(共页)

几种非线性滤波算法的介绍与性能分析 作者姓名:学号: 专业院系:电信学院电子工程系 电子邮件: 摘要—非线性滤波算法在雷达目标跟踪中有着重要的应用,对雷达的跟踪性能有着至关重要的影响。好的滤波算法有利于目标航迹的建立及保持,能够得到较精确的目标位置,为发现目标后的后续工作提供可靠的数据依据。本文重点介绍了雷达数据处理中的几种非线性滤波算法:扩展卡尔曼滤波(EKF)、不敏卡尔曼滤波(UKF)、粒子滤波(PF),并且给出了一个利用这三种算法进行数据处理的一个实例,通过这个实例对比分析了这三种算法的性能以及优劣。 关键字—非线性滤波算法;扩展卡尔曼滤波;不敏卡尔曼滤波;粒子滤波; I.概述(一级表题格式) 在雷达对目标进行跟踪前要先对目标进行检测。对于满足检测条件的目标就需要进行跟踪,在跟踪的过程中可以利用新获得的数据完成对目标的进一步检测比如去除虚假目标等,同时利用跟踪获得数据可以进一步完成对目标动态特性的检测和识别。因此对目标进行准确的跟踪是雷达性能的一个重要指标。在检测到满足条件的目标后,根据目标运动状态建立目标运动模型,然后对目标跟踪算法进行设计,这是雷达目标跟踪中的核心部分。 目前主要的跟踪算法包括线性自回归滤波,两点外推滤波、维纳滤波、- αβ滤波、加权最小二乘滤波、维纳滤波和卡尔曼滤波[1]。对于线性系统而言最优滤波的方法就是卡尔曼滤波,卡尔曼滤波是线性高斯模型下的最优状态估计算法。但是实际问题中目标的运动模型往往不是线性的,因此卡尔曼滤波具有很大的局限性。目前主要用的非线性滤波算法可以分为高斯滤波和粒子滤波[2]。不敏卡尔曼滤波和扩展卡尔曼滤波就是高斯滤波中的典型代表,也是应用相对较为广泛的。粒子滤波的应用范围比高斯滤波的适用范围要广,对于系统状态非线性,观测模型非高斯等问题都有很好的适用性。本文具体分析阐述了扩展卡尔曼滤波算法,不敏卡尔曼滤波算法,粒子滤波算法,并且通过一个实例利用仿真的方法分析了这三种算法在滤波性能上的优劣,最后对这三种算法做了一定的总结。 我本科毕业设计题目为《基于历史数据的路径生成算法研究》,由于我是跨专业保研到电信学院,该课题所研究内容不属于雷达系统研究范围,是一种城市路网最快路径生成算法。 II.几种非线性滤波算法 A.扩展卡尔曼滤波 扩展卡尔曼滤波是将非线性系统转换为近似的线性系统的一种方法,其核心思想是围绕滤波值将非线性函数展开成泰勒级数并略去二阶及以上的项,得到一个近似的线性化模型,然后应用卡尔曼滤波完成状态估计。 扩展卡尔曼滤波状态空间模型: k k k w x f+ = + ) ( x 1 状态方程 k k k v x h+ =) ( z观测方程 其中(.) f和(.) h为非线性函数 在扩展卡尔曼滤波中,状态的预测以及观测值的预测由非线性函数计算得出,线性卡尔曼滤波中的状态转移矩阵A阵和观测矩阵H阵由f和h函数的雅克比矩阵代替。 对 (.) f和(.) h Taylor展开,只保留一次项有: ) ? ( ) ?( ) ( k k k k k x x A x f x f- + ≈ ) ? ( ) ?( ) ( k k k k k x x H x h x h- + ≈ 其中: k k x x k k dx df A ?= =为f对 1- k x求导的雅克比矩阵 k k x x k k dx dh H ?= =为h对 1- k x求导的雅克比矩阵 ) ?( ? 1-k k x f x=,于是可以得出: k k k k k k k w x A x f x A x+ - + ≈ + ) ? ) ?( ( 1 k k k k k k k v x H x h x H z+ - + ≈ + ) ? ) ?( ( 1 通过以上变换,将非线性问题线性化。接下来EKF 滤波过程同线性卡尔曼滤波相同,公式如下: )) | (?( ) |1 ( X?k k X f k k= + ) ( ) ( ) | ( ) ( ) |1 (P k Q k k k P k k k+ Φ' Φ = + )1 ( )1 ( ) |1 ( )1 ( )1 (S+ + + ' + + = +k R k H k k P k H k )1 ( )1 ( ) |1 ( )1 ( K1+ + ' + = +-k S k H k k P k

卡尔曼滤波算法总结

Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; } 首先是卡尔曼滤波的5个方程: -=--+(1)先验估计 X k k AX k k Bu k (|1)(1|1)() -=--+(2)协方差矩阵的预测(|1)(1|1)' P k k AP k k A Q

无损变换和无迹Kalman滤波算法

UT 变换 核心思想:近似一种概率分布比近似任意一个非线性函数或非线性变换要容易。 假设n 维向量x 经过一个非线性变换得到y ,即()y g x =,x 的均值为?x ,协方差矩阵为xx P 。 步骤1:根据x 的均值?x 和协方差矩阵xx P ,采用一定的采样策略(此处采用对称采样)得到sigma 点集{}i χ。 0???1,2,...,i i i n i x x x i n χχχ+==+=-= 其中,i 表示矩阵的第i 列。 (0)(0)2() ()/() /()(1) 1/2(),1,2,...,21/2(), 1,2,...,2m c i m i c W n W n W n i n W n i n λλλλαβλλ=+=++-+=+==+= 注,这里sigma 点集{}i χ乘以对应的权重{}i m W ,可得sigma 点集的均 值为?x ,协方差为xx P 。 步骤2:对所采样的sigma 点集{}i χ中的每个sigma 点通过非线性变 换g(*),得到采样后的sigma 点集{}i y 。 ()i i y g χ= 步骤3:对变换后的sigma 点集{}i y 进行加权处理,得到输出变量y 的均值?y 和协方差yy P 。 2()02()0???()()n i m i i n i T yy c i i i y W y P W y y y y ====--∑∑

UKF 非线性系统模型为: ()((1))(1)()(())() x k f x k V k y k h x k W k =-+-=+ 1) 状态初始条件为 ?(0|0)((0|0))??(0|0)(((0|0)(0|0))((0|0)(0|0)))T xx x E x P E x x x x ==-- 2) Sigma 点采样 ??(1|1)[(1|1)(1|1)?(1|1)k k x k k x k k x k k χ--=----+-- 3) 时间更新 202020(|1)((1|1)) ?(|1)(|1) (|1)((|1)) ?(|1)(|1) ??(|1)(((|1)(|1))((|1)(|1)))(1)n i m i i n i m i i n i T xx c i i i k k f k k x k k W k k k k h k k y k k W k k P k k W k k x k k k k x k k Q k χχχμχμχχ===-=---=--=--=--=------+-∑∑∑ 4) 测量更新 20 20 1??(|1)((|1)(|1))((|1)(|1))??(|1)((|1)(|1))((|1)(|1))()(|1)*(|1)???(|)(|1)()(()(|1))(|)n i T xy c i i i n i T yy c i i i xy yy xx P k k W k k x k k k k y k k P k k W k k y k k k k y k k K k P k k P k k x k k x k k K k y k y k k P k k χμμμ==--=-------=------=--=-+--∑∑(|1)()(|1)()T xx yy P k k K k P k k K k =---

2010_第四章_非线性系统的Kalman滤波

4.1 扩展的卡尔曼滤波方程 前面讲的Kalman滤波要求系统状态方程和观测方程都是线性的。然而,许多工程系统往往不能用简单的线性系统来描述。例如,导弹控制问题,测轨问题和惯性导航问题的系统状态方程往往不是线性的。因此,有必要研究非线性滤波问题。对于非线性模型的滤波问题,理论上还没有严格的滤波公式。一般情况下,都是将非线性方程线性化,而后,利用线性系统Kalman滤波基本方程。这一节我们就给出非线性系统的Kalman滤波问题的处理方法。 为了方便描述,下面仅限于讨论下列情况的非线性模型 k k x k k = k +(3.2.8.1) Φ + Γ x+ x ),1 ( ] ) w [ ( ) (k ( )1 ), ( k k v = +k k + z(3.2.8.2) h x ),1 ]1 ( )1 ( [ + (+ )1 +

式中,1)(?∈n R k x 是状态向量,1)(?∈m R k z 是观测向量, )(k w 和)(k v 是噪声;1?∈Φn R 是k k x ),(的非线性函数,具有一阶连续导数;1?∈m R h 是1),1(++k k x 的非线性函数,具有一阶连续导数。)(k w 和)(k v 都是均值为零的白噪声序列,其统计特性如下 {}{}0)(,0)(==k v E k w E ,{}kj T k Q j w k w E δ)()()(=,{} kj T k R j v k v E δ)()()(= 另外,已知初始条件,即)0(x 的统计特性。 下面仅介绍推广的Kalman 滤波方法,即围绕滤波值)|(?k k x 的线性化滤波方法,这种方法是先将非线性模型线性化,而后应用线性系统的Kalman 滤波基本公式。 由系统状态方程(3.2.8.1)可得 )(]),|(?[)]|(?)([)),|(?()1()|(?)(k w k k k x k k x k x x k k k x k x k k x k x Γ+-?Φ ?+Φ≈+= (2.3.8.3) ),1()|(?)(k k x k k x k x +Φ=?Φ ?= (2.3.8.4)

卡尔曼滤波的基本原理及应用

卡尔曼滤波的基本原理及应用卡尔曼滤波在信号处理与系统控制领域应用广泛,目前,正越来越广泛地应用于计算机应用的各个领域。为了更好地理解卡尔曼滤波的原理与进行滤波算法的设计工作,主要从两方面对卡尔曼滤波进行阐述:基本卡尔曼滤波系统模型、滤波模型的建立以及非线性卡尔曼滤波的线性化。最后,对卡尔曼滤波的应用做了简单介绍。 卡尔曼滤波属于一种软件滤波方法,其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 最初的卡尔曼滤波算法被称为基本卡尔曼滤波算法,适用于解决随机线性离散系统的状态或参数估计问题。卡尔曼滤波器包括两个主要过程:预估与校正。预估过程主要是利用时间更新方程建立对当前状态的先验估计,及时向前推算当前状态变量和误差协方差估计的值,以便为下一个时间状态构造先验估计值;校正过程负责反馈,利用测量更新方程在预估过程的先验估计值及当前测量变量的基础上建立起对当前状态的改进的后验估计。这样的一个过程,我们称之为预估-校正过程,对应的这种估计算法称为预估-校正算法。以下给出离散卡尔曼滤波的时间更新方程和状态更新方程。 时间更新方程: 状态更新方程: 在上面式中,各量说明如下: A:作用在X k-1上的n×n 状态变换矩阵 B:作用在控制向量U k-1上的n×1 输入控制矩阵 H:m×n 观测模型矩阵,它把真实状态空间映射成观测空间 P k-:为n×n 先验估计误差协方差矩阵 P k:为n×n 后验估计误差协方差矩阵 Q:n×n 过程噪声协方差矩阵 R:m×m 过程噪声协方差矩阵 I:n×n 阶单位矩阵K k:n×m 阶矩阵,称为卡尔曼增益或混合因数 随着卡尔曼滤波理论的发展,一些实用卡尔曼滤波技术被提出来,如自适应滤波,次优滤波以及滤波发散抑制技术等逐渐得到广泛应用。其它的滤波理论也迅速发展,如线性离散系统的分解滤波(信息平方根滤波,序列平方根滤波,UD 分解滤波),鲁棒滤波(H∞波)。 非线性样条自适应滤波:这是一类新的非线性自适应滤波器,它由一个线性组合器后跟挠性无记忆功能的。涉及的自适应处理的非线性函数是基于可在学习

贝叶斯滤波与卡尔曼滤波的区别

课程:现代信号处理专业:信号与信息处理

贝叶斯与卡尔曼滤波的区别 贝叶斯原理的实质是希望用所有已知信息来构造系统状态变量的后验概率密度,即用系统模型预测状态的先验概率密度,再用最新的观测数据进行修正,得到后验概率密度。通过观测数据来计算状态变量取不同值的置信度,由此获得状态的最优估计。

卡尔曼滤波是贝叶斯滤波的一种特例,是在线性滤波的前提下,以最小均方误差为最佳准则的。采用最小均方误差准则作为最佳滤波准则的原因在于这种准则下的理论分析比较简单,因而可以得到解析结果。贝叶斯估计和最大似然估计都要求对观测值作概率描述,线性最小均方误差估计却放松了要求,不再涉及所用的概率假设,而只保留对前两阶矩的要求。 扩展卡尔曼滤波和无迹卡尔曼滤波都是递推滤波算法,它们的基本思想都是通过采用参数化的解析形式对系统的非线性进行近似,而且都是基于高斯假设。 EKF其基本思想是围绕状态估值对非线性模型进行一阶Taylor展开,

然后应用线性系统Kalman滤波公式。主要缺陷有两点:(1)必须满足小扰动假设,即假设非线性方程的理论解与实际解之差为小量。也就是说EKF只适合非线性系统,对于强非线性系统,该假设不成立,此时EKF性能极不稳定,甚至发散;(2)必须计算Jacobian矩阵及其幂。 UKF是基于UT变换,采用一种确定性抽样方法来计算均值和协方差。相对于EKF的一阶精确,UKF的估计精确度提高到了对高斯数据的三阶精确和对任何非线性的非高斯数据的二阶精确,可出来非加性噪声情况以及离散系统,扩展了应用范围,而且UKF对滤波参数不敏感,鲁棒性强,对复杂的非线性系统,UKF比EKF具有更大的优越性。 如何使卡尔曼滤波后的状态估计误差的相关矩阵的迹最小? Kalman 滤波器是一个最小均方误差估计器,先验状态误差估计可表示为我们最小化这个矢量幅度平方的期望值,这等价于最小化后验估计协方差矩阵的迹,通过展开合并?公式,可得

卡尔曼滤波研究综述

卡尔曼滤波研究综述 1 卡尔曼滤波简介 1.1卡尔曼滤波的由来 1960年卡尔曼发表了用递归方法解决离散数据线性滤波问题的论文-《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法),在这篇文章里一种克服了维纳滤波缺点的新方法被提出来,这就是我们今天称之为卡尔曼滤波的方法。卡尔曼滤波应用广泛且功能强大,它可以估计信号的过去和当前状态甚至能估计将来的状态即使并不知道模型的确切性质。 其基本思想是以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值。算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。它的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 1.2标准卡尔曼滤波-离散线性卡尔曼滤波 为了描述方便我们作以下假设:物理系统的状态转换过程可以描述为一个离散时间的随机过程;系统状态受控制输入的影响;系统状态及观测过程都不可避免受噪声影响;对系统状态是非直接可观测的。在以上假设前提下,得到系统的状体方程和观测方程。

X ?? 1-1 式中:X k 为状态向量,L k 为观测向量,Φk,k-1为状态转移矩阵,U k-1为控制向量,一般 不考虑,Γk,k-1,B k 为系数矩阵,Ωk-1为系统动态噪声向量,Δk 为观测噪声向量,其随机模 型为 E(Ωk ) =0;E(Δk ) =0;cov(Ωk ,Ωj ) = D Ω(k )δkj , cov(Δk ,Δj ) = D k (k )δkj ;cov(Ωk ,Δj ) =0;E(X 0) =μx(0) var(X 0) = D(X 0);cov(X 0,Ωk ) =0;cov(X 0,Δk ) =0. 1-2 卡尔曼滤波递推公式为 X ∧(k/k) = X ∧(k/k-1)+J k (L k -B k X ∧(k/k-1)), D(k/k) = (E-J k B k )D x (k/k-1), J k = D x (k/k-1)BT k [B k D x (k/k-1)]B T k +D Δ(k)]-1, X ∧ (k/k-1) =Φk ,k-1X ∧ (k-1/k-1), D x (k/k-1) =Φk ,k-1D x (k-1/k-1)ΦT k ,k-1+Γk ,k-1D Δ(k-1)ΓT k ,k-1. 1-3 2 几种最新改进型的卡尔曼滤波算法。 2.1 近似二阶扩展卡尔曼滤波 标准的卡尔曼滤波只适用于线性系统,而工程实际问题涉及的又大多是非 线性系统,于是基于非线性系统线性化的扩展卡尔曼滤波(EKF)在上世纪70年代 被提出,目前已经成为非线性系统中广泛应用的估计方法。近似二阶扩展卡尔曼 滤 波方法(AS-EKF)基于线性最小方差递推滤波框架,应用均值变换的二阶近似从 而得到非线性系统的递推滤波滤波框架 该滤波基于线性最小方差递推框架,状态X 的最小方差估计为

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。

无迹卡尔曼滤波算法

%该文件用于编写无迹卡尔曼滤波算法及其测试 %注解:主要子程序包括:轨迹发生器、系统方程 % 测量方程、UKF滤波器 %作者:Jiangfeng %日期:2012.4.16 %--------------------------------------- function UKFmain %------------------清屏---------------- close all;clear all; clc; tic; global Qf n; %定义全局变量 %------------------初始化-------------- stater0=[220; 1;55;-0.5]; %标准系统初值 state0=[200;1.3;50;-0.3]; %测量状态初值 %--------系统滤波初始化 p=[0.005 0 0 0;0 0.005 0 0; 0 0 0.005 0;0 0 0 0.005]; %状态误差协方差初值 n=4; T=3; Qf=[T^2/2 0;0 T;T^2/2 0;0 T]; %-------------------------------------- stater=stater0;state=state0; xc=state; staterout=[]; stateout=[];xcout=[]; errorout=[];tout=[]; t0=1; h=1; tf=1000; %仿真时间设置 %---------------滤波算法---------------- for t=t0:h:tf [state,stater,yc]=track(state,stater); %轨迹发生器:标准轨迹和输出 [xc,p]=UKFfiter(@systemfun,@measurefun,xc,yc,p); error=xc-stater; %滤波处理后的误差 staterout=[staterout,stater]; stateout=[stateout,state]; errorout=[errorout,error]; xcout=[xcout,xc]; tout=[tout,t]; end %---------------状态信息图像--------------- figure; plot(tout,xcout(1,:),'r',tout,staterout(1,:),'g',... tout,stateout(1,:),'black'); legend('滤波后','真实值','无滤波'); grid on; xlabel('时间 t(s)'); ylabel('系统状态A');

卡尔曼滤波算法总结

卡尔曼滤波算法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

2015.12.12 void Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; }

首先是卡尔曼滤波的5个方程: (|1)(1|1)() X k k AX k k Bu k -=--+(1)先验估计 (|1)(1|1)'P k k AP k k A Q -=--+(2)协方差矩阵的预测 ()(|1)'/(|1)')Kg k P k k H HP k k H R =--+(3)计算卡尔曼增益 (|)(|1)()(()(|1))X k k X k k Kg k Z k HX k k =-+--(4)进行修正 5个式子比较抽象,现在直接用实例来说: 一、卡尔曼滤波第一个式子 对于角度来说,我们认为此时的角度可以近似认为是上一时刻的角度值加上上一时刻陀螺仪测得的角加速度值乘以时间,因为d dt θω=?,角度微分等于时间的微分乘以角速度。但是陀螺仪有个静态漂移(而且还是变化的),静态漂移就是静止了没有角速度然后陀螺仪也会输出一个值,这个值肯定是没有意义的,计算时要把它减去。 由此我们得到了当前角度的预测值Angle Angle=Angle+(Gyro - Q_bias) * dt; 其中等号左边Angle 为此时的角度,等号右边Angle 为上一时刻的角度,Gyro 为陀螺仪测的角速度的值,dt 是两次滤波之间的时间间隔,我们的运行周期是4ms 或者6ms 。 同时 Q_bias 也是一个变化的量。 但是就预测来说认为现在的漂移跟上一时刻是相同的,即 Q_bias=Q_bias 将上面两个式子写成矩阵的形式 1_0 1_0 Angle dt Angle dt Q bias Q bia o s Gyr -= + 得到上式,这个式子对应于卡尔曼滤波的第一个式子 (|1)(1|1)() X k k AX k k Bu k -=--+ (|)(|1) P k k I Kg k H P k k =--(())(5)更新协方差阵

卡尔曼滤波基础知识

卡尔曼滤波 马尔可夫过程: 在随机理论中,把在某时刻的事件受在这之前事件的影响,其影响范围有限的随机过程,称为马尔可夫过程。一个事件受在它之前的事件的影响的深远程度,通常用在它之前的事件作为条件的概率来表达。受前一个事件的影响,简称为马尔可夫过程;受前两个事件的影响,称为二阶马尔可夫过程;受前三个事件的影响,称为三阶马尔可夫过程! 卡尔曼滤波简介+算法实现代码(转): 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 现设线性时变系统的离散状态防城和观测方程为: X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1) Y(k) = H(k)·X(k)+N(k) 其中 X(k)和Y(k)分别是k时刻的状态矢量和观测矢量 F(k,k-1)为状态转移矩阵 U(k)为k时刻动态噪声

T(k,k-1)为系统控制矩阵 H(k)为k时刻观测矩阵 N(k)为k时刻观测噪声 则卡尔曼滤波的算法流程为: 1 2预估计X(k)^= F(k,k-1)·X(k-1) 3计算预估计协方差矩阵C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)' Q(k) = U(k)×U(k)' 4计算卡尔曼增益矩阵 K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1) R(k) = N(k)×N(k)' 5更新估计 X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^] 6计算更新后估计协防差矩阵 C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)' 7X(k+1) = X(k)~ C(k+1) = C(k)~ 重复以上步骤 其c语言实现代码如下: #include "stdlib.h" #include "rinv.c" int lman(n,m,k,f,q,r,h,y,x,p,g) int n,m,k; double f[],q[],r[],h[],y[],x[],p[],g[]; { int i,j,kk,ii,l,jj,js; double *e,*a,*b; e=malloc(m*m*sizeof(double)); l=m;

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码 卡尔曼滤波算法实现代码(C,C++分别实现) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.doczj.com/doc/8610071803.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就

基于无迹卡尔曼滤波的移动机器人室内定位算法研究

目录 摘要..................................................................................................................I ABSTRACT.......................................................................................................... II 第1章绪论 (1) 1.1课题研究目的及意义 (1) 1.2移动机器人研究的发展 (1) 1.3移动机器人室内定位方法现状 (5) 1.3.1室内定位方法概述 (5) 1.3.2特征提取与匹配算法 (7) 1.3.3多传感器定位的信息融合算法 (9) 1.4本文研究内容 (11) 第2章多传感器移动机器人系统搭建 (12) 2.1弓 (12) 2.2硬件平台设计与搭建 (12) 2.2.1机械结构设计 (12) 2.2.2传感器选型 (15) 2.3多传感器系统软件开发 (17) 2.3.1运动控制模块 (18) 2.3.2基于里程计建立移动机器人运动学模型 (19) 2.3.3基于激光测距仪数据建立特征地图 (22) 2.3.4基于动态阈值的特征提取 (23) 2.3.5传感器数据的特征匹配 (28) 2.4基于Q t架构的上位机界面程序开发 (32) 2.5本章小结 (33) 第3章基于无迹卡尔曼冗余测量参数的室内定位算法 (35) 3.1引言 (35) 3.2 Kalman滤波的基本原理 (35) 3.3无迹Kalman滤波的基本原理 (36) - III -

卡尔曼滤波的原理说明(通俗易懂)

为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。 另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。 好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。 假如我们要估算k时刻的是实际温度值。 首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。 然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。 由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance 来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg =0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23) =24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。 现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5 =2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。 就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇! 下面就要言归正传,讨论真正工程系统上的卡尔曼。

优化卡尔曼滤波算法中的目标函数选择

万方数据

万方数据

万方数据

万方数据

优化卡尔曼滤波算法中的目标函数选择 作者:王建文, 税海涛, 马宏绪, 李迅, 刘述田, WANG Jian-wen, SHUI Hai-tao, MA Hong-xu, LI Xun, LIU Shu-tian 作者单位:王建文,税海涛,马宏绪,李迅,WANG Jian-wen,SHUI Hai-tao,MA Hong-xu,LI Xun(国防科技大学机电工程与自动化学院,湖南,长沙,410073), 刘述田,LIU Shu-tian(91065部队教研部 ,辽宁,葫芦岛,125001) 刊名: 系统工程与电子技术 英文刊名:SYSTEMS ENGINEERING AND ELECTRONICS 年,卷(期):2009,31(1) 引用次数:0次 参考文献(18条) 1.Kalman R E A new approach to linear filtering and prediction problems 1960(Series D) 2.Kalman R E.Bucy R S New methods and results in linear filtering and prediction theory 1961(Series D) 3.邓自立自校正滤波理论及其应用--现代时间序列分析方法 2003 4.Mehra R K On the identification of variances and adaptive Kalman filtering 1970(02) 5.周东华.席裕庚.张钟俊一种带多重次优渐消因子的扩展卡尔曼滤波器 1991(06) 6.Chen G.Chui C K A modified adaptive Kalman filter for realtime applications 1991(01) 7.Xie L.Sob Y C.de-Souza C E Robust Kalman filtering for uncertain discrete-time systems 1994(06) 8.Shen X.Deng L Game theory approach to discrete H∞ filter design 1997(04) 9.Chaer W S.Bishop R H.Ghosh J A mixture-of-experts framework for adaptive Kalman filtering 1997(03) 10.Katsikas S K.Likothanassis S D.Beligiannis G N Genetically determined variable structure multiple model estimation 2001(10) 11.Mazor E.Averbueh A.Bar-Shalom Y Interacting multiple model in target tracking:a survey 1998(01) 12.Li X.Bar-Shalom Y Multiple-model estimation with variable structure 1996(04) 13.Athans M.Wishner R P.Bertolini A Suboptimal state estimation for continuous-time nonlinear systems from discrete noisy measurements 1968(05) 14.Julier S J.Uhlmann J K.Durrant-Whyte H F A new method for the nonlinear transformation of means and eovariances in filters and estimators 2000(03) 15.Ito K.Xiong K Q Ganssian filters for nonlinear filtering problems 2000(05) 16.Nogaard M.Poulsen N K.Ravn O New developments in state estimation for nonlinear systems 2000(11) 17.王建文.韩大鹏.马宏绪一种新的SPKF算法--GSPKF算法[期刊论文]-系统仿真学报 2008(04) 18.Gustafsson F.Gunnarsson F.Bergman N Particle filters for positioning,navigation and tracking 2002(02) 相似文献(0条) 本文链接:https://www.doczj.com/doc/8610071803.html,/Periodical_xtgcydzjs200901045.aspx 下载时间:2010年6月1日

WiFi-PDR室内组合定位的无迹卡尔曼滤波算法

WiFi-PDR室内组合定位的无迹卡尔曼滤波算法 陈国良1,2,张言哲1,2,汪云甲1,2,孟晓林3 【摘 要】针对当前室内定位的应用需求和亟待解决的关键问题,结合城市室内环境下广泛存在的WiFi无线信号以及智能手机传感器信息,提出了一种WiFi无线信号联合行人航迹推算(PDR)的室内定位方法。该方法采用无迹卡尔曼滤波(UKF)算法对WiFi和PDR定位信息进行融合处理,有效克服了WiFi单点定位精度低和PDR存在累计误差的问题。针对融合算法中WiFi指纹匹配计算量大的问题,用k-means聚类算法对WiFi指纹库进行聚类处理,降低了指纹匹配算法的计算量,提高了算法的实时性。通过在华为P6-U06智能手机平台上实际测试,在时间效率上经过聚类处理后系统定位耗时有很大程度的改善,平均降幅为51%,其中最大降幅达到64%,最小的也达到了36%;在定位精度上,当室内人员为行走状态时WiFi定位平均误差为7.76 m,PDR定位平均误差为4.57 m,UKF滤波融合后平均定位误差下降到1.24 m。 【期刊名称】测绘学报 【年(卷),期】2015(044)012 【总页数】8 【关键词】室内定位;手机传感器;WiFi;行人航迹推算;k-means;无迹卡尔曼滤波 1 引 言 随 着 基 于 位 置 的 服 务[1] (location-based services,LBS)的兴起,人们对室内位置服务的需求日益强烈,如大型商场、地铁、飞机场等。各个领域的研究者越来越关注基于无线传感器网络[2](wireless sensing networks,WSN)和无线局域网[3](wireless local area networks,WLAN)等面向室内场所环境的定位技术,研究成果包括红外线[4]、超 声 波[5]、射 频 识 别[6](radio frequency identification,RFID)、蓝 牙[7]、超 宽 带[8](ultra wide band,UWB)、无线保真[9](wireless fidelity,WiFi)、 ZigBee[10]、地磁定位[11]等典型的室内定位方法,设计出了多个具有代表性的室内定位系统。由于单一信号无法覆盖全部室内空间,这就需要多种定位技术的结合使用。文献[12]将GPS、RFID、WiFi和计步器4种定位技术融合,组成一个定位平台,有效弥补了各种定位技术的缺点,提高了定位精度和稳定性。文献[13—14]利用行人航迹推算(ped estrian dead reckoning,PDR)和UWB定位互补技术,采用约束滤波器使得位置估计精度达到亚米级。文献[15]采用UKF(unscented kalman filter)滤波融合惯导定位结果和WiFi定位结果来对室内车辆进行定位,取得很好的效果。文献[16—17]开展了多源泛在无线信号辅助的室内外无缝定位方法研究,提出了一种泛在无线信号辅助的无缝定位新方法,并对无缝定位技术的原理、特点和发展趋势进行了讨论。上述这些定位系统往往需要添加额外的硬件设施,系统实现复杂,部署成本高,因

相关主题
文本预览
相关文档 最新文档