当前位置:文档之家› abaqus管道建模过程 2.0

abaqus管道建模过程 2.0

abaqus管道建模过程 2.0
abaqus管道建模过程 2.0

一、建立ABAQUS有限元模型

(一)模型选择

针对海洋管道缺陷引起的局部压溃问题,本小组采用ABAQUS建立管道局部片腐蚀有限元模型,将局部片腐蚀段长度Lf、局部片过渡段长度Lg、片腐蚀深度Ls作为研究的缺陷影响参数,建立三维直管道模型。模型正常管道外径取44.4mm,壁厚取1.659mm,施加压力为20mpa。建模分析过程采用非线性弧长法(Static,Riks),控制分析步中的增量步,以保证在之后的计算中,加载力的曲线能够下降并且管道能压溃。

(二)模型建立

1、建立管道剖面

(1)part模块建立正常管道剖面。

首先创建3D-shell planar模块part-1(图1),建立正常段管道1/4圆剖面。具体是先画一个半径为0.0222的圆,向圆内偏移一个管厚0.001659的距离形成管道内径圆(图2),并作辅助线(图3)切割出1/4圆(图4),右下图即为part-1剖面。其中两条辅助线是圆心分别与点(0,0.0222)和点(0.0222,0)的交点。

图1.creat part 图2.绘制管道内径圆

图3.作辅助线图4.正常管道剖面

(2)part模块建立腐蚀管道剖面。

腐蚀管道剖面与正常管道剖面做法相同,同样创建一个3D-shell planar 模块part-2(图5),在该模块下建立腐蚀段管道1/4圆剖面。通过先画一个半径为0.022的圆,向圆内偏移一个管厚0.001659的距离形成管道内径圆(图6),并作辅助线(图7)切割出1/4圆(图8),右下图即为part-2剖面。由于腐蚀

深度为0.0003,则两条辅助线是圆心分别与点(0,0.0219)和点(0.0222,0)的交点。

图5. creat part 图6.绘制管道内径圆

图7.作辅助线图8.腐蚀管道剖面

2、运用Assembly模块进行管道装配。

进入Assembly模块,我们先创建Instance(图9),因为有四个截面需要装配,由刚刚设置的截面各选择两次得到part1-1,part1-2,part2-1,part2-2,其中part1-1和part1-2为正常管道截面,part2-1和part2-2为腐蚀管道截面。

我们研究的管道长20D,所以将part2-2向内偏移5D,part1-1向内偏移10D,part1-2向内偏移20D(图10)。再选择instance-merge/cut(图11),进入merge/cut,选取所有对象,得到一个包含全部四个截面的part-3,即part-3中包含了整根管道的各个截面信息。

图9.creat instance 图10.part3

图11. merge/cut

3、part模块下放样,生成完整的1/4管道模型。

在part-3下,选择工具栏中放样工具(图12),选中相邻两截面进行放样(图13),得到一个长20D,含有正常情况和腐蚀情况的管道模型。

图12.edit solid loft 图13.放样完成模型

4、对模型进行刚性约束

(1)part模块建立刚性面。

由于我们建立模型时采用了管道的1/4作为模型,破坏了结构连续性,所以需要对其竖直和水平两侧内壁进行刚性约束,使其在受载过程中发生的位移符合实际位移。

我们创建一个3D-analyticalrigid模块part-4(图14),创建刚性面,控制内壁接触。具体是先画一条长度0.0222的线段(图15),然后拉长到0.888,形成一个平面(图16),该平面就是刚性面。最后由菜单tools-reference point,选择RP作为参考点(图17),用于移动刚性面和添加载荷。

图14.creat part 图15. 长度0.0222的线段

图16.长0.888平面图17.RP作为参考点

(2)、在Assembly模块中将刚性面装配给part-3。

进入Assemble模块,将刚性面与part-3装配起来(图18)。然后通过Translate Instance命令移动刚性面与1/4管道截面恰好接触(图19),得到一个带刚性面的1/4管道模型part-4。

图18.creat instance 图19.带刚性面的1/4管道模型part-4

5、property模块定义材料属性。

运用EXCEL表格中的数据,输入材料密度7850(图20),输入杨氏模量206107000000和泊松比0.3(图21)以及一系列应力-应变关系(图22)。然后点击creat section命令(图23)和edit section assignment命令(图24),

最后选中单元对管道完成单元属性定义(图25)。

图20.定义材料属性图21.定义材料属性

图22.定义材料属性

图23.creat section 图24.edit section assignment

图25.完成单元属性定义

6、step模块定义分析方法。

进入step模块,选用Static,Riks弧长法。Nlgeom选择on,即设置分析过程为几何非线性。调整最大增量步(Maximum number of increments)分析步数,调节好arc lengthIncrement的大小,为保证在之后的计算中,加载力的曲线能够出现下降并且管道能压溃。此处我们小组修改initial为0.02,修改maximum为0.1,完成step的定义。

图26.creat、edit step

7、interaction定义刚性面与管道内壁的接触。

接下来需要定义刚性板和管道直接的接触形式,保证当管道发生受力变形时,最多压溃到刚性板以后就不再继续变形。

进入interaction模块,定义法向与切向接触,均为默认值(图27)。随后定义刚性面与管道内表面的接触形式为面—面接触,先选刚性面,得到brown

和purple,选择brown。再选管壁,选默认值,得到如图28。

图27.edit contact property图28.

8、mesh模块划分单元。

Object选择part首先定义种子(seed edges),先将结构用网格显示(如

图29),然后具体将网格分为径向,轴向,周向三类,径向网格用number来控

制划分,轴向和周向的网格用size来控制划分图30。图31的种子定义完成,

最后点击mesh part命令得到图32。

图29. 网格显示图30.local seeds

图31.定义种子图32.划分完成图

9、load模块施加约束和载荷。

对刚性面施加全固定约束(图33)。对称面采用对称边界条件约束,两个径向面中与x轴垂直的采用图34所示条件的约束,与y轴垂直的采用图35所示条件的约束,腐蚀端的截面与z轴垂直因此采用图36所示条件的约束。正常端的截面施加如图37所示约束。最后点击creat load命令,施加载荷pressure 大小为2e7(如图38)。

图33. 图34.

图35. 图36.

图37. 图38.

二、PYTHON参数化处理

在建模完成,并得出初始Lg、Ls、Lf参数的分析结果后,将模型导出为参数化建模脚本文件(py.文件),通过分别修改py.文件中的三种缺陷影响参数,可以进行管道局部压溃问题的参数敏感性分析。其具体工作如下:从ABAQUS工作目录中找到建模时产生的日志文件(.rpy),修改后缀名为py后用电脑中的python2.7打开,除去session.viewports开头的变化视角的语句以及#:开头的注释语句,剩下的即为在之前的CAE操作中的有效语句。(图39为部分语句)。

图39.部分语句

下面将程序中的腐蚀深度,过渡段长度以及腐蚀段长度分别用字母Ls,Lg,Lf来表示,在程序语句的最前面对其进行赋值(图40)。然后在程序语句中找到建模过程中出现的全部的腐蚀深度,过渡段长度以及腐蚀段长度参数,将其分别用Ls,Lg,Lf代替。在修改模型的缺陷影响参数,对结构进行敏感性分析的过程中,可以直接通过修改程序前面的赋值语句,逐一改变缺陷影响参数,从而简化工作(图41到图44)。

图40.

图41

图42

图43

图44

钢管混凝土ABAQUS建模过程

钢管混凝土ABAQUS建模过程 Part模块 一、钢管 1.壳单元 概念:壳单元用来模拟那些厚度方向尺寸远小于另外两维尺寸,且垂直于厚度方向的应力可以忽略的的结构。以字母S开头。轴对称壳单元以字母SAX开头,反对称变形的单元以字母SAXA开头。除轴对称壳外,壳单元中的每一个数字表示单元中的节点数,而轴对称壳单元中的第一个数字则表示插值的阶数。如果名字中最后一个字符是5,那么这种单元只要有可能就会只用到三个转动自由度中的两个。 2.壳单元库 一般三维壳单元有三种不同的单元列示: ①一般壳单元:有限的膜应变和任意大的转动,允许壳的厚度随单元的变形而改变,其他壳单元仅假设单元节点只能发生有限的转动。 ②薄壳单元:考虑了任意大的转动,但是仅考虑了小应变。 ③厚壳单元:考虑了任意大的转动,但是仅考虑了小应变。 壳单元库中有线性和二次插值的三角形、四边形壳单元,以及线性和二次的轴对称壳单元。所有的四边形壳单元(除了S4)和三角形壳单元S3/S3R采用减缩积分。而S4和其他三角形壳单元采用完全积分。 3.自由度 以5结尾的三维壳单元,每一节点只有5个自由度:3个平动自由度和面内的2个转动自由度(没有绕壳面法线的转动自由度)。然而,如果需要的话,节点处的所有6个自由度都是可以激活的。 其他三维壳单元在每一节点处有6个自由度(三个平动自由度和3个转动自由度)。 轴对称壳单元的每一节点有3个自由度: 1 r-方向的平动 2 z-方向的平动 3 r-z平面内的平动 4.单元性质 所有壳单元都有壳的截面属性,它规定了壳单元的材料性质和厚度。 壳的横截面刚度可在分析中计算,也可在分析开始时计算。 ①在分析中计算:用数值方法来计算壳厚度方向上所选点的力学性质。用户可在壳厚度方向上指定任意奇数个截面点。 ②在分析开始时计算:根据截面工程参量构造壳体横截面性质,不必积分单元横截面上任何参量。计算量小。当壳体响应是线弹性时,建议采用这个方法。 5.壳单元的应用

abaqus管道建模过程

一、建立ABAQUS有限元模型 (一)模型选择 针对海洋管道缺陷引起的局部压溃问题,本小组采用ABAQUS建立管道局部片腐蚀有限元模型,将局部片腐蚀段长度Lf、局部片过渡段长度Lg、片腐蚀深度Ls作为研究的缺陷影响参数,建立三维直管道模型。模型正常管道外径取44.4mm,壁厚取1.659mm,施加压力为20mpa。建模分析过程采用非线性弧长法(Static,Riks),控制分析步中的增量步,以保证在之后的计算中,加载力的曲线能够下降并且管道能压溃。 (二)模型建立 1、建立管道剖面 (1)part模块建立正常管道剖面。 首先创建3D-shell planar模块part-1(图1),建立正常段管道1/4圆剖面。具体是先画一个半径为0.0222的圆,向圆内偏移一个管厚0.001659的距离形成管道内径圆(图2),并作辅助线(图3)切割出1/4圆(图4),右下图即为part-1剖面。其中两条辅助线是圆心分别与点(0,0.0222)和点(0.0222,0)的交点。

图1.creat part 图2.绘制管道内径圆 图3.作辅助线图4.正常管道剖面 (2)part模块建立腐蚀管道剖面。 腐蚀管道剖面与正常管道剖面做法相同,同样创建一个3D-shell planar 模块part-2(图5),在该模块下建立腐蚀段管道1/4圆剖面。通过先画一个半径为0.022的圆,向圆内偏移一个管厚0.001659的距离形成管道内径圆(图6),并作辅助线(图7)切割出1/4圆(图8),右下图即为part-2剖面。由于腐蚀

深度为0.0003,则两条辅助线是圆心分别与点(0,0.0219)和点(0.0222,0)的交点。 图5. creat part 图6.绘制管道内径圆 图7.作辅助线图8.腐蚀管道剖面 2、运用Assembly模块进行管道装配。 进入Assembly模块,我们先创建Instance(图9),因为有四个截面需要装配,由刚刚设置的截面各选择两次得到part1-1,part1-2,part2-1,part2-2,其中part1-1和part1-2为正常管道截面,part2-1和part2-2为腐蚀管道截面。

abaqus有限元分析过程

一、有限单元法的基本原理 有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。 有限元方法的基本思路是:化整为零,积零为整。即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。由位移求出应变, 由应变求出应力 二、ABAQUS有限元分析过程 有限元分析过程可以分为以下几个阶段 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。 由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理, 并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。 “Part(部件) 用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。 Property(特性) 截面(Section)的定义包括了部件特性或部件区域类信息,如区域的相关材料定义和横截面形状信息。在Property模块中,用户生成截面和材料定义,并把它们赋于(Assign)部件。 Assembly(装配件) 所生成的部件存在于自己的坐标系里,独立于模型中的其它部件。用户可使用Assembly模块生成部件的副本(instance),并且在整体坐标里把各部件的副本相互定位,从而生成一个装配件。 一个ABAQUS模型只包含一个装配件。

abaqus复合材料薄壁圆筒建模流程

1,建立模型Part Module :类型三维,solid,旋转;按尺寸绘图,done,设置旋转角此处为360度。 2,建立参考面,将圆筒分成两半 3,Assembly Module :类型Independent 分区partition截面 4,Mesh module : 点击remove空二,选择cells消隐分区 X Select entities to remove: Cells Undo 撒种子时,需要分几层就在边缘上撒多少个种子,在每条边上尽量都撒相同数量的种子, 生成结构网格,生成的网格才比较规整。 (注意,此处的mesh,对象为assembly,而不是part) 生成网格后,Mesh: Create Mesh Part Module I- Mesh * Model:j Model-1 abject: * Awembly Part「 4,Job Module : Create Job,例如job-007-01,运行生成job-007-01.inp 文件,保存成007-01.cae 文件。 5,File: New打开新窗口

6,File: Import : Model 选择job-007-01.inp 打开 7,Mesh Module: Tools: Surface manager: create: by angle 定义surface 集合 Tools: Set manager: create: Element: by angle 定义Element 集合 用以下三个命令操作,选择恰当的面。 丄i Select the Entity Closest to the Screen, ---- Select From Exterior En tities '包i 一 J Select From Interior Entities (左键点击第二个图标不放拖出即可) 注:定义Element集合时,可以从外到内,定以一层后,在display中--- -:把定义的那层remove掉再定义下面一层。 8,Mesh: Edit :Mesh : Mesh Offset (create solid layers): Surfaces (选择相应的面):Total thickness定义厚度,生成cohesive单元,把其之前定义的几层surface,都生成cohesive单丿元。 9,Mesh: Element type :对cohesive 单元,Family 选择Cohesive,对其他单元,Family 选择3D Stress;对于静态运算,Element Library选择Standard,对于动态(显式)运算,Element Library 选择Explicit。 10,Property: Create Material: jiti (材料名字):Mechanical : Elastic: Type: Isotropic =tdrt Matetial 邑 M<)terial-jiti Description; NLrnnb?r of field v-arid4)l?:0 ' Moduli tme scale [forvi&ctwlKlicrty^ Long-term No compr-eision 3 Nc Datia Voungi'i P鈕1刖n1* 1 4D0C Create Material: xianwei (材料名字):Mechanical : Elastic : Type : Isotropic

ABAQUS中Cohesive单元建模方法

复合材料模型建模与分析 1. Cohesive单元建模方法 几何模型 使用内聚力模型(cohesive zone)模拟裂纹的产生和扩展,需要在预计产生裂纹的区域加入cohesive层。建立cohesive层的方法主要有: 方法一、建立完整的结构(如图1(a)所示),然后在上面切割出一个薄层来模拟cohesive 单元,用这种方法建立的cohesive单元与其他单元公用节点,并以此传递力和位移。 方法二、分别建立cohesive层和其他结构部件的实体模型,通过“tie”绑定约束,使得cohesive单元两侧的单元位移和应力协调,如图1(b)所示。 (a)cohesive单元与其他单元公用节点(b)独立的网格通过“tie”绑定 图1.建模方法 上述两种方法都可以用来模拟复合材料的分层失效,第一种方法划分网格比较复杂;第二种方法赋材料属性简单,划分网格也方便,但是装配及“tie”很繁琐;因此在实际建模中我们应根据实际结构选取较简单的方法。 材料属性 应用cohesive单元模拟复合材料失效,包括两种模型:一种是基于traction-separation 描述;另一种是基于连续体描述。其中基于traction-separation描述的方法应用更加广泛。 而在基于traction-separation描述的方法中,最常用的本构模型为图2所示的双线性本构模型。它给出了材料达到强度极限前的线弹性段和材料达到强度极限后的刚度线性降低软化阶段。注意图中纵坐标为应力,而横坐标为位移,因此线弹性段的斜率代表的实际是cohesive单元的刚度。曲线下的面积即为材料断裂时的能量释放率。因此在定义cohesive的力学性能时,实际就是要确定上述本构模型的具体形状:包括刚度、极限强度、以及临界断裂能量释放率,或者最终失效时单元的位移。常用的定义方法是给定上述参数中的前三项,也就确定了cohesive的本构模型。Cohesive单元可理解为一种准二维单元,可以将它看作被一个厚度隔开的两个面,这两个面分别和其他实体单元连接。Cohesive单元只考虑面外的力,包括法向的正应力以及XZ,YZ两个方向的剪应力。 下文对cohesive单元的参数进行阐述,并介绍参数的选择方法。

Abaqus基本操作中文教程

Abaqus基本操作中文教程

目录 1 Abaqus 软件基本操作 .................... 常用的快捷键 .......................... 单位的一致性 .......................... 分析流程九步走 ....................... 几何建模(Part) ..................... 属性设置(Property) ................... 建立装配体(Assembly) ................... 定义分析步(Step) ................... 相互作用(In teracti on................ ) 载荷边界(Load) ..................... 划分网格(Mesh) .................. 作业(Job) ...................... 可视化(Visualization )................. 1 Abaqus软件基本操作 常用的快捷键 「旋转模型一Ctrl+Alt+ 鼠标左键 于平移模型一Ctrl+Alt+鼠标中键 " 缩放模型一Ctrl+Alt+ 鼠标右键 单位的一致性 CAE软件其实是数值计算软件,没有单位的概念,常用的国际单位制如下表1所示,建议采用SI (mm)进行建模。

国际单位制 SI (m) SI (mm) 「长度 m mm 力 N N 质量 kg t 时间 s s 应力 2 Pa (N/m ) 2 MPa (N/mm) 质量密度 kg/m 3 3 t/mm 加速度 m/s 2 mm/s 例如,模型的材料为钢材,采用国际单位制 SI (m )时,弹性模量为 m,重力加速度m/s 2 ,密度为7850 kg/m 3,应力Pa;采用国际单位制SI (mm ) 时,弹性模量为 口金 重力加速度 9800 mm/s 2 ,密度为7850e-12??T/mm 5, 应力MPa 分析流程九步走 几何建模(Part 属性设置(Property ) 建立装配体(Assembly ) T 定义分析步(Step ) T 相互作用 (Interaction )宀载荷边界(Load ) T 划分网格 (Mesh )T 作业(Job )T 可视化(Visualization ) ' 以上给出的是软件 ! 常规的建模和分析的流 程,用户可以根据自己 ;的建模习惯进行调整。 I 另外,草图模块可以进 !行参数化建模,建议用 」户可以参考相关资料进--- 几何建模(Part ) 关键步骤的介绍: 部件(Part )导入 Pro/E 等CAD 软件建好的模型后,另存成 iges 、sat 、step 等格式; 然后导入Abaqus 可以直接用,实体模型的导入通常采用 sat 格式文件导 謝t fti5 忧化 fkit 可泯忧

ABAQUS钢管混凝土建模

1、建立PART 建的圆是半径 主支管 混凝土端板 2、输入材料 混凝土材料:损伤塑性模型,注意单位的对应,弹性模量参考ACI318-05(2005)中的混凝土弹性模量计算方法,取E=4700( f ’c)1/2(MPa),f ’c为混凝土的圆柱体轴心抗压强度f ’c=0.79f cu,k; f cu,k为立方体抗压强度标准值;混凝土弹性阶段泊松比为0.2。

塑性行为:膨胀角,偏心率等都为默认值 受压行为:用韩林海老师的程序算出

受拉行为: ABAQUS提供了三种定义混凝土受拉软化性能的方法:1.、混凝土受拉的应力-应变关系;2、采用混凝土应力-裂缝宽度关系;3、混凝土破坏能量准则即应力-断裂能关系。分别对应软件的STRAIN, DISPLACEMENT, GFI。其中,采用能量破坏具有更好的收敛性。 断裂能确定:对于C20混凝土,断裂能为40 N/m ;对于C40混凝土,断裂能为120 N/m ;中间插值计算。开裂应力近似按下式确定:应力=0.26*(1.25*f ’c)2/3 ;也可使用韩林海老师的计算软件算的受拉应力—应变关系。 钢材材料普通定义 3、组装:T型钢管和混凝土两个PART可以先分别画网格然后进行组装 4、荷载步:建立多个荷载步,第一个荷载步施加非常小的力荷载,让接触平稳建立,第二个荷载步施加位移荷载,进行求解。初始步要小。关闭大变形效应比较好收敛。

5、建立接触: 接触面之间的相互作用包含两部分:一部分是接触面之间的法向作用,另一部分是接触面之间的切向作用。切向作用包括接触面之间的相对滑动和可能存在的摩擦剪应力。两个表面分开的距离称为间隙(CLEARANCE)。当两个表面之间的间隙变为0时,在ABAQUS 中施加了接触约束。在接触问题的公式中,对接触面之间可以传递的接触压力的量值未做任何限制。当接触面之间的接触压力变为0或负值时,两个接触面分离,并且约束被移开。这种行为代表了硬接触。接触性质

钢管混凝土在工程结构中的应用

钢管混凝土单肢柱承载力验算 摘要:钢管混凝土构件已经被广泛应用于土木工程,在工程中的应用主要采用单肢柱的形式,本文主要介绍了单肢柱的理论计算方法,此外,基于钢材和混凝土的本构关系,采用ABAQUS 有限元软件对两端铰支的轴压钢管混凝土进行数值计算,并将数值解与理论值进行了对比,验证了ABAQUS建模的合理性和准确性。 关键词:钢管混凝土;单肢柱;ABAQUS软件 Calculation of bearing capacity of concrete filled steel tube columns Abstract:Concrete filled steel tubular members has been widely used in civil engineering, application in engineering mainly adopts the form of single limb column. This paper mainly introduces the theoretical calculation method of single limb column, in addition, based on the constitutive relation of steel and concrete, using ABAQUS finite element software on both ends of the hinge shaft support pressure steel pipe concrete numerical calculation, and the numerical solution was compared with the theoretical value, to verify the accuracy and reasonableness of the ABAQUS modeling. Key words:concrete-filled steel tubes;Single limb column;ABAQUS software; 1 概述 钢管混凝土是指在钢管中填充混凝土而形成的构件,按截面形式的不同,可以分为圆钢管混凝土,方形、矩形和多边形截面钢管混凝土等,其中圆形截面和矩形截面钢管混凝土结构应用较为广泛。钢管混凝土利用钢管和混凝土两种材料在受力过程中的相互作用,即钢管对其核心混凝土的约束作用,使混凝土处于复杂的应力状态之下,不但提高了混凝土的抗压强度,而且还使其塑性和韧性性能得到改善。混凝土塑性、韧性的改善使本属于脆性的材料转变为塑性材料,而且避免和延缓钢管过早地发生局部屈曲,从而提高了结构的可靠度、强度,又节省了材料,降低了造价。通过钢管和混凝土组合而成为钢管混凝土,不仅可以弥补两种材料各自的缺点,而且还能充分发挥二者的优点[1]。在我国,钢管混凝土的应用领域主要在:1)单层和多层厂房;2)大跨度桥梁工程(主要是拱桥的拱肋);3)高层和超高层建筑; 4)设备构架柱、各种支架柱和栈桥柱;5)地铁站台柱;6)送变电杆塔;7)桁架压杆;8)空间结构;9)桩[1]。 2单肢柱承载力两种理论规程计算

定义ABAQUS模型

定义Abaqus模型
第一讲
? Dassault Systèmes, 2008
概述
? 简介 ? Abaqus模型的组件 ? Abaqus q 输入文件的细节 ? Abaqus输入文件惯例 ? Abaqus输出 ? 例子:悬臂梁模型 ? 部件和装配件(可选)
? Dassault Systèmes, 2008
1

简介
? Dassault Systèmes, 2008
L1.4
SIMULIA
? SIMULIA是达索的注册商标,专注于提供模拟现实世界仿真技术的解决方案 ? Unified FEA 统一的有限元 ? Multiphysics p y 多物理场分析 ? SLM 仿真生命周期管理 ? 总部位于Providence, RI, USA ? R&D centers in Providence and in Suresnes, France
Introduction to Abaqus/CAE
? Dassault Systèmes, 2008
2

简介
SIMULIA Headquarters: Providence, Rhode Island Offices: USA: California Ohio Overseas: Australia Finland India Korea UK (2) Representatives: Overseas: Argentina Malaysia Russia Spain Brazil New Zealand Singapore Taiwan Czech Republic Poland South Africa Turkey Indiana Rhode Island Austria France Italy Netherlands Michigan Texas China Germany (2) Japan (2) Sweden
? Dassault Systèmes, 2008
简介
? 课程预备知识 ? 本课将介绍Abaqus/Standard和Abaqus/Explicit ;假定学员具有有限元分析 的基础知识。 ? 本课的目的是让学员快速运用Abaqus工作,并介绍相关的概念—本课并不 覆盖 Abaqus所有的细节。 ? 根据本课中的主题,还有几个附加信息: ? SIMULIA网站( https://www.doczj.com/doc/8610039964.html, )。 ? Abaqus文档—在用户手册中包括所有的使用细节。 ? Abaqus广泛的讲稿库( https://www.doczj.com/doc/8610039964.html,可以找到讲稿的列表)。
? Dassault Systèmes, 2008
3

用Ansys或Abaqus分析钢管混凝土结构或构件

用Ansys或Abaqus分析钢管混凝土结构或构件 以上两个软件国外都有人用来分析钢管混凝土结构,但建模的方法不尽相同。关键在于钢管和混凝土本构关系的选取以及两者之间的界面处理方法,各位有没有这方面的经验能向我们大家介绍一下。 ========== 程序中大概只有Drucker-Prager比较适合描述受约束混凝土的本构关系,因为这个模型可以考虑 hydrostatic stress (流体静应力)的影响。在程序中,需要输入cohesion, angle of internal friction,(one more for ANSYS is the angle of dilatancy)。 值得注意的是,两个软件确定这几个参数的公式各不相同,很是令人头疼。 其实user manuals不可能给出明确的表达式,因为到目前为止,好像没有研究把钢管的强度,混凝土的强度,含钢率等等因素(i.e. the confinement)全部在Drucker-Prager 中考虑进去。 至于两种材料的界面,日本的 Hanbin Ge曾用link element来模拟,但在他的文章中,没有详细的描述。轴压状况下,好像可以忽略滑移。偏压可能情况有所不同。 ========== 韩教授书上的混凝土应力-应变关系,可以简单理解为单向受力的混凝土本构关系(考虑了钢管的约束),因此不能用于多向应力状态下混凝土的有限元分析。材料非线性有限元分析,需要定义材料的屈服面,流动准则,强化准则,等等。对受约束的混凝土,还要考虑体积膨胀,钢管对它的约束等因素。显然,不是一个简单的应力-应变曲线所能概括的。 ========== 三向有限元分析,需要定义屈服面、流动准则和强化准则等等,而考虑钢管约束的混凝土本构关系,只是应力-应变关系。 对钢管混凝土的有限元分析,主要困难是如何定义屈服面,和模拟两个材料之间的滑移,我曾经用过接触分析(contact analysis)来求轴压构件的承载力,发现最大承载力能够比较精确地求得,但是精确的荷载-位移曲线很难获得,因为商用软件(Ansys\Marc)里面的D-P模型是塑性模型。最近正在想定义一个适用于钢管混凝土的本构关系,不知道能够行的通。有了确定的结果,一定和大家探讨。 =========== 没想到一年前发的一个帖子引起大家这麽多关注,感谢大家的支持。 本人现在已完全实现用Ansys分析钢管混凝土,现在将我的思路介绍一下,不当之处请指正。 1。钢单元采用壳元,混凝土采用实体元,界面采用接触单元,另外也可以加弹簧单元,如果加弹簧单元后,接触元的摩擦系数可设为0。 2。钢材用弹塑性模型,泊桑比可取为0.25,混凝土模型的弹性阶段泊松比可取为0.2,弹塑性阶段有两种方式实现,一种采用Drucker-Prager模型,因为该模型中两个参数和具体约束状态相关,但选择时计算结果差别不大,建议对于圆形截面采用同一组参数,对于方、矩形分区采用两组参数;另一种方法是直接输

ABAQUS建模规范化方法总结

一.命名规则 学习建模过程,可以使用示例中的命名规则,设计标准模型参见标准模型创建方法 二.确定构件使用的坐标系 构件坐标系是应该首先确定并记录的信息,以方便后续确定参考点坐标。 本例中坐标轴Z 轴沿模型截面中心向上,X 轴为荷载施加方向,荷载沿X 轴正向施加。Y 轴与模型侧面垂直。如图所示。 三.材料定义 1 混凝土材料的定义 相关文献:http://127.0.0.1:2180/v6.13/books/usi/default.htm http://127.0.0.1:2180/v6.13/books/usb/default.htm?startat=pt05ch23s06abm39 .html#usb-mat-cconcretedamaged http://127.0.0.1:2180/v6.13/books/usi/default.htm?startat=pt03ch12s09s02.ht ml http://127.0.0.1:2180/texis/search/?query=concrete+damage+plasticity&submit .x=48&submit.y=6&group=bk&CDB=v6.13 1.1. 密度/Density Mass Density=2.5e-9 tone/mm3(=2500kg/m3) 1.2. 弹性/Elastic Machanical/Elasticity/Elastic

定义参数: 杨氏模量: Young’s Modulus=34500 N/mm2; 泊松比: Poisson’s Ratio=0.2 1.3. 塑性/Concrete Damage Plasticity Mechanical/Plasticity/Concrete Damage Plasticity A baqus/CAE User’s Guide 12.9.2_Defining concrete damage plasticity ************************************************************** Dilation Angle Dilation angle, , in the p–q plane. Enter the value in degrees. Eccentricity Flow potential eccentricity, . The eccentricity is a small positive number that defines the rate at which the hyperbolic flow potential approaches its asymptote. The default is . fb0/fc0 , the ratio of initial equibiaxial compressive yield stress to initial uniaxial compressive yield stress. The default value is K , the ratio of the second stress invariant on the tensile meridian, , to that on the compressive meridian, , at initial yield for any given value of the pressure invariant p such that the maximum principal stress is negative, . It must satisfy the condition . The default value is . Viscosity Parameter Viscosity parameter, , used for the visco-plastic

T节点钢管混凝土abaqus建模教程

T型圆钢管节点abaqus图文建模教程 一.分析前准备: 注:1.长度单位m,时间单位s,力单位N。 2.该软件建模过程中最常用工具为菜单栏Viewpoint下的按钮,即转换视角。 3.点击鼠标中键和回车键表示确定,可代替手动点击Done,使操作更便捷。 4.该教程中未提到的操作均按系统默认操作,如命名规则。初学者后期熟练后可根据自己喜好和习惯更改。 点击Abaqus CAE,运行软件;点击Save Model Database ,将新建数据库保存在指定文件夹中;关闭

程序;在指定文件夹中打开新建的.cae程序。 分析前准备的目的是将静力,热学,热力耦合输出文件保存在指定文件夹中,不一定保存在系统指定的temp 文件夹中。 二.静力分析步骤: 1.Part(建立块):Module默认为Part模块。 1)建立主管chord。点击(Create Part),弹出部件创建框,Name改为chord,Approximate size 取1(表示绘图范围大小为1m×1m),其他默认,点击Continue,显示绘图区域,点击左侧工具栏中的,建立主管截面:一.绘出外径圆。依次输入坐标(0,0)、(0.0795,0);二.绘出内径圆。内圆半径由外圆半径减去主管厚度得到,依次输入坐标(0,0),(0.075,0)截面即建立完成。最后点击Done,弹出长度编辑窗口,在Depth中输入主管长度1.68m即可,主管建立完成。 2)建立支管brace。方法参照主管。 3)建立主管端板end1-con。点击(Create Part),弹出部件创建框,Name改为end1-con,Approximate size取1(表示绘图范围大小为1m×1m),其他默认,点击Continue,显示绘图区域,点击左侧工具栏中的,依次输入坐标(0,0)、(0.075,0),点击鼠标中键,弹出编辑框,在Depth中输入0.02,表示端 板厚度为20mm。 4)建立支管端板end2-bra。方法参照end1-con。 5)建立耳板erban。点击(Create Part),弹出部件创建框,Name改为end1-con,Approximate size 取1(表示绘图范围大小为1m×1m),其他默认,点击Continue,显示绘图区域,点击左侧工具栏中的,依次输入坐标(0,0)、(0.155,0.159),点击左侧工具栏中的,鼠标点取矩形左下角和右上角画出半 圆点击左侧工具栏中的,鼠标点取矩形左边中点,输入坐 标(0.02,0.0795)点击左侧工具栏中的选中矩形左边,删除左边,双击鼠标中建,输入0.015 2.Assembly(组装):在Module下拉框中选择Assembly模块。 1)点击,按图1界面操作,点击OK。

ABAQUS挤压工艺建模流程示意版

ABAQUS 挤压工艺建模流程 ABAQUS 是一套功能强大的工程模拟的有限元软件,其解决问题的范围从相对简单的线性分析到许多复杂的非线性问题。现采用ABAQUS对棒材挤压过程工艺进行分析。主要分析温度,应力,应变三者之间的耦合关系。分析不同来料温度,不同变形速率及不同变形程度对挤压工艺的影响。 1.建模,采用国际标准单位制(m,kg,s,℃) 根据棒材挤压工艺可知,整个模型为轴对称,物理模型为几何对称,边 界条件对称,在考虑到计算效率的前提下,现采用1/4模型进行模拟分 析。取来料尺寸为Φ20mm×50mm(高)。具体模型参见图1: 图1 来料 图2 凹模

图3 凸模(挤压板) 2. 材料属性 板坯选用材料为GH4169,模具选用H13,具体材料参数见下 表。(高温段的应力应变就是参见你发过来的资料,不再重复,论文里面添加上) 材料 密度kg/m 3 弹性模量Gpa 泊松比 热导率 W/m ·K 比热容 J/kg ·K 线膨胀 K -1 GH4169 8240 202.7 0.37 27.6 704 1.86X10-5 H13 7800 200 0.3 28.4 560 1.3X10-5 具体参数设置如图2、3所示。 图2 坯料参数设置界面

图3 模具参数设置界面 3. 装配,将坯料进行定位,模具进行定位,为后续边界条件施加提供物理 模型,选取X负方向为挤压方向,YZ平面为凹模下端面,整个模型以 Y面和Z面对称分布,如图4、5、6所示。 图4 板坯组装图—1 图5 板坯组装图-2

图6 板坯组装图-3 4. 分析步设定,本为主要分析挤压工艺,分析应力应变以及温度的变化情 况,故选择分析类型为Dynamic,Temp-disp,Explicit,分析步总时间根据现场工艺确定(如挤压速度为60mm/s时,分析时间定位2s)。选用显式求解可提高计算效率,并可准确模拟准稳态塑性成型。增量步选用自动控制,以控制求解的精度。具体设定如图7所示。 图7 分析步设定 5. 边界条件,根据挤压工艺情况,需考虑板坯的外表面与空气的辐射与对 流,根据相关文献及现场经验,设定综合换热系数为200W/m2·K,对称面分别选用Y面和Z面。设定上模挤压速度,现以20mm/s为例如图8所示。

本人学习abaqus五年的经验总结,让你比做例子快十倍

第二章 ABAQUS 基本使用方法 [2](pp15)快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 ②(pp16)ABAQUS/CAE不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外丢失。 [3](pp17)平面应力问题的截面属性类型是Solid(实心体)而不是Shell(壳)。 ABAQUS/CAE 推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几何模型上。载荷类型Pressure 的含义是单位面积上的力,正值表示压力,负值表示拉力。 [4](pp22)对于应力集中问题,使用二次单元可以提高应力结果的精度。 [5](pp23)Dismiss 和Cancel 按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数 据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel 按钮可关闭对话框,而不保存 所修改的内容。 [6](pp26)每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance) 是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件上, 相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上,对求解过程和输出结果的控制参数定义在整个模型上。 [7](pp26) ABAQUS/CAE 中的部件有两种:几何部件(native part)和网格部件(orphan mesh part)。

创建几何部件有两种方法:(1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直 接创建几何部件。(2)导入已有的CAD 模型文件,方法是:点击主菜单File→Import→Part。网格部件不包含特征,只包含节点、单元、面、集合的信息。创建网格部件有三种方法:(1)导入ODB 文件中的网格。(2)导入INP 文件中的网格。(3)把几何部件转化为网格部件,方法是:进入Mesh 功能模块,点击主菜单Mesh→Create Mesh Part。 [8](pp31)初始分析步只有一个,名称是initial,它不能被编辑、重命名、替换、复制或删除。在初始分析步之后,需要创建一个或多个后续分析步,主要有两大类:(1)通用分析步(general analysis step)可以用于线性或非线性分析。常用的通用分析步包含以下类型: —Static, General: ABAQUS/Standard 静力分析 —Dynamics, Implicit: ABAQUS/Standard 隐式动力分析 —Dynamics, Explicit: ABAQUS/ Explicit 显式动态分析 (2)线性摄动分析步(linear perturbation step)只能用来分析线性问题。在ABAQUS/Explicit 中 不能使用线性摄动分析步。在ABAQUS/Standard 中以下分析类型总是采用线性摄动分析步。 —Buckle: 线性特征值屈曲。 —Frequency: 频率提取分析。 —Modal dynamics: 瞬时模态动态分析。 —Random response: 随机响应分析。 —Response spectrum: 反应谱分析。 —Steady-state dynamics: 稳态动态分析。

abaqus系列教程11多步骤分析 (1)

11多步骤分析 ABAQUS模拟分析的一般性目标是确定模型对所施加载荷的响应。回顾术语载荷(load)在ABAQUS中的一般性含义,载荷代表了使结构的响应从它的初始状态到发生变化的任何事情;例如:非零边界条件或施加的位移、集中力、压力以及场等等。在某些情况下载荷可能相对简单,如在结构上的一组集中载荷。在另外一些问题中施加在结构上的载荷可能会相当复杂,例如,在某一时间段内,不同的载荷按一定的顺序施加到模型的不同部分,或载荷的幅值是随时间变化的函数。采用术语载荷历史(load history)以代表这种作用在模型上的复杂载荷。 在ABAQUS中,用户将整个的载荷历史划分为若干个分析步(step)。每一个分析步是由用户指定的一个“时间”段,在该时间段内ABAQUS计算该模型对一组特殊的载荷和边界条件的响应。在每一个分析步中,用户必须指定响应的类型,称之为分析过程,并且从一个分析步到下一个分析步,分析过程也可能发生变化。例如,可以在一个分析步中施加静态恒定载荷,有可能是自重载荷;而在下一个分析步中计算这个施加了载荷的结构对于地震加速度的动态响应。隐式和显式分析均可以包含多个分析步骤;但是,在同一个分析作业中不能够组合隐式和显式分析。为了组合一系列的隐式和显式分析步,可以应用结果传递或输入功能。在ABAQUS分析用户手册(ABAQUS Analysis User’s Manual)第results between ABAQUS/Explicit and ABAQUS/Standard”中讨论了这个功能。而本指南不做进一步的讨论。 ABAQUS将它的所有分析过程主要划分为两类:线性扰动(linear perturbation)和一般性分析(general)。在ABAQUS/Standard或在ABAQUS/Explicit分析中可以包括一般分析步;而线性扰动分析步只能用于ABAQUS/Standard分析。对于两种情况的载荷条件和“时间”定义是不相同的,因而,从每一种过程得到的结果必须区别对待。 在一般分析过程中,即一般分析步(general step),模型的响应可能是非线性的或者是线性的。而在采用扰动过程的分析步中,即称为扰动分析步(perturbation step),响应只能是线性的。ABAQUS/Standard处理这个分析步作为由前面的任何一般分析步创建的预加载、预变形状态的线性扰动(即所谓的基本状态(base state));ABAQUS 的线性模拟功能比之单纯线性分析的程序是更加广义的。

ABAQUS建模入门

Abaqus建模入门1 本篇导航 1.Abaqus启动准备工作 2.Abaqus常用功能区介绍 3.建模第一步:创建部件的操作方法 Abaqus启动准备工作 在启动Abaqus之前,我们要先进行一项准备工作:在电脑系统搜索栏里输入abaqus这一关键词,找到Abaqus Licensing,双击运行。在运行后打开的对话框里找到Start/Stop/Reread一栏,点击Start Server,看到界面左下角显示Server Start Successful后,关闭这一界面即可。 要注意的是,这项操作在每次电脑开机运行Abaqus之前,都要进行一次。 启动Abaqus后,你进入的用户界面是这样的。

你需要了解的几个功能区 1.环境栏:用于选择需要的功能模块,而功能模块的作用是对模型进行不同阶段的处理。 2.菜单栏:是在同一功能模块下,可对模型进行的各种操作的入口。不同的功能模块下,菜单栏的内容会相应变化。 3.工具栏:列出了同一功能模块下,可对模型进行的常用操作,是对菜单栏内容

的提炼,但在表现形式上更加直观。不同的功能模块下,工具栏的内容也会相应变化,这一点与与菜单栏相同。 4.模型树:对模型进行的所有设置都会在这里显示,若想修改模型的各种设置,模型树是一个比较便捷的入口。 5.作图区(画布):建立的模型在这里显示。 可不可以改变作图区的颜色? 可以。在菜单栏中选择:视图(View)—图形选项(Graphics Options),在视口背景栏(Viewport Background)中进行颜色调整。 建模第一步:创建部件的操作方法 首先选定绘制草图需要的功能模块:环境栏—模块(Module)—部件(Part)草图绘制:工具栏—创建部件(Create Part) 进入创建部件对话框后,要选择模型空间(三维、二维、轴对称),部件类型(变形体、离散刚体、解析刚体、欧拉)以及部件基本特征。对于不想探究其变形情况的物体,应设置成刚体,如刀具、模具。建议对于刚体部件,能设置成解析刚体(Analytical rigid)就不要设置成离散刚体(Discrete rigid)。因为离散刚体需要在后续操作中划分网格,网格划分好坏对建模结果会造成较大的影响。离散刚体的特点是可以绘制相对复杂的几何形状,但这也更容易导致模型出错。因而在建模初期,在构思上就尽量简化模型,会减小模型出错的概率,加快模型运算速度。 进入草图绘制界面后,根据部件形状进行绘制即可。绘制草图的工具栏并不复杂,自行摸索也能很快上手。要注意的是,你要学会使用作图区下方的提示栏,因为许多操作是要通过与它互动来完成的。

相关主题
文本预览
相关文档 最新文档