当前位置:文档之家› 氢火焰离子化检测器详细的介绍(包括原理等超详细)

氢火焰离子化检测器详细的介绍(包括原理等超详细)

氢火焰离子化检测器详细的介绍(包括原理等超详细)
氢火焰离子化检测器详细的介绍(包括原理等超详细)

1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID ),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。

氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。

其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性围宽(106~107),死体积小(≤1μL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。

其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。

氢火焰离子化检测器的结构

氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。

FID的电离室由金属圆筒作外罩,底座中心有喷嘴;喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出。

氮火焰离子化检测器晌应机理

FID的工作原理是以氢气在空气中燃烧为能源,载气(N2)携带被分析组分和可燃气(H2)从喷嘴进入检侧器,助然气(空气)从四周导人,被侧组分在火焰中被解离成正负离离子,在极化电压形成的电场中,正负离子向各自相反的电极移动,形成的离子流被收集极收、输出,经阻抗转化,放大器(放大107~1010倍)便获得可测量的电信号,FID离子化的机理近年才明朗化,但对烃类和非烃类其机理是不同的。

对烃类化合物而言:在火焰燃烧的碳氮化合物中的每一个碳原子均定里转化成最基本的、共同的响应单位——甲烷,再经过下面的反应过程与空气中氧反应生成CHO+正离子和电子。

CH+O→CHO++e

所以,FID对烃是登碳响应,这是最主要的反应,成为电荷传送的主要介质。在电场作用下,正离子和电子e分别向收集极和发射极移动,形成离子流,但在碳原子中产生CH的概率仅有1/106,因此提高离子化效率是提高FID灵敏度最有效的途径,目前仍然有不少关于这方面的研究和报道。

对非烃类化合物,其响应机理比较复杂,随所含官能团的不同而异,基本规律是不与杂原子相连的碳原子均转化成甲烷。杂原子及其相连的碳原子(C杂)的转化产物见表2-8。

表2-8 非烃类有机物在FID火焰中的转化产物

化合物碳原子转化产物C杂及杂原子的转化产物醇、醛、酮、酯CH4CH4或CO 胺CH4CH4或HCN

卤化物CH4CH4或HX

由于杂原子可能进一步与C转生成氢火焰检测器不响应的CO、HCN,因此按相对质量响应值计,这些化合物的RRF值都很低,不符合等碳响应规律。

FID的灵敏度和稳定性主要取决于,②如何提高有机物在火焰中离子化的效率,②如何提高收集极对离子收集的效率。离子化的效率取决于火焰的温度、形状、喷嘴的材料、孔径;载气、氢气、空气的流量比等。离子收集的效率则与收集极的形状、极化电压、电极性、发射极与收集极之间距离等参数有关。一个好的检测器的结构设计是综合考虑以上各种因素,所以使用者在拆装清洗时必须按说明书要求,尤其是安装尺寸方面,严禁收集极、极化极、喷嘴与外壳短路,要求其绝缘电阻值大于1014Ω。另外,要求极化极必须在喷嘴出口平面中心,不适宜在火焰上,否则会造成嗓声增加;也不宜过低,极化极低于喷嘴,离子收集的效率会降低,检测器的灵敏度相应也降低。喷嘴通常采用径0.4~0.6mm的金属或石英制成,但灵敏度高的仪器在喷嘴的选择上也有严格的要求。例如美国Agilent公司对FID的喷嘴就有六种型号供不同情况选用。美国Varian公司近年对FID进行改进、采用加金属帽的瓷喷嘴代替标准的金属喷嘴。除了能有效消除高温时金属对化合物的吸附造成色谱峰拖尾改善分辨率外,还能降低嗓声,提高仪器灵敏度。这项改进已获美国专利(USP.4999162)。

氢火焰离子化检测器的操作条件

火焰温度,离子化程度和收集效率都与载气、氢气、空气的流量和相对比值有关。其影响如下所述。

氢气流速的影响

氢气作为燃烧气与氮气(载气)预混合后进入喷嘴当氮气流速固定时,随着氢气流速的蹭加,输出信号也随之增加,并达到一个最大值后迅速下降。如图2-10所示。由图可见:通常氢气的最佳流速为40~60mL/min。有时是氢气作为载气,氮气作为补充气,其效果是一样的。

氮气流速的影响

在我国多用N2作载气,H2作为柱后吹扫气进入检测器,对不同k值的化合物,氮气流速在一定围增加时,其响应值也增加,在30mL/min左右达到一个最大值而后迅速下降,如图2-11所示。这是由于氮气流量小时,减少了火焰中的传导作用,导致火焰温度降低,从而减少电离效率,使响应降低;而氮气流量太大时,火焰因受高线速气流的干扰而燃烧不稳定,不仅使电离效率和收集效率降低,导致响应降低,同时噪声也会因火焰不稳定而响应增加。所以氮气一般采用流量在30mL/min左右,检测器可以得到较好的灵敏度。在用H2作载气时,N2作为柱后吹扫气与H2预混合后进入喷嘴,其效果也是一样的。

此外氮气和氢气的体积比不一样时,火焰燃烧的效果也不相同,因而直接影响FID的响应。从图2-12可知N2∶H2的最佳流量比为1~1.5。也有文献报道,在补充气中加一定比例NH3,可增加FID的灵敏度。

空气流速的影响

空气是助燃气,为生成CHO+提供认O2。同时还是燃烧生成的H2O和CO2的清扫气。空气流量往往比保证完全燃烧所需要的量大许多,这是由于大流量的空气在喷嘴周围形成快速均匀流场。可减少峰的拖尾和记忆效应。其影响如图2-13所示。

由图2-13可知空气最佳流速需大于300mL/min,一般采用空气与氢气该量比为1∶10左右。由于不同厂家不同型号的色谱仪配置的FID其喷口的径不相同,其氢气、氮气和空气的最佳流量也不相同,可以参考说明书进行调节,但其原理是相同的。

检测器胜度的影响

增加FID的温度会同时增大响应和噪声;相对其他检测器而言,FID的温度不是主要的影响因素,一般将检测器的温度设定比柱温稍高一些,以保证样品在FID不冷凝;此外FID 温度不可低于100℃,以免水蒸气在离子室冷凝,导致离子室电绝缘下降,引起噪声骤增;所以FID停机时必须在100℃以上灭火(通常是先停H2,后停FID检测器的加热电流),这是FID检测器使用时必须严格遵守的操作。

气体纯度

从FID检测器本身性能来讲,在常量分析时,要求氢气、氮气、空气的纯度为99.9%以上即可,但是在痕量分析时,则要求纯度高于99.999%,尤其空气的总烃要低于0.1μL/L,否则会造成FID的噪声和基线漂移,影响定量分析。

氢火焰离子化检测器选择性的改进

FID对烃类化合物有很高的灵敏度和选择性,一直作为烃类化合物的专用检测器。近年来在FID的基础上发展了几种新型的氢火焰离子化检测器,具有新的选择性;富氢FID(用于选择性检测无机气体和卤代烃);氢保护气氛火焰离子化检测器(简称HAFID,用于选择性检测有机金属化合物、硅化合物);氧专一性火焰离子化检测器(简称OFID,用于选择性检测含氧化合物)。

相对响应值

几乎所有挥发性的有机物在FID都有响应,尤其同类化合物的相对喻应值都很接近,一般不用校正因子就可以直接定量,而含不同杂原子的化合物彼此相对响应值相差很大,定量时必须采用校正因子。

与TCD不同的是:FID相对响应值与FID的结构、操作压力、载气、燃气与辅助气的流速都有关,所以引用文献数据时一定要注意试验条件是否一致。最可靠的方法是自己测定相应的校正因子。

解析各种检测器原理、用途和作用

气相色谱仪-检测系统 1.热导检测器热导检测器 ( Thermal coductivity detector,简称TCD ),是应用比较多的检测器,不论对有机物还是无机气体都有响应。热导检测器由热导池池体和热敏元件组成。热敏元件是两根电阻值完全相同的金属丝(钨丝或白金丝),作为两个臂接入惠斯顿电桥中,由恒定的电流加热。如果 热导池只有载气通过,载气从两个热敏元件带走的热量相同,两个热敏元件的温度变化是相同的,其电阻值变化也相同,电桥处于平衡状态。如果样品混在载气中通过测量池,由于样号气和载气协热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。这种检测器是一种通用型检测器。被测物质与载气的热导系数相差愈大,灵敏度也就愈高。此外,载气流量和热丝温度对灵敏度也有较大的影响。热丝工作电流增加—倍可使灵敏度提高3—7倍,但是热丝电流过高会造成基线不稳和缩短热丝的寿命。热导检测器结构简单、稳定性好,对有机物和无机气体都能进行分析,其缺点是灵敏度低。 2.气相色谱仪氢火焰离子化检测器 氢火焰离子化检测器(Flame Ionization Detector,FID) 简称氢焰检测器。它的主要部件是一个用不锈钢制成的离子室。离子室由收集极、极化极(发射极)、气体入口 及火焰喷嘴组成。在离子室下部,氢气与载气混合后通过喷嘴,再与空气混合点火燃烧,形成氢火焰。无样品时两极间离子很少,当有机物进入火焰时,发生离子化反应,生成许多离子。在火焰上方收集极和极化极所形成的静电场作用下,离子流向收集极形成离子流。离子流经放大、记录即得色谱峰。有机物在氢火焰中离子化反应的过程如下:当氢和空气燃烧时,进入火焰的有机物发生高温裂解和氧化反应生成自由基,自由基又与氧作用产生离子。在外加电压作用下,这些离子形成离子流,经放大后被记录下来。所产生的离子数与单位时间内进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。这种检测器对绝大多数有机物都有响应,其灵敏度比热导检测器要高几个数量级,易进行痕量

各种仪器分析的基本原理

紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息

氢火焰离子检测器

氢火焰离子化检测器 1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID ),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。 其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性范围宽(106~107),死体积小(≤1μL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。 其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。 氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴;喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出。 氮火焰离子化检测器晌应机理 FID的工作原理是以氢气在空气中燃烧为能源,载气(N2)携带被分析组分和可燃气(H2)从喷嘴进入检侧器,助然气(空气)从四周导人,被侧组分在火焰中被解离成正负离离子,在极化电压形成的电场中,正负离子向各自相反的电极移动,形成的离子流被收集极收、输出,经阻抗转化,放大器(放大107~1010倍)便获得可测量的电信号,FID离子化的机理近年才明朗化,但对烃类和非烃类其机理是不同的。 对烃类化合物而言:在火焰内燃烧的碳氮化合物中的每一个碳原子均定里转化成最基本的、共同的响应单位——甲烷,再经过下面的反应过程与空气中氧反应生成CHO+正离子和电子。 CH+O→CHO++e 所以,FID对烃是登碳响应,这是最主要的反应,成为电荷传送的主要介质。在电场作用下,正离子和电子e分别向收集极和发射极移动,形成离子流,但在碳原子中产生CH的概率仅有1/106,因此提高离子化效率是提高FID灵敏度最有效的途径,目前仍然有不少关于这方面的研究和报道。

氢火焰离子化检测器详细介绍(包括原理等超详细!!!)

1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID ),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。 其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性范围宽(106~107),死体积小(≤1μL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。 其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。 氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴;喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出。

常见的化学成分分析方法及其原理98394

常见的化学成分分析方法 一、化学分析方法 化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。 重量分析 指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。 容量分析 滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。 酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物,最后以酸碱指示剂(如酚酞等)的变化来确定滴定的终点,通过加入的标定物的多少来确定待测物质的含量。 络合滴定分析是指以络合反应(形成配合物)反应为基础的滴定分析方法。如EDTA与金属离子发生显色反应来确定金属离子的含量等。络合反应广泛地应用于分析化学的各种分离与测定中,如许多显色剂,萃取剂,沉淀剂,掩蔽剂等都是络合剂,因此,有关络合反应的理论和实践知识,是分析化学的重要内容之一。 氧化还原滴定分析:是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。通常借助指示剂来判断。有些滴定剂溶液或被滴定物质本身有足够深的颜色,如果反应后褪色,则其本身就可起指示剂的作用,例如高锰酸钾。而可溶性淀粉与痕量碘能产生深蓝色,当碘被还原成碘离子时,深蓝色消失,因此在碘量法中,通常用淀粉溶液作指示剂。 沉淀滴定分析:是以沉淀反应为基础的一种滴定分析方法,又称银量法(以

仪器分析简答题

11.原子吸收谱线变宽的主要因素有哪些? 一方面是由激发态原子核外层电子决定,如自然宽度;一方面是由于外界因素,多普勒变宽,碰撞变宽,场致变宽,压力变宽、自吸变宽、电场变宽、磁场变宽等。 1.自然宽度:谱线固有宽度,与原子发生能级间跃迁的激发态原子的有限寿命有关。可忽 略 2.多普勒变宽:由于无规则的热运动而变化,是谱线变宽主要因素。 3.压力变宽:由于吸光原子与蒸汽中原子相互碰撞而引起能级的微小变化,使发射或吸收的光量子频率改变而变宽。与吸收气体的压力有关。包括洛伦兹变宽和霍尔兹马克变宽。场致变宽:在外界电场或磁场作用下,原子核外层电子能级分裂使谱线变宽。 自吸变宽:光源发射共振谱线被周围同种原子冷蒸汽吸收,使共振谱线在V0 处发射强度 减弱所产生的谱线变宽。 原子吸收谱线变宽主要原因是受多普勒变宽和洛伦兹变宽的影响 12.说明荧光发射光谱的形状通常与激发波长无关的原因。 由于荧光发射是激发态的分子由第一激发单重态的最低振动能级跃迁回基态的各振动能级所产生的,所以不管激发光的能量多大,能把电子激发到哪种激发态,都将经过迅速的振动弛豫及内部转移跃迁至第一激发单重态的最低能级,然后发射荧光。因此除了少数特殊情况,如S1 与S2 的能级间隔比一般分子大及可能受溶液性质影响的物质外,荧光光谱只有一个发射带,且发射光谱的形状与激发波长无关。 13.有机化合物产生紫外-可见吸收光谱的电子跃迁有哪些类型? 在有机分子中存在σ、π、n三种价电子,它们对应有σ-σ*、π-π*及n 轨道,可以产 生以下跃迁: 1.σ-σ* 跃迁:σ-σ*的能量差大所需能量高,吸收峰在远紫外(<150nm)饱和烃只有σ- σ*轨道,只能产生σ-σ*跃迁,例如:甲烷吸收峰在125nm;乙烷吸收峰在135nm ( < 150nm) 2.π-π*跃迁:π-π*能量差较小所需能量较低,吸收峰紫外区(200nm左右)不饱和烃类分子中有π电子,也有π* 轨道,能产生π-π*跃迁:CH2=CH2,吸收峰165nm。(吸收系数大,吸收强度大,属于强吸收) 1.n-σ*跃迁:n-σ*能量较低,收峰紫外区(200nm左右)(与π-π*接近)含有杂原子团如:-OH,-NH2 ,-X,-S 等的有机物分子中除能产生π-π*跃迁外,同时能产生n-σ*跃迁4. n-π*跃迁:n-π*能量低吸收峰在近紫外可见区(200 ~ 700nm)含杂原子的不饱和基团,如- C=O,-CN 等 各种跃迁所需能量大小次序为:σ-σ*> n-σ*>π-π*>n-π* 除外分子内部还有电荷迁移跃迁,指用电磁辐射照射化合物时,电子从给予体向接受体相 联系的轨道上跃迁,实质是氧化还原过程,相应的光谱最大特点是摩尔吸光系数较大。14、简单说明紫外-可见吸收光谱法、荧光光谱法、原子吸收光谱法的定量原理和依据是什么?请画出紫外分光光度法仪器的组成图(即方框图),并说明各组成部分的作用? 答:作用: 光源:较宽的区域内提供紫外连续电磁辐射。 单色器:能把电磁辐射分离出不同波长的成分。 试样池:放待测物溶液 参比池:放参比溶液

氢火焰离子化检测器详细介绍包括原理等超详细!!!

氢火焰离子化检测器详细介绍(包括原理等超详细!!!)

————————————————————————————————作者: ————————————————————————————————日期: ?

1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。 其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性范围宽(106~107),死体积小(≤1μL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。 其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。 氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴;喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出。 氮火焰离子化检测器晌应机理

db11t1367-2016固定污染源废气 甲烷-总烃-非甲烷总烃的测定 便携式氢火焰离子化检测器法.

ICS 13.040.40 Z 30 DB 11 北京市地方标准 DB 11/T 1367—2016 固定污染源废气甲烷/总烃/非甲烷总烃的测定便携式氢火焰离子化检测器法 Stationary source emission-Determination of methane/total hydrocarbons/non-methane hydrocarbons-Portable hydrogen flame ionization detector method 2016-12-22发布2017-01-01实施北京市质量技术监督局发布

DB11/T 1367—2016 目次 前言... ................................................................................................................................ ... II 1 范围 ... ............................................................................................................................... . 1 2 规范性引用文件 ... .......................................................................................................... (1) 3 术语和定义 ... .................................................................................................................... . 1 4 方法原理 ... .................................................................................................................... (2) 5 干扰和消除 ... .................................................................................................................... . 2 6 标气和材料 ... .................................................................................................................... . 2 7 仪器和设备 ... .................................................................................................................... . 2 8 校准量程 ... .................................................................................................................... (3) 9 测试步骤 ... .................................................................................................................... (3) 10 计算和结果表示 ... ......................................................................................................... .. 5 11 精密度和准确度 ... ......................................................................................................... .. 6 12 质量保证与质量控制 ... ................................................................................................... . 6 13 注意事项 ... ................................................................................................................... .. 7 I

各种探测器介绍说明资料讲解

报警系统由哪几部分组成? 简单的报警系统由前端探测器、中间传输部分和报警主机组成。大一些的系统也可将探测器和报警主机看做是前端部分,从报警主机到接警机之间是传输部分,中心接警部分看做是后端部分。 报警系统按信息传输方式不同,可分哪几种? 按信息传输方式不同,从探测器到主机之间可分为有线和无线2种。从主机到中心接警机之间也可分为有线和无线2种,其中有线系统还可分为基于电话线传输和基于总线传输2种类型。 探测器分为哪几种类型?市面上常见的有哪些类型? 红外、微波、震动、烟感、气感、玻璃破碎、压力、超声波等等。其中红外探测器还可分为主动红外和被动红外,烟感还可分为离子式和光电式。市面上常见的有红外探测器(被动红外)、对射、栅栏(主动红外)、双鉴探测器、震动探测器、玻璃破碎探测器。 主动红外探测器的工作原理? 主动红外探测器由红外发射器和红外接收器组成。红外发射器发射一束或多数经过调制过的红外光线投向红外接收器。发射器与接收器之间没有遮挡物时,探测器不会报警。有物体遮挡时,接收器输出信号发生变化,探测器报警。 被动红外探测器工作原理? 被动红外探测器中有2个关键性元件,一个是菲涅尔透镜,另一个是热释电传感器。自然界中任何高于绝对温度(-273o)的物体都会产生红外辐射,不同温度的物体释放的红外能量波长也不同。人体有恒定的体温,与周围环境温度存在差别。当人体移动时,这种差别的变化通过菲涅尔透镜被热释电传感器检测到,从而输出报警信号。 微波探测器工作原理? 微波探测器应用的是多普勒效应原理。在微波段,当以一种频率发送时,发射出去的微波遇到固定物体时,反射回来的微波频率不变,即f发=f收,探测器不会发出报警信号。当发射出去的微波遇到移动物体时,反射回来的微波频率就会发生变化,即f发≠f收,此时微波探测器将发出报警信号。 什么是双元红外探测器?什么是四元红外探测器?

进口顶空进样器和氢火焰离子化检测器技术参数

进口顶空进样器和氢火焰离子化检测器技术参数 设备用途:与实验室现有SHIMADZU GC-2010PLUS气相色谱仪连接,并且色谱工作站可内嵌式控制顶空进样器,用于检测血醇及其他挥发性有机化合物的分析 一.主机 电源:220-240V,1200 VA 操作环境:15℃to 30℃湿度低于70%RH (18℃至28℃室温波动±1.3℃) 二.进样系统 1、样品流路 *1.1样品流路温度:中温设置时,室温+10℃至220℃;高温设置时,150℃至300℃ *1.2加热:电子加热 1.3进样阀:6 通阀 *1.4进样环:1ml Sulfinert 惰化处理(标配);0.2ml,3ml (可选) 2、传输管线 2.1材质:Sulfinert惰化处理 *2.2温度:室温+10℃至350℃,1℃增量,精度±0.5℃ *2.3加热:电子加热 3、样品瓶 *3.1样品瓶数量:≥90位 3.2样品瓶材料:中性玻璃 *3.3样品瓶规格:外径22.5mm x 高79mm(20mL);外径22.5mmx高46mm(10mL); 10mL和20mL样品瓶可以同时使用,无需额外附件。 3.4样品瓶垫片:带聚四氟乙烯层(PTFE)的丁基橡胶(标配,灰色,120℃) 带聚四氟乙烯层(PTFE)的硅橡胶(选配,红色,高温,200℃)3.5样品瓶盖:铝 3.6样品瓶恒温时:0.00 ~ 999.99 (min) 3.7样品瓶加压时; 0.00 ~ 9.99 (min) 4.恒温炉

*4.1温度范围:室温+10℃至300℃(1℃增量,精度±0.1℃) 4.2加热方式:电子加热 4.3加热孔数量:12个样品瓶位旋转托盘 4.4摇晃(平衡时):无, 1-5个级别(1 分钟内的搅拌次数随数值增大而增加)4.5加热时间:0 ~ 999.99 min ( 以0.01 分钟为单位设置)三、气体控制 载气控制:通过GC内置的AFC电子控制(0.5 ~ 0.9 MPa,流向AFC) 样品瓶加压控制:通过GC内置的APC电子控制(0.2 ~ 0.5 MPa,流向AuxAPC) 高纯氦气 ( 纯度在99.995 % 以上) 或高纯氮气 ( 纯度在99.995 % 以上) 四、界面控制 使用 USB 建立 PC 与顶空进样器的通讯。不限定 USB 端口。 *顶空进样器能用实验室气相色谱工作站控制,以方便控制和维护 五、操作软件 5.1软件操作环境:Windows XP , Windows VISTA ,Windows 7(32/64 bit) 5.2软件:具有eco生态模式,节省载气和耗电量; *5.3气相色谱仪工作站可以内嵌式控制顶空,符合FDA 21 CFR Part 11要求; 5.4顶空软件随主机标配,可独立操作; 六. 氢火焰离子化检测器(FID) *6.1 最高使用温度:450℃ 6.2 自动点火功能 *6.3 检测限:1.5×10-12g/s ( 十二烷 ) 6.4 动态范围:107 七、打印机 7.1 打印方式:激光打印 7.2 处理器:266Mhz 7.3 内存:2MB 7.4 接口类型:USB

固定污染源废气+非甲烷总烃的测定+便携式催化氧化-氢火焰离子化检测器法2020版

固定污染源废气 非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法 1 范围 本标准规定了测定固定污染源有组织排放和无组织排放废气中非甲烷总烃的便携式催化氧化-氢火 焰离子化检测器法。 本标准适用于固定污染源有组织排放和无组织排放废气中非甲烷总烃的催化氧化-氢火焰离子化检 测器法现场测定。 本标准中非甲烷总烃的方法检出限为0.1 mg/m3(以碳计),测定下限为0.4 mg/m3(以碳计)。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法 HJ/T 55 大气污染物无组织排放监测技术导则 HJ/T 397 固定源废气监测技术规范 HJ 732 固定污染源废气 挥发性有机物的采样 气袋法 HJ 1012 环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法 3 术语和定义 下列术语和定义适用于本文件。 3.1 总烃 total hydrocarbon;THC 在本标准规定的测定条件下,在便携式氢火焰离子化检测器上有响应的气态有机化合物的总和(结 果以碳计)。 注:改写HJ 38—2017,定义3.1。 3.2 非甲烷总烃 nonmethane hydrocarbon;NMHC 在本标准规定的测定条件下,从总烃中扣除甲烷以后其他气态有机化合物的总和(结果以碳计)。 注:改写HJ 38—2017,定义3.2。 3.3 校准量程 calibration span 仪器的校准上限,为校准所用标准气体的浓度值(进行多点校准时,为校准所用标准气体的最高质 量浓度值),校准量程(以下用C.S.表示)应小于或等于仪器的满量程。 [HJ 57—2017,定义3.2]

气相色谱仪器故障排除方法(氢火焰离子化检测器)

气相色谱仪器故障排除方法(氢火焰离子化检测器) 1、点火前不能调零 放大器预热之后,氢焰尚未点燃,基线应能被调节到记录仪的零点,此时改变放大器上的衰减比,基线应无偏离,如果在上述操作中发现,无论怎样调节微电流放大器旋钮,都不能使记录仪上的基线回到零位,则认为是不能调零故障。 点火前不能调零故障的发生原因有以下几个:接线错误;离子室绝缘不良;引线电缆有短路;微电流放大器损坏;记录仪故障。 2、点火故障 在色谱仪正常操作的条件下,按动点火器按钮,片刻后应能听到氢氧混合气点燃时的爆鸣声,此时将会观察到基线的偏移。点火后,用凉爽的玻璃片或表面光亮的金属片等物品放于火焰正上方气路出口处,片刻可观察到玻璃片或金属片表面上水蒸气冷凝的痕迹。如果出现上述现象,说明仪器点火正常。如果在点火过程中无上述点燃迹象,应再次尝试点火,若多次点火仍无反应,可认为发生了不能点火故障。 发生不能点火故障的原因有以下几个:点火组件故障;点火电源无输出;点火前后气路配比不当;漏氢气;气路中有堵塞;点火电路连线、接头断路。 不能点火故障具体按下面步骤检查排除: (1)点火丝发亮状态的检查:点火丝应呈现较明亮的黄红色,如看到点火丝能点亮,说明点火电路基本正常;如果点丝毫不反应则说明点火电路有问题,此时应转入(7)作进一步检查。 (2)气路中气流配比检查:正常点火时应增大氢气流量,适当减少空气流量,载气或尾吹气应调到很小或关死,如各流量操作不对,应进行调整。 (3)氢气漏气检查:停电后,关闭除氧气以外的各路流量控制阀,用硅橡胶垫或干净的软橡皮头堵住氢火焰离子室喷嘴,并稍向下用力,以阻断从喷嘴流出的氢气,此时氢气一路转子流量计中的转子应慢慢降到零。如转子不下降或虽然下降但降不到零,则说明氢气一路有漏气,按(4)处理;如果转子可降为零,转入(5)进行处理。 (4)消除漏气:试漏,找出漏气点,必要时也可对气路管线分段处理试漏。找到泄漏处之后应根据具体情况适当处理,详细方法见气路泄漏的检查与排除所述。在消除氢气漏气故障时有一点需给予注意,那就是载气气路下游的泄漏也会导致氢气气路转子降不到零位,这是由于载气和氢气两路在喷嘴前相互连通的缘故。 (5)气路中有堵塞:气路堵塞,特别是喷嘴处的气路堵塞,是造成不能点火或点火后又灭的一个常见原因。排除堵塞方法可见气路部件的清洗部分所述。 (6)气路配比的调整:不能点火或不易点火往往和点火状态时气路各流量配比有关。在点火状态时氢气流量应加大几倍,而空气可略微降低,用作载气的氮气应减少甚至关断,在点火后再缓缓增大。此项调整可反复做几次,直到能点着火为止。 (7)点火组件接触良好性检查。 (8)点火电路输出电压检查:直接测量点火电源的输出电压是否为额定值,便可知点火电源有否故障。 (9)连线与插头有断路。 (10)检测器接触不良。 3、点火后不能调零 氢火焰离子化检测器在点火前可以将基线调到零点,但点火后却不能将基线调到点

各种仪器测试原理

各种仪器分析的基本原理及谱图表示方法!!(补图中......) 化学专业学生必备:各种仪器分析的基本原理及谱图表示方法!! 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息

红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 气相色谱法GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离 谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关 反气相色谱法IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力 谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线 提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数 裂解气相色谱法PGC

热导检测器的原理

热导检测器的原理 热导检测器的原理及注意事项 热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(kat herometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。热导检测器的原理及注意事项从以下几个方面给予 阐述。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。

当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。从电源E流出之电流I 在A 点分成二路i1、i2至 B 点汇合,而后回到电源。这时,两个热丝均处于被加热状态,维持一定的丝温T f,池体处于一定的池温 T w。一般要求T f与T w差应大于100℃以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1·R3=R2·R4, 或写成R1/R4=R2/R3。M、N二点电位相等,电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1 热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。 (1)热敏电阻热敏电阻由锰、镍、钴等氧化物半导体制成直径约为 0.1~1.0mm的小珠,密封在玻壳内。 热敏电阻有三个优点:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成0.25mm直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120℃以下使用。使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60℃时,池温改变1℃,热敏电阻和热丝的基线漂移分别为10.4mV和5.0mV,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高阻值;③强度好;④耐氧化或腐蚀。①、②是为了获得高灵敏度,同时丝体积小,可缩小池体积,制作微TCD。

气相色谱检测器的分类及工作原理_图文(精)

一、按性能特征分类 从不同的角度去观察检测器性能,有如下分类: ! 、对样品破坏与否 组分在检测过程中,如果其分子形式被破坏,即为破坏性检测器,如FID 、NPD 、FPD 、MSD 等。 组分在检测过程中,如仍保持其分子形式,即为非破坏性检测器。如TCD 、PID 、IRD 等。 2、按响应值与时间的关系 检测器的响应值为组分在该时间的累积量,为积分型检测器,如体积检测器等。现气相色谱分析中,此类检测器一般已不用。 检测器的响应值为组分在该时间的瞬时量,为微分型检测器。本书介绍的所有检测器,均属此类。 3、按响应值与浓度还是质量有关 检测器的响应值取决于载气中组分的浓度,为浓度敏感型检测器,或简称浓度型检测器。它的响应值与载气流速的关系是:峰面积随流速增加而减小,峰高基本不变。因当组分量一定、改变载气流速时,只是改变了组分通过检测器的速度,即改变了半峰宽,其浓度不变。如TCD 、PID 等。凡非破坏性检测器,均是浓度型检测器。 当检测器的响应值取决于单位时间内进入检测器的组分量时,为质量(流量敏感型检测器或简称质量型检测器。它的响应值与载气流速的关系是:峰高随流速的增加而增大,而峰面积基本不变。因当组分量一定,改变载气流速时,即改变了单位时间内进入检测器的组分量,但组分总量未变,如FID 、NPD 、FPD 、MSD 等。

4、按不同类型化合物响应值的大小 检测器对不同类型化合物的响应值基本相当,或各类化合物的RRF 值之比小于!0 时,称通用型检测器,如TCD 、PID 等。 当检测器对某类化合物的RRF 值比另一类大十倍以上时,为选择性检测器。如NPD 、ECD 、FPD 等。 二、按工作原理(检测方法分类 按检测器的性能特征分类对把握检测器的某项性能十分有益,但众多的检测器,各有多种性能。某检测器归哪类,似乎没有一个内在的规律可循。如按工作原理或检测方法分类,因一种检测器只有一份工作原理,比较明确,有一定的规律可循,比较容易掌握。

固定污染源废气甲烷总烃非甲烷总烃的测定便携式氢火焰离子化检测

ICS点击此处添加ICS号 点击此处添加中国标准文献分类号DB11 北京市地方标准 DB XX/ XXXXX—XXXX 固定污染源废气甲烷/总烃/非甲烷总烃的测定便携式氢火焰离子化检测器法 Stationary source emission-Determination of methane/total hydrocarbons/non-methane hydrocarbons-Portable hydrogen flame ionization dertector method 点击此处添加与国际标准一致性程度的标识 (征求意见稿) XXXX-XX-XX发布XXXX-XX-XX

目次 前言.................................................................................................................................................................... I I 1范围.. (1) 2规范性引用文件 (1) 3术语和定义 (1) 4方法原理 (2) 5干扰及消除 (2) 6标气和材料 (2) 7仪器和设备 (2) 8校准量程 (3) 9测试步骤 (3) 10排放浓度计算 (4) 11精密度和准确度 (4) 12质量保证与质量控制 (4) 13注意事项 (4) 参考文献 (6)

前言 本标准为推荐性标准。 本标准按照GB/T 1.1-2009给出的规则起草。 本标准由北京市环境保护局提出并归口。 本标准为首次制定。 本标准由北京市环境保护局组织实施。 本标准起草单位:北京市环境保护监测中心。 本标准主要起草人:

气相色谱仪氢火焰操作指导

氢火焰操作步骤 开机步骤:, 一:先通载气 气体压力定值: 1.打开钢瓶,氮气压力钢瓶上的减压阀压力为0.3--0.4MPa; 打开空气与氢气发生器 二:升温: 具体步骤为:选择柱室/ 进样2 / 检测器在目标温度下设定所需温度,输入后按下“输入”健,等温度恒温后点火。 GC8100检测器参数设定: 柱箱:50℃进样2:250℃检测器:250℃柱前压:0.06MPa 氢气1:0.1MPa 空气: 0.1 MPa 尾吹:0.1 MPa 程升:50℃保持10min,然后以5℃/min升到250℃。 三:点火: 具体步骤为: 空气:点火时0.0.6MPa,点火后0.1MPa,即30ml/min 即300ml/ min ;氢气压力点火时0.2-0.25MPa;为 0.1MPa氢气: 点火后0.1MPa,即30ml/min ; 先把主机上氢气压力缓慢的升至0.25MPa左右,用电子点火器在氢焰

检测器上方点火,点着后氢气压力缓慢的降至0.1MPa左右,可维持火焰燃烧的氢气最小值,不必拘于0.05。点火后,离子头上方的出口处会有水汽产生此举可判断火焰是否可以在燃烧。 四: 打开N2000工作站online,选择通道一选择“ok”在“数据采集”栏下选择“查看基线”。 在分析条件下,等到基线稳定后,用主机上的调零旋钮将基线位置调至合适位置(一般选择0mv-5mv之间的位置)。此时可以进样了。进样后,等到所有的峰都完后,单击“停止采集”,“预览”含量即可得到所需物质含量。 关机步骤:关机步骤大体上和开机步骤相反。 1.熄火:即是把主机上氢气压力关掉。 2.降温:就是把所有的温度设为0度。 3.关闭主机电源。此步骤需等到汽化室和氢焰的温度降到80 度以下 柱室温度降到室温方可进行。 4.关气。关闭发生器与钢瓶上的旋转开关。 5.关闭工作站。 五: 在关机时,主机上柱前压或尾吹的压力可以不必关掉。但是钢瓶上减压阀的压力最好关掉。 六:温度及气体压力设定: 以上参数不是固定参考值,可按测试参考条件设置好各温度值,

高效液相色谱仪常用检测器的种类及分析精编版

高效液相色谱仪常用检测器的种类及分析 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

高效液相色谱仪常用检测器的种类及分析检测器的作用是将柱流出物中样品组成和含量的变化转化为可供检测的信号,常用检测器有紫外吸收、荧光、示差折光、化学发光等。 1.紫外可见吸收检测器(ultraviolet-visibledetector,UVD) 紫外可见吸收检测器(UVD)是HPLC中应用最广泛的检测器之一,几乎所有的液相色谱仪都配有这种检测器。其特点是灵敏度较高,线性范围宽,噪声低,适用于梯度洗脱,对强吸收物质检测限可达1ng,检测后不破坏样品,可用于制备,并能与任何检测器串联使用。紫外可见检测器的工作原理与结构同一般分光光度计相似,实际上就是装有流动地的紫外可见光度计。 (1)紫外吸收检测器 紫外吸收检测器常用氘灯作光源,氘灯则发射出紫外-可见区范围的连续波长,并安装一个光栅型单色器,其波长选择范围宽(190nm~ 800nm)。它有两个流通池,一个作参比,一个作测量用,光源发出的紫外光照射到流通池上,若两流通池都通过纯的均匀溶剂,则它们在紫外波长下几乎无吸收,光电管上接受到的辐射强度相等,无信号输出。当组分进入测量池时,吸收一定的紫外光,使两光电管接受到的辐射强度不等,这时有信号输出,输出信号大小与组分浓度有关。

局限:流动相的选择受到一定限制,即具有一定紫外吸收的溶剂不能做流动相,每种溶剂都有截止波长,当小于该截止波长的紫外光通过溶剂时,溶剂的透光率降至10%以下,因此,紫外吸收检测器的工作波长不能小于溶剂的截止波长。 (2)光电二极管阵列检测器(photodiodearraydetector,PDAD) 也称快速扫描紫外可见分光检测器,是一种新型的光吸收式检测器。它采用光电二极管阵列作为检测元件,构成多通道并行工作,同时检测由光栅分光,再入射到阵列式接收器上的全部波长的光信号,然后对二极管阵列快速扫描采集数据,得到吸收值(A)是保留时间(tR)和波长(l)函数的三维色谱光谱图。由此可及时观察与每一组分的色谱图相应的光谱数据,从而迅速决定具有最佳选择性和灵敏度的波长。 单光束二极管阵列检测器,光源发出的光先通过检测池,透射光由全息光栅色散成多色光,射到阵列元件上,使所有波长的光在接收器上同时被检测。阵列式接收器上的光信号学的方法快速扫描提取出来,每幅图象仅需要10ms,远远超过色谱流出峰的速度,因此可随峰扫描。 2.荧光检测器(fluorescencedetector,FD) 荧光检测器是一种高灵敏度、有选择性的检测器,可检测能产生荧光的化合物。某些不发荧光的物质可通过化学衍生化生成荧光衍生物,再进行荧光检测。其最小检测浓度可达/ml,适用于痕量分析;一般情况下荧光检测器的灵

相关主题
文本预览
相关文档 最新文档