当前位置:文档之家› 区间继电式逻辑检查电路说明

区间继电式逻辑检查电路说明

区间继电式逻辑检查电路说明
区间继电式逻辑检查电路说明

区间继电式逻辑检查

电路说明

黑龙江瑞兴科技股份有限公司

2015.06.06

目录

1概述 (3)

2技术条件 (3)

2.1总体要求 (3)

2.2技术要求 (3)

2.2 特殊场景 (5)

3电路原理 (5)

3.1、典型的线路平面图 (5)

4电路工作原理 (10)

4.1 区间轨道正常运行 (10)

4.2轨道电路故障红光带 (17)

4.3失去分路检查 (18)

4.3.1进入本闭塞分区后飞车 (18)

1)列车占用上一闭塞分区(a)、未占用本闭塞分区(b); (18)

5电路设计几点考虑 (20)

5.1 区间逻辑检查电路中CZJ励磁电路中检查1LQ区段,QGJ、JLJ后接点的作用与1LQ励磁CZJ作用。

(20)

5.2 JLJ自闭电路的作用 (20)

6总结 (21)

6.1 区间轨道电路正常 (21)

6.2 轨道电路出现故障红光带场景 (21)

6.3轨道电路失去分路场景 (22)

1概述

目前ZPW-2000R系列自动闭塞设备,由轨道电路完成列车占用、空闲检查的功能。《区间继电式逻辑检查电路》在既有编码的ZPW-2000轨道电路基础上利用逻辑检查功能。进一步提高轨道电路设备的安全性。

2技术条件

执行铁总运[2015]121号《自动闭塞区间继电式逻辑检查暂行技术条件》

2.1总体要求

2.1.1 逻辑检查电路应具有防护功能和报警功能。

2.1.2 逻辑检查电路应以逻辑检查区段为单元进行逻辑检查。

2.1.3 正常运营场景下,逻辑检查电路应能对自动闭塞区间进行逻辑检查,各逻辑检查区段的轨道电路接收设备动作时序不符合本技术条件时,逻辑检查电路应能进行防护,60s后相关区段应输出报警。

2.1.4 正常运营场景下,列车自逻辑检查区段“占用丢失”时:

1) 逻辑检查电路应进行防护。

2)如该“占用丢失”持续60s,改区段应输出报警。

3)本区段报警后,若本区段或下一区段正常占用,该报警应自动解除。

4)本区段报警后,若其下一区段始终失去分路,该防护不得自动解除。

5)正常运营场景下,逻辑检查电路进行区间逻辑检查时,其安全性应不低于现行有关技术标准的规定。

2.2技术要求

2.2.1 正常运营场景

2.2.1.1遇下列情况,逻辑检查电路应对相关逻辑检查区段进行防护;

1)轨道电路接收设备表示为占用时。

2)“失去分路”或“占用丢失”时。

2.2.1.2 逻辑检查区段防护状态的解除需检查其轨道电路接收设备表示为空闲状态,其符合下列条件之一:

1)其下一逻辑检查区段处于防护状态。

2)人工解锁。

2.2.1.3 逻辑检查区段“失去分路”或“占用丢失”持续时间达到或超过60s时,应输出报警。

2.2.1.4 逻辑检查区段报警时,应能提供报警表示信息及解除报警的操作按钮。

2.2.1.5 逻辑检查区段报警后,若其防护状态解除,其报警亦应自动解除。

2.2.1.6 列车自I BG“占用丢失”时;

1)逻辑检查电路应对1LG进行防护。

2)如该“占用丢失”持续60s,1LQ应输出报警。

3)1LQ报警后,若其正常占用,该报警应能自动解除。

4)1LQ报警后,若其始终失去分路,该防护不得自动解除。

2.2.1.7 列车自1LQ“占用丢失”时;

1)逻辑检查电路应对1LQ进行防护。

2)如该“占用丢失”持续60s且2LQ仍未分路,1LQ应输出报警。

3)1LQ报警后,若1LQ或2LQ正常占用,该报警应能自动解除。

4)1LQ报警后,若2LQ始终失去分路,该防护不得自动解除。

2.2.1.8 列车自2LQ(a)“占用丢失”时;

1)逻辑检查电路应对a进行防护。

2)如该“占用丢失”持续60s且3LQ(b)仍未分路,a应输出报警。

3)a报警后,若a或b正常占用,该报警应能自动解除。

4)A报警后,若b始终失去分路,该防护不得自动解除。

2.2.1.9 除3JG外,列车自其它闭塞分区“占用丢失”时,逻辑检查电路的防护与报警应符合第4.1.8条的规定。

2.1.10 列车自3JG“占用丢失”(3JG由“正常占用”变为“空闲”或“失去分路”,但逻辑检查电路未得到列车正常进站条件或I AG轨道电路正常时引导接车的进站条件)时:1)逻辑检查电路应对3JG进行防护。

2)该“占用丢失”持续60s且逻辑检查电路仍未得到列车正常进站条件或I AG轨道电路正常引导接车的进站条件,3JG应输出报警。

3)3JG报警后,若其正常占用,或列车正常进站(或I AG轨道电路正常引导接车),该报警应能自动解除。

4)3JG报警后,若其逻辑检查电路始终未得到列车正常进站条件(或I AG轨道电路正常

时引导接车的进站条件),该防护不得自动解除。

2.2.1.11 连续多个逻辑检查区段始终失去分路时;

1)逻辑检查电路应对第一个“占用丢失”区段进行防护。

2)该“占用丢失”持续60s后,第一个“占用丢失”区段应输出报警。

3)该报警不得自动解除。

2.2.1.12 逻辑检查区段保留“失去分路”或“占用丢失”的防护及报警时,若后续列车在运行过程中,相关区段的轨道电路能正常反映其“占用”或“空闲”情况,该防护及报警应能自动解除。

2.2 特殊场景

2.2.1 区间开通正方向,发车站未开放出站信号机、列车(或机车车辆)由发车站越过站界进入区间正方向运行(如按调度命令、路票或手信号向区间发出列车,越站调车等)时,若轨道电路能正常反映区段的“占用”、“空闲”情况,应符合现行有关的技术标准的规定。

2.2.2 区间开通正方向,列车在区间“走—停—走”时,相关的逻辑检查区段可输出报警。

2.2.3 区间开通正方向,列车(或机车车辆)在区间退行、分解运行或重联运行时,相关的逻辑检查区段可输出报警。

2.2.4 区间开通正方向,接车站未正常开放进站信号机(或I AG轨道电路故障时引导接车),列车(或机车车辆)有区间越过站界进入车站时;

1)逻辑检查电路可对3JG进行防护。

2)3JG的轨道电路接收设备表示为空闲状态并持续60s 后,可输出报警。

3)该报警可不自动解除

2.2.5 区间开通反方向、按自动站间闭塞方式运行时,逻辑检查电路不进行区间逻辑检查。

2.2.6 区间开通反方向、任一单个或不连续逻辑检查区段故障占用恢复后,无逻辑检查报警。3电路原理

3.1、典型的线路平面图

本文件描述的自动闭塞区间继电式逻辑检查场景分析,以下图所示典型“两站一区间”的下行正线为例:

X1LQ

a b c d A B C D X X2LQ (X3LQ/X1JG )X2JG X3JG IAG 乙站甲

站X1X3S N

S3S1

IBG 图3.1.典型区间线路平面示意图

3.2电路原理图

本方案中的自动闭塞区间继电式逻辑检查电路如下图所示:

图3.2.电路原理图

3.3电路组成

3.3.1 QGJ(区间轨道继电器)

JWXC-1700,常态↑:每个区间轨道区段设一台(既有)。

QGJ 由ZPW-2000R 接收设备直接驱动,并且有一定时间的缓吸特性

反映ZPW-2000R 接收设备的工作状态:

1)其励磁(↑)通常反映轨道区段空闲;或区间轨道区段有列车占用但遇“失去分路”等特殊情况。

2)其失磁(↓)通常反映轨道区段占用;或区间轨道区段空闲但遇“故障红光带”或“前方信号机红灯断丝”等特殊情况。

注:在自动闭塞各闭塞分区单元电路中,QGJ通常是轨道区段空闲与否的直接体现。当闭塞分区由多个轨道区段组成时,各轨道区段均设有一套ZPW-2000R设备及相应的QGJ;此时,如其中任一区段的QGJ↓,则本闭塞分区中(按区间开通方向的)第一轨道区段的QGJ↓(无论其是否占用),反映本闭塞分区占用。

3.3.2 QGJF(区间轨道复示继电器)

JWXC-1700,常态↑:每个闭塞分区(及1LQ区段)设一台(新增)。

QGJF是既有QGJ的复示继电器。

3.3.3 GJ(轨道继电器)

JWXC-1700,常态↑:每个区间轨道区段设一台(既有)。

GJ由QGJ驱动,并且有约2.3s~2.8s的缓吸特性。

闭塞分区(及1LQ区段)既有单元电路中的GJ励磁电路如下图所示:

QKZ

QKF

图3.3.闭塞分区(及1LQ区段)既有单元电路中的GJ励磁电路注:自动闭塞电路中,各闭塞分区的“GJ”用于信号控制电路(点灯、发码等);根据工程需要,GJ还可驱动一台或多台轨道复示继电器(GJF)。

本方案对GJ励磁电路进行的修改如下图所示:

QKZ

QKF

图3.4.本方案对GJ励磁电路进行的修改

下文中未加特殊说明者,代号“GJ”均指本方案对既有单元电路进行修改后的轨道电路继电器。

3.3.4 CZJ(出站继电器)

JWXC-1700,常态↑;每个正方向发车口设一台(新增)。

列车正向发车并占用发车进路最末区段(I BG)后,CZJ↓;列车占用1LQ(QGJ↓)、1LQJLJ 失磁,并出清发车进路最末区段(I BG)后CZJ恢复↑并自闭。

当区间开通反方向或1LQ区段的RJA按下时(X1LQRJJ↑),CZJ↑。

3.3.5 JZJ(进站继电器)

JWXC-1700,常态↓;每个正方向接车口设一台(新增)。

正向进站信号机开放(LXJ↑)、列车占用进站第一区段(I AG)后,JZJ↑并自闭;列车完全进站、3JG GJ↑JZJ恢复↓。

3.3.6 JLJ(记录继电器)

常态↑:每个闭塞分区(及1LQ区段)设一台(新增)。

1LQ区段的JLJ:JWXC-H340进站口的CZJ↓后,占用本区段(或虽未占用本区段但自发车站末区段飞车)时JLJ↓;下一闭塞分区GJ↓、出清本区段(QGJ↑)且CZJ↑后,JLJ恢复↑并自闭。

2LQ及普通闭塞分区的JLJ;JWXC-1700。上一区段(GJ↓)时JLJ↓;下一闭塞分区GJ ↓、并出清本区段(QGJ↑)后,JLJ恢复↑并自闭。

3JG闭塞分区的JLJ:JWXC-1700。上一闭塞分区GJ↓并占用本闭塞分区(QGJ↓)时JLJ ↓;JZJ↑并出清本闭塞分区(QGJ↑)后,JLJ恢复↑并自闭。

当区间开通反方向或本闭塞分区(及1LQ区段)的RJA按下时(RJJ↑),JLJ↑。

3.3.7 RJP(区间继电式逻辑检查人工解锁盘)

某站区间逻辑检查引起机信掉码故障案例

某站区间逻辑检查引起机信掉码故障案例 一、故障概况 某日 22:02分,K1007次在京广线某站因机车信号由绿码转为白码停车。原因分析为轨面有沙造成4DG瞬间分路不良,导致闪红光带,引起区间逻辑检查电路动作,X1LQG被防护出现红光带,导致XIFMJ落下,致使机车在4DG运行时掉码。 二、监测分析 1. 机车信号分析 查机车信号远程监测,K1007次机车越过XI出站信号机后走行168m 收到27.9HZ低频信号,机车信号显示白灯。如下图1所示。 图 1 掉码时机信监测数据

2. 确定掉码位置 查该站信号设备平面布置图(如图2),XI发车进路含二个区段,分别为8DG和4DG,8DG长77m,4DG长297m。机车越过XI出站信号机后走行168m收到27.9HZ低频信号,说明机车在4DG掉码。 图2信号布置图 3. 监测数据分析 集中监测回放,列车22:02:44秒压入8DG,分路电压为16.0V;22:02:49秒,8DG电压瞬间降到12.2V,8DG继电器状态瞬间跳变;22:02:54秒,8DGJ落下,列车压入4DG,4DGJ落下,4DGJ电压8.9V;22:02:55秒,4DGJ吸起,4DGJ电压12.6V;22:02:55秒,4DGJ落下,X1LQGJLJ落下;22:02:58秒,XIFMJ落下;期间无X1LQJ状态变化信息;22:03:00秒4DG红光带(如图3)。

图3掉码时监测记录的开关量与电压信息 4. TDCS数据 期间工区值班人员反映车站逻辑检查的报警信息。回放TDCS,列车运行在8DG时,X1LQG与4DG先后红光带(如图4)。 图4故障时TDCS显示 5. 联锁维修机数据 工区值班人员反映在联锁维修机上,列车运行在8DG时,4DG与X1LQG顺序红光带(双击下方mp4文件或gif文件)。 维修机记录.mp4 维修机记录.gif

铁路总公司印发区间逻辑检查功能运用暂行办法的通知铁总运

铁路总公司印发区间逻辑检查功能运用暂行办法的通知铁总运 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

TG/CW301-2016 区间逻辑检查功能运用暂行办法 第一章总则 第一条依据中国铁路总公司《铁路技术管理规程》等有关规章制度和区间逻辑检查有关技术条件,结合实际作业组织需要,制定本办法。 第二条本办法分为列控中心区间占用逻辑检查和自动闭塞区间继电式逻辑检查两部分。其中,列控中心区间占用逻辑检查部分适用于具备列控中心区间逻辑检查功能的高铁线路,具备列控中心区间逻辑检查功能的普铁线路可参照执行;自动闭塞区间继电式逻辑检查部分适用于自动闭塞区段具备区间继电式逻辑检查功能的线路。 第二章列控中心区间占用逻辑检查功能运用办法 第一节功能及说明 第三条列控中心根据列车占用、出清闭塞分区的顺序关系及区间闭塞方向,对区间闭塞分区的状态进行逻辑判定。 第四条闭塞分区包括空闲、正常占用、故障占用、占用丢失四种状态。 空闲状态:表示列车未占用该闭塞分区、且该闭塞分区轨道电路所反映的线路状态为空闲;

正常占用状态:表示列车占用该闭塞分区、且该闭塞分区轨道电路所反映的线路状态为占用; 故障占用状态:表示列车未占用该闭塞分区、但该闭塞分区轨道电路所反映的线路状态为占用; 占用丢失状态:表示列车占用该闭塞分区、但该闭塞分区轨道电路所反映的线路状态为空闲。 第五条列控中心进行区间占用逻辑检查时,以闭塞分区为单元进行判断,无配线车站站内区段按区间闭塞分区进行处理。 第六条区间内任意闭塞分区处于占用丢失或故障占用状态时,无法办理区间正常改方操作。区间内闭塞分区处于故障占用或占用丢失状态时,办理辅助改方操作成功后,将分别处于故障占用或空闲状态。 第七条当正常占用的闭塞分区轨道电路恢复空闲,而区间闭塞方向前方相邻闭塞分区轨道电路未被正常占用时,列控中心判定该闭塞分区为占用丢失。 列控中心对判定为占用丢失的闭塞分区进行安全防护:该闭塞分区后方轨道电路发红黄码,防护信号机点亮红色灯光(常态灭灯区段除外)。同时,列控中心向集中监测系统发送报警信息,列控中心维护终端显示闭塞分区逻辑状态和报警信息。调度集中系统(以下简称CTC)调度终端和车务终端对该闭塞分区按分路不良进行显示,防护信号机显示红色灯光;车站联锁终端若能显示该闭塞分区,则该闭塞分区显示红色光带。

时序逻辑电路习题解答

5-1 分析图所示时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图和时序图。 CLK Z 图 题 5-1图 解:从给定的电路图写出驱动方程为: 0012 10 21()n n n n n D Q Q Q D Q D Q ?=??=?? =?? e 将驱动方程代入D 触发器的特征方程D Q n =+1 ,得到状态方程为: 10012110 12 1()n n n n n n n n Q Q Q Q Q Q Q Q +++?=??=??=??e 由电路图可知,输出方程为 2 n Z Q = 根据状态方程和输出方程,画出的状态转换图如图题解5-1(a )所示,时序图如图题解5-1(b )所示。 题解5-1(a )状态转换图

1 Q 2/Q Z Q 题解5-1(b )时序图 综上分析可知,该电路是一个四进制计数器。 5-2 分析图所示电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。A 为输入变量。 Y A 图 题 5-2图 解:首先从电路图写出驱动方程为: () 0110101()n n n n n D AQ D A Q Q A Q Q ?=? ?==+?? 将上式代入触发器的特征方程后得到状态方程 () 1011 10101()n n n n n n n Q AQ Q A Q Q A Q Q ++?=? ?==+?? 电路的输出方程为: 01n n Y AQ Q = 根据状态方程和输出方程,画出的状态转换图如图题解5-2所示

Y A 题解5-2 状态转换图 综上分析可知该电路的逻辑功能为: 当输入为0时,无论电路初态为何,次态均为状态“00”,即均复位; 当输入为1时,无论电路初态为何,在若干CLK 的作用下,电路最终回到状态“10”。 5-3 已知同步时序电路如图(a)所示,其输入波形如图 (b)所示。试写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图和时序图,并说明该电路的功能。 X (a) 电路图 1234CLK 5678 X (b)输入波形 图 题 5-3图 解:电路的驱动方程、状态方程和输出方程分别为: 0010110001101101 1, ,n n n n n n n n n n J X K X J XQ K X Q X Q XQ X Q XQ Q XQ XQ XQ Y XQ ++?==??==???=+=?? ?=+=+?= 根据状态方程和输出方程,可分别做出11 10,n n Q Q ++和Y 的卡诺图,如表5-1所示。由此 做出的状态转换图如图题解5-3(a)所示,画出的时序图如图题解5-3(b )所示。

时序逻辑电路51时序逻辑电路的基本概念1时序逻辑电路

第5章时序逻辑电路 5.1 时序逻辑电路的基本概念 1.时序逻辑电路的结构及特点 时序逻辑电路在任何时刻的输出状态不仅取决于当时的输入信号,还与电路的原状态有关,触发器就是最简单的时序逻辑电路,时序逻辑电路中必须含有存储电路。时序电路的基本结构如图 5.1 所示,它由组合电路和存储电路两部分组成。 图5.1 时序逻辑电路框图 时序逻辑电路具有以下特点: (1)时序逻辑电路通常包含组合电路和存储电路两个组成部分,而存储电路要记忆给定时刻前的输入输出信号,是必不可少的。 (2)时序逻辑电路中存在反馈,存储电路的输出状态必须反馈到组合电路的输入端,与输入信号一起,共同决定组合逻辑电路的输出。 2.时序逻辑电路的分类 (1)按时钟输入方式 时序电路按照时钟输入方式分为同步时序电路和异步时序电路两大类。同步时序电路中,各触发器受同一时钟控制,其状态转换与所加的时钟脉冲信号都是同步的;异步时序电路中,各触发器的时钟不同,电路状态的转换有先有后。同步时序电路较复杂,其速度高于异步时序电路。 (2)按输出信号的特点 根据输出信号的特点可将时序电路分为米里(Mealy)型和摩尔(Moore)型两类。米里型电路的外部输出Z既与触发器的状态Q n有关,又与外部输入X有

关。而摩尔型电路的外部输出Z仅与触发器的状态Q n有关,而与外部输入X无关。 (3)按逻辑功能 时序逻辑电路按逻辑功能可划分为寄存器、锁存器、移位寄存器、计数器和节拍发生器等。 3.时序逻辑电路的逻辑功能描述方法 描述一个时序电路的逻辑功能可以采用逻辑方程组(驱动方程、输出方程、状态方程)、状态表、状态图、时序图等方法。这些方法可以相互转换,而且都是分析和设计时序电路的基本工具。 5.2 时序逻辑电路的分析方法和设计方法 1.时序逻辑电路的分析步骤 (1)首先确定是同步还是异步。若是异步,须写出各触发器的时钟方程。(2)写驱动方程。 (3)写状态方程(或次态方程)。 (4)写输出方程。若电路由外部输出,要写出这些输出的逻辑表达式,即输出方程。 (5)列状态表 (6)画状态图和时序图。 (7)检查电路能否自启动并说明其逻辑功能。 5.2.1 同步时序逻辑电路的设计方法 1.同步时序逻辑电路的设计步骤 设计同步时序电路的一般过程如图5.10所示。 图5.10 同步时序电路的设计过程

《区间逻辑检查功能运用暂行办法》(2016)63

TG/CW301-2016 区间逻辑检查功能运用暂行办法 第一章总则 第一条依据中国铁路总公司《铁路技术管理规程》等有关规章制度和区间逻辑检查有关技术条件,结合实际作业组织需要,制定本办法。 第二条本办法分为列控中心区间占用逻辑检查和自动闭塞区间继电式逻辑检查两部分。其中,列控中心区间占用逻辑检查部分适用于具备列控中心区间逻辑检查功能的高铁线路,具备列控中心区间逻辑检查功能的普铁线路可参照执行;自动闭塞区间继电式逻辑检查部分适用于自动闭塞区段具备区间继电式逻辑检查功能的线路。 第二章列控中心区间占用逻辑检查功能运用办法 第一节功能及说明 第三条列控中心根据列车占用、出清闭塞分区的顺序关系及区间闭塞方向,对区间闭塞分区的状态进行逻辑判定。

第四条闭塞分区包括空闲、正常占用、故障占用、占用丢失四种状态。 空闲状态:表示列车未占用该闭塞分区、且该闭塞分区轨道电路所反映的线路状态为空闲; 正常占用状态:表示列车占用该闭塞分区、且该闭塞分区轨道电路所反映的线路状态为占用; 故障占用状态:表示列车未占用该闭塞分区、但该闭塞分区轨道电路所反映的线路状态为占用; 占用丢失状态:表示列车占用该闭塞分区、但该闭塞分区轨道电路所反映的线路状态为空闲。 第五条列控中心进行区间占用逻辑检查时,以闭塞分区为单元进行判断,无配线车站站内区段按区间闭塞分区进行处理。 第六条区间内任意闭塞分区处于占用丢失或故障占用状态时,无法办理区间正常改方操作。区间内闭塞分区处于故障占用或占用丢失状态时,办理辅助改方操作成功后,将分别处于故障占用或空闲状态。 第七条当正常占用的闭塞分区轨道电路恢复空闲,而区间闭塞方向前方相邻闭塞分区轨道电路未被正常占用时,列控中心判定该闭塞分区为占用丢失。 列控中心对判定为占用丢失的闭塞分区进行安全防护:该闭塞分区后方轨道电路发红黄码,防护信号机点亮红色灯

自动闭塞区间逻辑检查设计方案研究

自动闭塞区间逻辑检查设计方案研究 文章阐述了既有线铁路自动闭塞区段实现区间逻辑检查功能的两种方案,并从增加设备、实现功能等方面进行了分析和对比。通过具体工程设计着重介绍了增加继电式区间逻辑检查电路的设计方案,明确了既有线普速铁路改造工程施工图设计的具体内容。 标签:既有线;自动闭塞;区间逻辑检查;继电式;系统化 1 概述 为了实现对正常运行列车出现分路不良时的红灯防护,提高自动闭塞区间列车运行的安全性,铁路总公司要求铁路项目自动闭塞区段增加信号系统对区间占用逻辑检查功能。因此研究既有线普速铁路增加区间逻辑检查功能的改造方案是十分必要的。 2 区间逻辑检查方案 目前,国内针对既有线普速铁路增加区间逻辑检查功能的处理方案大致分为两类:继电式区间逻辑检查和系统化区间逻辑检查。 2.1 继电式区间逻辑检查 继电式区间逻辑检查是通过在自动闭塞电路中增加由继电器搭建的逻辑电路实现的,针对既有技术设备现状,对区间自动闭塞电路进行技术改造,增加逻辑检查功能,其他配套设备(如TDCS、信号集中监测等)进行适应性修改。 2.2 系统化区间逻辑检查 系统化区间逻辑检查是将实现区间逻辑检查功能的继电器、电路进行组合,使其集成为具有该功能的子系统。此系统可根据铁路项目实际需求进行选择以实现不同需求的设计方案,如区间综合监控系统、站间信息传输系统等信号设备系统。 3 方案对比 对于上述两种技术方案主要进行增加设备、功能等方面的对比。 3.1 继电式区间逻辑检查 (1)新增设备。针对每个逻辑检查区段增设RJJ(人工解锁继电器)、QGJF (区间轨道复示继电器)、JLJ(记录继电器)、BJ(逻辑检查报警继电器)各一台;针对车站每个正方向发车口增设一台CZJ(出站继电器);针对车站每个正

(完整版)时序逻辑电路习题与答案

第12章时序逻辑电路 自测题 一、填空题 1.时序逻辑电路按状态转换情况可分为时序电路和时序电路两大类。 2.按计数进制的不同,可将计数器分为、和N进制计数器等类型。 3.用来累计和寄存输入脉冲个数的电路称为。 4.时序逻辑电路在结构方面的特点是:由具有控制作用的电路和具记忆作用电路组成。、 5.、寄存器的作用是用于、、数码指令等信息。 6.按计数过程中数值的增减来分,可将计数器分为为、和三种。 二、选择题 1.如题图12.1所示电路为某寄存器的一位,该寄存器为 。 A、单拍接收数码寄存器; B、双拍接收数码寄存器; C、单向移位寄存器; D、双向移位寄存器。 2.下列电路不属于时序逻辑电路的是。 A、数码寄存器; B、编码器; C、触发器; D、可逆计数器。 3.下列逻辑电路不具有记忆功能的是。 A、译码器; B、RS触发器; C、寄存器; D、计数器。 4.时序逻辑电路特点中,下列叙述正确的是。 A、电路任一时刻的输出只与当时输入信号有关; B、电路任一时刻的输出只与电路原来状态有关; C、电路任一时刻的输出与输入信号和电路原来状态均有关; D、电路任一时刻的输出与输入信号和电路原来状态均无关。 5.具有记忆功能的逻辑电路是。 A、加法器; B、显示器; C、译码器; D、计数器。 6.数码寄存器采用的输入输出方式为。 A、并行输入、并行输出; B、串行输入、串行输出; C、并行输入、串行输出; D、并行输出、串行输入。 三、判断下面说法是否正确,用“√"或“×"表示在括号 1.寄存器具有存储数码和信号的功能。( ) 2.构成计数电路的器件必须有记忆能力。( ) 3.移位寄存器只能串行输出。( ) 4.移位寄存器就是数码寄存器,它们没有区别。( ) 5.同步时序电路的工作速度高于异步时序电路。( ) 6.移位寄存器有接收、暂存、清除和数码移位等作用。() 思考与练习题 12.1.1 时序逻辑电路的特点是什么? 12.1.2 时序逻辑电路与组合电路有何区别? 12.3.1 在图12.1电路作用下,数码寄存器的原始状态Q3Q2Q1Q0=1001,而输入数码

7.《电子技术基础》复习题_时序逻辑电路

《电子技术基础》复习题 时序逻辑电路 一、填空题: 1.具有“置0”、“置1”、“保持”和“计数功能”的触发器是() 2.触发器有门电路构成,但它不同门电路功能,主要特点是:() 3.TTL型触发器的直接置0端Rd、置1端Sd的正确用法是() 4.按触发方式双稳态触发器分为:() 5.时序电路可以由()组成 6.时序电路输出状态的改变() 7.通常寄存器应具有()功能 8.通常计数器应具有()功能 9. M进制计数器的状态转换的特点是设初态后,每来()个CP时,计数器又重回初态。 10.欲构成能记最大十进制数为999的计数器,至少需要()个双稳触发器。 11. 同步时序逻辑电路中所有触发器的时钟端应()。 二、选择题: 1.计数器在电路组成上的特点是() a)有CP输入端,无数码输入端b) 有CP输入端和数码输入端c) 无CP输入端,有数码输入 端 2.按各触发器的状态转换与CP的关系分类,计数器可分为()计数器。 a)加法、减法和加减可逆b)同步和异步c)二、十和M进制 3. 按计数器的状态变换的规律分类,计数器可分为()计数器。 a)加法、减法和加减可逆b)同步和异步c)二、十和M进制 4 按计数器的进位制分类,计数器可分为()计数器。 a)加法、减法和加减可逆b)同步和异步c)二、十和M进制 5. n位二进制加法计数器有()个状态,最大计数值是()。 a)2n-1b)2n c)2n-1 6.分析时序逻辑电路的状态表,可知它是一只()。 (a) 二进制计数器(b)六进制计数(c) 五进制计数器 7. 分析如图所示计数器的波形图,可知它是一只()。 (a) 六进制计数器(b) 七进制计数器(c) 八进制计数器

区间逻辑检查原理及应急处置分析

区间逻辑检查原理及应急处置分析 随着列车运行速度的不断提高及行车密度不断加大,区间逻辑检查已成为反映列车运行信息,防止区间因失去分路导致信号显示升级的重要手段之一。文章重点对区间逻辑检查原理及出现异常时的应急处置进行分析研究。 标签:区间逻辑检查;原理;应急处置;分析 1 研究背景 2011年7月23日甬温线发生动车追尾事故,在事故过程中,列控系统并没有发挥出应有的安全防护功能,当前方轨道电路发生红光带故障后,列控系统没有准确得到前方的列车占用信息,违背了“故障-安全”的基本原则,在本应显示红灯信号时错误地显示了绿灯信号。事故发生后,如何有效且准确地显示区间列车运行信息,防止“丢车”现象发生成了重要的研究课题之一。 2 基本原理分析 区间逻辑检查是通过对相邻区段的先后占用顺序进行逻辑判别,即:三点检查。 2.1 三点检查逻辑原理 列车在轨道上行驶时,轨道区段总是进行有规则的变化,通常我们称之为“三点检查”。如图1所示,当列车从甲站向乙站方向运行时,甲站与乙站之间依次有若干个轨道区段,分别为A区段、B区段、C区段等,轨道区段的正常占用顺序为:A区段曾经被占用但现在空闲、A区段和B区段曾经同时被占用、B区段曾经被占用但现在空闲、B区段和C区段曾经同时占用,即:列车顺序依次压入A、B、C区段。 列车在区间运行时,根据闭塞分区列车占用、出清的顺序关系,对区间闭塞分区的状态进行逻辑判定。当列车不满足此逻辑条件时,控制台进行区间逻辑检查错误报警,同时向后方列车传递禁止信号。 2.2 区间逻辑检查的基本状态 闭塞分区的基本状态共有四种,分别为正常占用、空闲、占用丢失状态、故障占用。 正常占用状态表示列车占用该闭塞分区、且闭塞分區轨道电路所反映的线路状态为占用;空闲状态表示列车未占用该闭塞分区、且闭塞分区轨道电路所反映的线路状态为空闲;占用丢失状态表示列车占用该闭塞分区、但闭塞分区轨道电路所反映的线路状态为空闲;故障占用状态表示列车未占用该闭塞分区、但闭塞

时序逻辑电路练习题及答案

《时序逻辑电路》练习题及答案 [6.1] 分析图P6-1时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。 图P6-1 [解] 驱动方程:311Q K J ==, 状态方程:n n n n n n n Q Q Q Q Q Q Q 13131311⊕=+=+; 122Q K J ==, n n n n n n n Q Q Q Q Q Q Q 12212112 ⊕=+=+; 33213Q K Q Q J ==,, n n n n Q Q Q Q 12313 =+; 输出方程:3Q Y = 由状态方程可得状态转换表,如表6-1所示;由状态转换表可得状态转换图,如图A6-1所示。电路可以自启动。 表6-1 n n n Q Q Q 123 Y Q Q Q n n n 111213+++ n n n Q Q Q 123 Y Q Q Q n n n 1112 13+++ 0 00 00 1 010 01 1 0010 0100 0110 1000 100 10 1 110 11 1 000 1 011 1 010 1 001 1 图A6-1 电路的逻辑功能:是一个五进制计数器,计数顺序是从0到4循环。 [6.2] 试分析图P6-2时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。A 为输入逻辑变量。 图P6-2

[解] 驱动方程:21 Q A D =, 2 12Q Q A D = 状态方程:n n Q A Q 21 1 =+, )(122112n n n n n Q Q A Q Q A Q +==+ 输出方程:21Q Q A Y = 表6-2 由状态方程可得状态转换表,如表6-2所示;由状态转换表 可得状态转换图,如图A6-2所示。 电路的逻辑功能是:判断A 是否连续输入四个和四个以上“1” 信号,是则Y=1,否则Y=0。 图A6-2 [6.3] 试分析图P6-3时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,检查电路能否自启动。 图P6-3 [解] 321Q Q J =,11=K ; 12Q J =,312Q Q K =; 23213Q K Q Q J ==, =+11n Q 32Q Q ·1Q ; 211 2 Q Q Q n =++231Q Q Q ; 3232113Q Q Q Q Q Q n +=+ Y = 32Q Q 电路的状态转换图如图A6-3所示,电路能够自启动。 图A6-3 [6.4] 分析图P6-4给出的时序电路,画出电路的状态转换图,检查电路能否自启动,说明电路实现的功能。A 为输入变量。 n n Q AQ 12 Y Q Q n n 1 112++ 000 00 1 010 01 1 100 11 1 110 10 1 010 100 110 00 1 11 1 100 010 000

时序逻辑问题设计

二.时序逻辑问题设计 (一)时序逻辑问题的特点 这类问题的特点为:只知道输出程序,整个系统按输出程序顺序进行,具有时序的要求,也称“顺序控制”。系统输出不仅与输入信号的组合有关,而且受一定顺序的限制,系统输入信号不是随机的,而是有序的。不仅输入的程序没有给出,输入的个数也没有确定,整个设计的关键是由输出程序求出逻辑函数。 常见的行程程序控制属于时序逻辑问题,其控制框图如图2—6所示。 框图中外部指令信号是指启动信号或其他装置来的信号。逻辑控制回路由各种控制阀、逻辑元件组成,是行程程序回路设计的主要部分。控制回路的输出经转换器转换或放大器放大后,推动执行元件(气缸、气马达等),实现对被控对象的控制,再由行程发信器发出信号,输入逻辑控制回路,并经逻辑控制回路进行运算,输出下一个控制信号,直至完成预定的控制要求。实际上这是一种闭环控制系统。 图2—6 行程程序控制方框图 (二)气动行程程序设计概述 为了准确描述气动程序动作、信号及它们间的关系,必须用规定的符号、数字来表示。 1.符号规定 图2—7 气缸、阀、信号的符号 1)用大写的字母A、B、C等表示气缸,用下标“1”和“0”表示气缸活塞杆的两种 状态。例如A 0表示A缸缩回,A 1 则表示A缸伸出。参见图2—7。 2)A气缸的主控阀也用A表示。 3)主控阀两侧的气控信号称为执行信号。用A0*、A1*表示,A0*表示控制A缸缩回的执行信号,A 1 *表示控制A缸伸出的执行信号。 4)行程阀及其输出信号称为原始信号,如行程阀a0及其输出信号a0。A缸不伸出,a0信号一直保持,为长信号。 2.行程程序的相位与状态 用程序式来表示行程程序气缸的动作顺序。例如,气缸的动作顺序为:A缸伸出—B 缸伸出—B缸退回—A缸退回,则用程序式表示为 其中q为启动信号,a 1、b b a 100 、、分别为气缸到位后由行程阀发出的原始信号。程序式 还可以简写为[A B B A 1100 ]。 程序式[A B B A 1100 ]中四个动作将整个程序分为四段,每一段为一个相位。A1动作占 程序的相位1,B 1动作占程序的相位2,B 动作占程序的相位3,A 动作占程序的相位4。

时序逻辑电路习题

触发器 一、单项选择题: (1)对于D触发器,欲使Q n+1=Q n,应使输入D=。 A、0 B、1 C、Q D、 (2)对于T触发器,若原态Q n=0,欲使新态Q n+1=1,应使输入T=。 A、0 B、1 C、Q (4)请选择正确的RS触发器特性方程式。 A、 B、 C、 (约束条件为) D、 (5)请选择正确的T触发器特性方程式。 A、 B、 C、 D、 (6)试写出图所示各触发器输出的次态函数(Q )。 n+1 A、 B、 C、 D、 (7)下列触发器中没有约束条件的是。 A、基本RS触发器 B、主从RS触发器 C、同步RS触发器 D、边沿D触发器 二、多项选择题: (1)描述触发器的逻辑功能的方法有。 A、状态转换真值表 B、特性方程 C、状态转换图 D、状态转换卡诺图 (2)欲使JK触发器按Q n+1=Q n工作,可使JK触发器的输入端。

A、J=K=0 B、J=Q,K= C、J=,K=Q D、J=Q,K=0 (3)欲使JK触发器按Q n+1=0工作,可使JK触发器的输入端。 A、J=K=1 B、J=0,K=0 C、J=1,K=0 D、J=0,K=1 (4)欲使JK触发器按Q n+1=1工作,可使JK触发器的输入端。 A、J=K=1 B、J=1,K=0 C、J=K=0 D、J=0,K=1 三、判断题: (1)D触发器的特性方程为Q n+1=D,与Q 无关,所以它没有记忆功能。() n (2)同步触发器存在空翻现象,而边沿触发器和主从触发器克服了空翻。 () (3)主从JK触发器、边沿JK触发器和同步JK触发器的逻辑功能完全相同。() (8)同步RS触发器在时钟CP=0时,触发器的状态不改变( )。 (9)D触发器的特性方程为Q n+1=D,与Q n无关,所以它没有记忆功能( )。 (10)对于边沿JK触发器,在CP为高电平期间,当J=K=1时,状态会翻转一次( )。 四、填空题: (1)触发器有()个稳态,存储8位二进制信息要 ()个触发器。 (2)在一个CP脉冲作用下,引起触发器两次或多次翻转的现象称为触发器的(),触发方式为()式或()式的触发器不会出现这种现象。 (3)按逻辑功能分,触发器有()、()、()、()、()五种。 (4)触发器有()个稳定状态,当=0,=1时,称为()状态。 时序逻辑电路 一、单项选择题: (2)某512位串行输入串行输出右移寄存器,已知时钟频率为4MHZ,数据从输入端到达输出端被延迟多长时间? A、128μs B、256μs C、512μs D、1024μs (3)4个触发器构成的8421BCD码计数器共有()个无效状态。 A、6 B、8 C、10 D、4 (4)四位二进制计数器模为 A、小于16 B、等于16 C、大于16 D、等于10 (5)利用异步预置数端构成N进制加法计数器,若预置数据为0,则应将()所对应的状态译码后驱动控制端。 A、N B、N-1 C、N+1 (7)采用集成中规模加法计数器74LS161构成的电路如图所示,选择正确答案。 A、十进制加法计数器 B、十二进制加法计数器

区间继电式逻辑检查电路说明书

区间继电式逻辑检查 电路说明 黑龙江瑞兴科技股份有限公司 2015.06.06

目录 1概述 (1) 2技术条件 (1) 2.1总体要求 (1) 2.2技术要求 (1) 2.2 特殊场景 (3) 3电路原理 (3) 3.1、典型的线路平面图 (3) 4电路工作原理 (8) 4.1 区间轨道正常运行 (8) 4.2轨道电路故障红光带 (14) 4.3失去分路检查 (16) 4.3.1进入本闭塞分区后飞车 (16) 1)列车占用上一闭塞分区(a)、未占用本闭塞分区(b); (16) 5电路设计几点考虑 (17) 5.1 区间逻辑检查电路中CZJ励磁电路中检查1LQ区段,QGJ、JLJ后接点的作用与1LQ励磁CZJ作用。 (17) 5.2 JLJ自闭电路的作用 (18) 6总结 (19) 6.1 区间轨道电路正常 (19) 6.2 轨道电路出现故障红光带场景 (19) 6.3轨道电路失去分路场景 (20)

1概述 目前ZPW-2000R系列自动闭塞设备,由轨道电路完成列车占用、空闲检查的功能。《区间继电式逻辑检查电路》在既有编码的ZPW-2000轨道电路基础上利用逻辑检查功能。进一步提高轨道电路设备的安全性。 2技术条件 执行铁总运[2015]121号《自动闭塞区间继电式逻辑检查暂行技术条件》 2.1总体要求 2.1.1 逻辑检查电路应具有防护功能和报警功能。 2.1.2 逻辑检查电路应以逻辑检查区段为单元进行逻辑检查。 2.1.3 正常运营场景下,逻辑检查电路应能对自动闭塞区间进行逻辑检查,各逻辑检查区段的轨道电路接收设备动作时序不符合本技术条件时,逻辑检查电路应能进行防护,60s后相关区段应输出报警。 2.1.4 正常运营场景下,列车自逻辑检查区段“占用丢失”时: 1) 逻辑检查电路应进行防护。 2)如该“占用丢失”持续60s,改区段应输出报警。 3)本区段报警后,若本区段或下一区段正常占用,该报警应自动解除。 4)本区段报警后,若其下一区段始终失去分路,该防护不得自动解除。 5)正常运营场景下,逻辑检查电路进行区间逻辑检查时,其安全性应不低于现行有关技术标准的规定。 2.2技术要求 2.2.1 正常运营场景 2.2.1.1遇下列情况,逻辑检查电路应对相关逻辑检查区段进行防护; 1)轨道电路接收设备表示为占用时。 2)“失去分路”或“占用丢失”时。 2.2.1.2 逻辑检查区段防护状态的解除需检查其轨道电路接收设备表示为空闲状态,其符合下列条件之一: 1)其下一逻辑检查区段处于防护状态。 2)人工解锁。

第5章 时序逻辑电路思考题与习题题解

思考题与习题题解 5-1填空题 (1)组合逻辑电路任何时刻的输出信号,与该时刻的输入信号有关;与电路原来所处的状态无关;时序逻辑电路任何时刻的输出信号,与该时刻的输入信号有关;与信号作用前电路原来所处的状态有关。 (2)构成一异步n2进制加法计数器需要 n 个触发器,一般将每个触发器接成计数或T’型触发器。计数脉冲输入端相连,高位触发器的 CP 端与邻低位Q端相连。 (3)一个4位移位寄存器,经过 4 个时钟脉冲CP后,4位串行输入数码全部存入寄存器;再经过 4 个时钟脉冲CP后可串行输出4位数码。 (4)要组成模15计数器,至少需要采用 4 个触发器。 5-2 判断题 (1)异步时序电路的各级触发器类型不同。(×)(2)把一个5进制计数器与一个10进制计数器串联可得到15进制计数器。(×)(3)具有 N 个独立的状态,计满 N 个计数脉冲后,状态能进入循环的时序电路,称之模N计数器。(√)(4)计数器的模是指构成计数器的触发器的个数。(×) 5-3 单项选择题 (1)下列电路中,不属于组合逻辑电路的是(D)。 A.编码器 B.译码器 C. 数据选择器 D. 计数器 (2)同步时序电路和异步时序电路比较,其差异在于后者( B )。 A.没有触发器 B.没有统一的时钟脉冲控制 C.没有稳定状态 D.输出只与内部状态有关 (3)在下列逻辑电路中,不是组合逻辑电路的有( D )。 A.译码器 B.编码器 C.全加器 D.寄存器 (4)某移位寄存器的时钟脉冲频率为100KHz,欲将存放在该寄存器中的数左移8位,完成该操作需要(B)时间。 A.10μS B.80μS C.100μS D.800ms (5)用二进制异步计数器从0做加法,计到十进制数178,则最少需要( C )个触发器。 A.6 B.7 C.8 D.10 (6)某数字钟需要一个分频器将32768Hz的脉冲转换为1HZ的脉冲,欲构成此分频器至少需要(B)个触发器。 A.10 B.15 C.32 D.32768 (7)一位8421BCD码计数器至少需要(B)个触发器。 A.3 B.4 C.5 D.10

时序逻辑电路(

第六章时序逻辑电路 内容提要 【熟悉】触发器四种电路结构及动作特点,四种逻辑功能及其逻辑关系、逻辑符号,逻辑功能的四种描述方法 【掌握】时序电路的特点和一般分析方法 【熟悉】寄存器的功能、分类及使用方法, 双向移位寄存器的级联【掌握】计数器的功能和分类,级联法、置位法构成N进制计数器【掌握】555定时器构成三种电路的工作特点、连接方法及主要参数一.一.网上导学 二.二.典型例题 三.三.本章小结 四.四.习题答案 网上导学 §6.1时序逻辑电路的特点 时序逻辑电路的特点:任意时刻的输出不仅取决于该时刻的输入,而 且还和电路原来的状态有关,所以时序电路具有记 忆功能。 在第五章中,向大家介绍了组合电路。 组合电路的特点是其任意时刻的输出状态仅取决于该时刻的输入状态。 2.时序电路逻辑功能描述方法 在上面给出的时序电路结构框图中,包括组合逻辑电路和具有记忆功能的存储电路。 输出变量y1,y2,y3。。。。y b,合称输出矢量Y(t)。 输入变量x1,x2,x3。。。。x a,合称输入矢量X(t)。 同样,存储电路的输入、输出称之为矢量P(t)和矢量Q(t)

按照结构图,我们可以列出三组方程:设tn+1,tn分别为相邻的两个离散的时间瞬间。 矢量Y(tn)是X(tn),Q(tn)的函数,称输出方程。 矢量P(tn)是X(tn),Q(tn)的函数,称驱动方程。 矢量Q(tn+1)是P(tn),Q(tn)的函数,称状态方程。 本节问答题 1.1.什么叫组合逻辑电路? 2.2.什么叫时序逻辑电路? 3.3.它们在逻辑功能和电路结构上各有什么特点? 4.4.在时序电路中,时间量tn+1,tn各是怎样定义的?描述时序电路功能需要几个方程,它们各表示什么含义? §6.2触发器 在这一节中,向大家介绍一种最基本的存储电路触发器(flip-flop)。触发器具有以下基本特点: (1)具有两个稳定的(0和1)状态,能存储一位二进制信息; (2)根据不同的输入,可将输出置成0或1状态; (3)当输入信号消失后,被置成的状态能保存下来。 6.2.1 基本RS触发器 一.电路结构及逻辑符号 在本书第三章里,我们讲了各种门电路,若把两个反相器按照a 图的形式连接起来,可以看出,A点和B点信号是反相的,而A点和C点始终保持同一电平。这样,可以把A,C视为同一点(下面的b 图和c图)。在C图中,A,B两点始终反相,而且电路状态稳定,在没有外界干扰或者触发的状态下,电路能够保持稳定的输出。(这一

零基础学FPGA(九)手把手解析时序逻辑乘法器代码

零基础学FPGA(九)手把手解析时序逻辑乘法器代码 上次看了一下关于乘法器的Verilog代码,有几个地方一直很迷惑,相信很多初学者看这段代码一定跟我当初一样,看得一头雾水,在网上也有一些网友提问,说这段代码不好理解,今天小墨同学就和大家一起来看一下这段代码,我会亲自在草稿纸上演算,尽量把过程写的详细些,让更多的人了解乘法器的设计思路。 下面是一段16位乘法器的代码,大家可以先浏览一下,之后我再做详细解释 module mux16( clk,rst_n, start,ain,bin,yout,done ); input clk; //芯片的时钟信号。 input rst_n; //低电平复位、清零信号。定义为0表示芯片复位;定义为1表示复位信号无效。input start; //芯片使能信号。定义为0表示信号无效;定义为1表示芯片读入输入管脚得乘数和被乘数,并将乘积复位清零。 input[15:0] ain; //输入a(被乘数),其数据位宽为16bit. input[15:0] bin; //输入b(乘数),其数据位宽为16bit. output[31:0] yout; //乘积输出,其数据位宽为32bit. output done; //芯片输出标志信号。定义为1表示乘法运算完成. reg[15:0] areg; //乘数a寄存器 reg[15:0] breg; //乘数b寄存器 reg[31:0] yout_r; //乘积寄存器 reg done_r; reg[4:0] i; //移位次数寄存器 //------------------------------------------------ //数据位控制 always @(posedge clk or negedge rst_n) if(!rst_n) i <= 5'd0; else if(start && i < 5'd17) i <= i+1'b1; else if(!start) i <= 5'd0; //------------------------------------------------ //乘法运算完成标志信号产生 always @(posedge clk or negedge rst_n) if(!rst_n) done_r <= 1'b0; else if(i == 5'd16) done_r <= 1'b1; //乘法运算完成标志 else if(i == 5'd17) done_r <= 1'b0; //标志位撤销

基于有穷论域下区间时序逻辑的模型检测研究

收稿日期:2018年1月7日,修回日期:2018年2月25日 作者简介:李超,男,硕士研究生,研究方向:形式化验证,模型检测,自动机。? 1引言 模型检测[1~2]是形式化验证的一种重要方法, 它以自动化的验证技术克服了演绎证明的局限性得到了人们的青睐。区间时序逻辑(Interval Tem -poral Logic ,ITL )是线性时序逻辑的一个重要分支, 在模型检测中有很大的利用价值。模型检测可以帮助人们自动地验证系统属性的正确性,从而从根本上减少了系统的错误,降低了系统维护的成本。模型检测是建立在逻辑的可判定性的基础上,文献[3]已经证明了有穷论域下区间时序逻辑的可判定性,但是目前基于区间时序逻辑的模型检测工具寥寥无几,而现有的区间时序逻辑的模型检测工具在建模和性质描述上都有很大的不便利性,给用户的使用带来了极大的不便。本文在有穷论域下区间时序逻辑的判定性的基础上利用自动机技术给出了一个模型检测工具的设计及实现。 2 概念 2.1 模型检测 在计算机科学中,模型检测指的是给定一个系 统模型,彻底地、自动地检查该模型是否符合某个给定的要求。一般的,在软件或者硬件系统中,给定的要求一般包含像无死锁的这样的安全需求和一些可能导致系统崩溃的关键状态。模型检测是一种自动化地验证有穷状态系统的属性正确性的技术。 为了利用算法解决模型检测的问题,系统模型和要求说明都必须用精确的数学语言来表达。为达到这样的目的,模型检测被表述为一个逻辑运算过程,也就是检验一个给定的系统模型是否满足某个逻辑公式。一个简单的模型检测例子是验证一个系统是否满足一个由逻辑公式描述的性质。如图1所示。 基于有穷论域下区间时序逻辑的模型检测研究 ? 李 超 (西安邮电大学计算机学院 西安 710061) 摘 要 通过结合自动机技术实现了有穷论域区间时序逻辑的判定算法,给出了有穷论域下区间时序逻辑变量、函数的处理方法,并提出了利用自动机进行系统建模的方法。最终实现了一个基于有穷论域区间时序逻辑的模型检测工具。 关键词区间时序逻辑;模型检测;自动机 中图分类号 TP301.1 DOI :10.3969/j.issn.1672-9722.2018.07.007 Model Checking Based on Interval Temporal Logic under Finite Domain LI Chao (School of Computer Science ,Xi 'an University of Posts and Telecommunications ,Xi 'an 710061) Abstract Design and implementation of a model checker based on finite domain interval temporal logic are given ,through the combination with automaton technology the decision algorithm of finite domain interval temporal logic is realized ,a processing method of finite domain under interval temporal logic variable and function is given ,and the method of system modeling using au -tomaton is put forward. Key Words interval temporal logic ,model checking ,automaton Class Number TP301.1 万方数据

数字逻辑几个时序逻辑电路例题

《时序逻辑电路》练习题及答案 []分析图时序电路的逻辑功能,写出电路的驱动方程、 状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。 图 [解] 驱动方程:3 1 1 Q K J= =,状态方程:n n n n n n n Q Q Q Q Q Q Q 1 3 1 3 1 3 1 1 ⊕ = + = + ; 1 2 2 Q K J= =,n n n n n n n Q Q Q Q Q Q Q 1 2 2 1 2 1 1 2 ⊕ = + = + ; 3 3 2 1 3 Q K Q Q J= =,,n n n n Q Q Q Q 1 2 3 1 3 = + ; 输出方程:3 Q Y= 由状态方程可得状态转换表,如表所示;由状态转换表可得状态转换图,如图所示。电路可以自启动。 表 n n n Q Q Q 1 2 3 Y Q Q Q n n n1 1 1 2 1 3 + + +n n n Q Q Q 1 2 3 Y Q Q Q n n n1 1 1 2 1 3 + + + 000 001 010 011 0010 0100 0110 1000 100 101 110 111 0001 0111 0101 0011 图 电路的逻辑功能:是一个五进制计数器,计数顺序是从0到4循环。

[]试分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出 电路的状态转换图。A为输入逻辑变量。 图 [解] 驱动方程:2 1 Q A D=, 2 1 2 Q Q A D= 状态方程: n n Q A Q 2 1 1 = + , ) ( 1 2 2 1 1 2 n n n n n Q Q A Q Q A Q+ = = + 输出方程:2 1 Q Q A Y=表 由状态方程可得状态转换表,如表所示;由状态转换表可得 状态转换图,如图所示。 电路的逻辑功能是:判断A是否连续输入四个和四个以上 “1”信号,是则Y=1,否则Y=0。 图 []试分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,检查电路能否自启动。 图 [解] 3 2 1 Q Q J=,1 1 = K; 1 2 Q J=, 3 1 2 Q Q K=; 2 3 2 1 3 Q K Q Q J= =, = +1 1 n Q 3 2 Q Q· 1 Q; 2 1 1 2 Q Q Q n= + +2 3 1 Q Q Q; 3 2 3 2 1 1 3 Q Q Q Q Q Q n+ = + Y = 3 2 Q Q 电路的状态转换图如图所示,电路能够自启动。 n n Q AQ 1 2 Y Q Q n n1 1 1 2 + + 000 001 010 011 100 111 110 101 010 100 110 001 111 100 010 000

相关主题
文本预览
相关文档 最新文档