当前位置:文档之家› 地铁知识科普

地铁知识科普

地铁知识科普
地铁知识科普

地铁车辆的组成部分

一、概述

地铁是地下铁道的简称。它是一种独立的有轨交通系统,不受地面道路情况的影响,能够按照设计的能力正常运行,从而快速、安全、舒适地运送乘客。地铁效率高,无污染,能够实现大运量的要求,具有良好的社会效益。

地铁是有轨交通,其运输组织、功能实现、安全保证均应遵循有轨交通的客观规律。在运输组织上要实行集中调度、统一指挥、按运行图组织行车;在功能实现方面,各有关专业如隧道、线路、供电、车辆、通信、信号、车站机电设备及消防系统均应保证状态良好,运行正常;在安全保证方面,主要依靠行车组织和设备正常运行来保证必要的行车间隔和正确的行车经路。

为了保证地铁列车运行安全、正点,在集中调度、统一指挥的原则下,行车组织、设备、车辆检修、设备运行管理、安全保证等均由一系列规章制度来规范。地铁是一个多专业多工种配合工作、围绕安全行车这一中心而组成的有序联动、时效性极强的系统。

地铁中采用了以电子计算机处理技术为核心的各种自动化设备,从而代替人工的、机械的、电气的行车组织、设备运行和安全保证系统。如ATC(列车自动控制)系统可以实现列车自动驾驶、自动跟踪、自动调度;SCADA(供电系统管理自动化)系统可以实现主变电所、牵引变电所、降压变电所设备系统的遥控、遥信、遥测;BAS(环境监控系统)和FAS(火灾报警系统)可以实现车站环境控制的自动化和消防、报警系统的自动化;AFC(自动售检票系统)可以实现自动售票、检票、分类等功能。这些系统全线各自形成网络,均在OCC(控制中心)设中心计算机,实行统一指挥,分级控制。

地铁路网的基本型式有:单线式、单环线式、多线式、蛛网式。每一条地铁线路都是由区间隧道(地面上为地面线路或高架线路)、车站及附属建筑物组成。车站按其功能分为四种:

1、中间站:只供乘客乘降用,此类车站数量最多。

2、折返站:在中间站设有折返线路设备即称为折返站,一般在市区客流量大的区段设立,可以满足乘客需要,同时节省运营开支。

3、换乘站:既用于乘客乘降又为乘客提供换乘的车站。

4、终点站:地铁线路两端的车站,除了供乘客上下或换乘外,通常还供列车停留、折返、临修及检修使用。

二、地铁车辆

地铁车辆是城市轨道交通系统的重要组成部分,也是技术含量较高的机电设备。地铁车辆应具有先进性、可靠性和实用性,应满足容量大、安全、快速、美观和节能的要求。地铁车辆有动车(M,Motor)和拖车(T,Trailer)、带司机室车和不带司机室车等多种形式。

动车本身带有动力牵引装置,拖车本身无动力牵引装置;动车又分为带有受电弓的动车和不带受电弓的动车。

地铁车辆在运营时一般采用动拖结合、固定编组,形成电动列车组。由于它本身带有动力牵引装置,兼有牵引和载客两大功能,因此和铁路列车不同,不需要再连挂单独的机车。

一般地铁车辆由以下七部分组成:

(1)车体

车体是容纳乘客和司机驾驶(对于有司机室的车辆)的地方,又是安装与连接其他设备和部件的基础。一般有底架、端墙、侧墙及车顶等。

(2)动力转向架和非动力转向架

动力转向架和非动力转向架装置位于车体和轨道之间,用来牵引和引导车辆沿着轨道行驶,承受与传递来自车体及线路的各种载荷并缓冲其动力作用,是保证车辆运行品质的关键部位。一般由构架、弹簧悬挂装置、轮对轴箱装置和制动装置等组成。

(3)牵引缓冲连接装置

车辆编组成列安全运行必须借助于连接装置。为了改善列车纵向平稳性,一般在车钩的后部装设缓冲装置,以缓和列车的冲动。

(4)制动装置

制动装置是保证列车安全运行所不可少的装置。城市轨道车辆制动装置除常规的空气制动装置外,还有再生制动、电阻制动和磁轨制动等。

(5)受流装置

从接触导线(接触网)或导电轨(第三轨)将电流引入动车的装置称为受流装置或受流器。受流装置按其受流方式可分为以下几种形式:a、杆形受流器;b、弓形受流器;c、侧面受流器;d、轨道式受流器;e、受电弓受流器。

(6)车辆内部设备

车辆内部设备包括服务于乘客的车体内的固定附属装置和服务于车辆运行的设备装置。属于前者的有车电、通风、取暖、空调、座椅、拉手等。服务于车辆运行的设备装置大多吊挂于车底架,如蓄电池箱、继电器箱、主控制箱、电动空气压缩机组、总风缸、电源变压器、各种电气开关和接触器箱等。

(7)车辆电气系统

车辆电气包括车辆上的各种电气设备及其控制电路。按其作用和功能可分为主电路系统、辅助电路系统和控制电路系统三个部分。

三、地铁信号

信号设备的主要作用是保证行车的安全和提高线路的通过能力,包括信号装置、联锁装置、闭塞装置等。信号装置是指示列车运行条件的信号及附属设备;联锁装置是保证在车站范围内,行车和调车安全及提高通过能力的设备;闭塞装置是保证在区间内行车安全及提高通过能力的设备。

在车站上,铺设有许多条线路,线路之间用道岔联结。列车在车站内运行的路径,叫做进路。进路由道岔位置决定。进路要有信号机防护,道岔位置不对,或者进路上有车,防护此条进路的信号机就不能开放,从而保证列车的运行安全。道岔、进路和信号三者之间相互制约、相互依存的关系称为联锁。实现联锁的设备叫做联锁设备。把许多道岔、进路和信号机用电气方法集中控制和监督,并实现它们联锁的设备,叫做电气集中设备。由车站向区间发车时必须确定区间内无车,还要防止两个车站在同一线路上向同区间发车。这种按照一定的方法组织列车在区间内的运行,一般称为行车闭塞,用来联络的设备称为闭塞设备。常用的闭塞设备有自动闭塞、半自动闭塞及电气路签闭塞等。地铁采用自动闭塞设备。

四、地铁通信

地铁通信是构成地铁各部门之间有机联系、实现运输集中统一指挥、行车调度自动化、列车运行自动化、提高运输效率的必备工具与手段。

地铁通信按其用途来分,可分为地区自动通信、地铁专用通信、有限广播、闭路电视、无线通信以及子母钟报时系统、会议系统、传真及计算机通信系统;按信息传输的媒介可分为有线通信和无线通信,有线通信又可分为光缆和电缆通信。地铁通信是既能传输语言,又能传输文字、数据、图像等各种信息的综合数字通信网。

五、地铁供电

地铁的供电系统是为地铁运营提供电能的。地铁列车是电力牵引的电动列车,其动力是电能;此外,地铁中的辅助设施包括照明、通风、空调、排水、通信、信号、防灾报警、自动扶梯等,也都依赖电能。

地铁供电电源一般取自城市电网,通过城市电网一次电力系统和地铁供电系统实现输送或变换,然后以适当的电压等级供给地铁各类设备。

根据用电性质的不同,地铁供电系统可分为两部分:由牵引变电所为主组成的牵引供电系统和以降压变电所为主组成的动力照明供电系统。

六、地铁环境控制与车站设备

为了保证地铁安全正常运行,应在地铁内设置环境控制设备和各类必需的车站辅助设备,包括:通风、空调、给排水、消防、自动扶梯、直升电梯、动力、照明、旅客引导等系统设备。现代化程度较高的地铁还配置了自动售检票系统、车站设备自控系统、屏蔽门等。

给排水系统用来提供地铁运营中生产、生活和消防用水,收集并排除地下渗透水和生产、生活产生的废水、污水。地铁给水系统的水源一般取自城市自来水。

地铁消防系统分中央和车站两级。中央级的主要功能是:监视全线消防设备状态;火灾时,指挥全线消防抢险活动;控制全线有关消防设备的运行。车站级的主要功能是:监视车站消防设备运行情况,接受各类报警信息;控制车站及相邻区间内消防设备的动作,实施灭火活动;与中央级间进行必要的信息传输。

地铁车站里的辅助设备包括:自动扶梯、直升电梯、卷帘门、防洪门、旅客引导、照明、售检系统、车站设备自控系统等。根据需要还可设置屏蔽门和防核辐射门等。

七、地铁运输组织

地铁运输组织主要是列车运行组织和接发列车组织。在列车运行组织工作中,根据地铁吸引的城市人员上下班(学)等客运流量、流向的实际情况,在基本列车运行图中编划出早、晚客流高峰时段密集开行列车的阶段运行计划;同时,还编制出各种节假日、春运等形式列车运行图,以便最大限度地满足城市人民对地铁运输的各种需要。

地铁车辆简介

地铁车辆是地铁运输的重要组成部分,是搭载乘客的载体,它的性能直接影响到地铁运输的安全和乘客的舒适程度。为达到上述目的,现代地铁车辆采用了很多的新技术、新材料、新设备。如电子计算机网络控制、设备运行监测、设备故障诊断、车体采用不锈钢或铝合金材料及轻量化的整体承载结构、车载ATC信号、采用大功率电力半导体器件的VVVF逆变直-交电传动系统、可向接触网反馈电能的再生电制动、完善的乘客信息广播系统(包括移动电视)、通风空调系统等等。

地铁车辆是成列运行的。一般情况下由4辆或6辆编成一列,少数情况下,也有8辆编成一列的。在一列中,根据车辆的性能和特性分成组,每组的车辆彼此相邻,可以单独运行。一般情况,每列车由2组组成。

地铁列车由电力驱动。供电电压一般有DC1500V和DC750V两种。受电方式亦有两种,一种通过接触网(架设在空中)、经受电弓引入,由钢轨回流(主要用于DC1500V电源);一种是通过第三轨(设在线路钢轨旁边)、经受流器引入,由钢轨回流(主要用于DC750V 电源)。

地铁列车的动力是分散布置的,不象国铁列车那样由机车牵引列车运行,而是将动力控制装置(电气控制系统和牵引电动机)分散布置在一列车中的某些车辆上,共同驱动(牵引)列车运行。虽然牵引电动机是分散布置的,但对其控制还是集中统一的。装有驱动装置的车辆称为动车,没有驱动装置的车辆称为拖车。一列由6辆车编组的列车,可以由3辆动车和3辆拖车组成(简称三动三拖),也可由4辆动车和2辆拖车组成(简称四动两拖),甚至全部由动车组成(简称全动车)。

地铁列车的两端设有司机室。司机室内布置有操纵、车载ATC信号、通信和集中控制、设备监测、故障诊断装置等。列车的运行有自动驾驶模式(ATO模式);ATP速度监控下的人工驾驶模式(A TP模式);限速人工驾驶模式;非限制人工驾驶模式(ATP切除模式)。

地铁列车(车辆)运行的最高速度,一般设计为80km/h,也有设计成100km/h和120km/h 的。列车启动平均加速度,列车从0加速到40 km/h,不低于0.83m/s2 ;列车从0加速到80 km/h,不低于0.5 m/s2。常用制动平均减速度不低于1.0 m/ s2;紧急制动平均减速度不低于1.2 m/ s2 。

车辆的连接,根据需要采用自动、半自动车钩或半永久牵引杆。自动车钩在连挂或解钩时,机械、电路、风路同时自动连接或断开;半自动车钩在连挂或解钩时,机械、风路同时自动连接或断开,电路需手动连接或断开;半永久牵引杆的连接或断开则需在车辆段(车厂)全部用手动。

在上述连接装置上,同时设有缓冲器和可压溃筒。当列车(车辆)进行连挂或意外撞车时,缓冲器和可压溃筒吸收撞击能量,保护车辆不受损坏。缓冲器吸收能量,并在撞击后恢复原状;可压溃筒吸收撞击能量,但撞击后需进行更换。此外,作为车体一部分的司机室下部,设计成可吸收撞击能量的结构。一旦列车以较高的速度与另一列停留(制动)的列车相撞时,该结构将产生变形,吸收撞击能量,但事后需修复。从上述叙述可见,防止撞击损坏车辆采取了三个层次的措施。实际上,在列车运行的过程中,还有其它多方面的安全措施,发生撞车的几率几乎为零;只有在进行列车连挂时有轻微的撞击。

车辆的车体(车厢)安放在转向架上,一般情况每个车体下面有两台转向架,每个转向架安有两个轮对(4个车轮),通过轮对在钢轨上走行。在列车通过曲线时,转向架将相对车体进行转动。动车的每个转向架上装有两台牵引电动机,分别驱动一个轮对。拖车转向架上没有牵引电机。此外还安有减振装置和基础制动装置。列车的牵引力和制动力通过转向架传递到车体(列车)。

车辆的车体,现在一般都采用铝合金或不锈钢材料,采用整体承载结构,以减轻自重。耐候钢因重量大,都不再使用。一辆车的两侧均开有多个车门(一般为四个),加快乘客上下车的速度。车门的开关可以自动控制,也可以由司机手动控制。车门之间开有玻璃窗。沿窗布置有坐椅。还有扶手供站立乘客使用。此外还设有停放残疾人用轮椅的地方。内部装修均采用阻燃或难燃材料,以利防火。两辆车之间有贯通道连接,乘客可以自由通过。车内除有照明外,还有空调通风系统、广播系统、乘客信息系统。使乘客可以在温度适宜、空气清新、灯光明亮的环境下,阅读报刊杂志、浏览广告、收听列车广播、观看录象和移动电视节目、及时了解列车运行到站情况等。必要时乘客还可以与司机通电话。

现代地铁列车是一个人性化的作品,处处体现出以人为本的理念。

地铁机电设备概述

1、机电设备

机电设备:就是包含有电与其他能量相互转换的电气和机械设备的总称。包括各种电动机及其带动的机械、起重电机、空压机、电焊机、变压器、电磁铁、旋涡泵、管道泵、潜水泵、潜卤泵、机床等。

2、地铁机电设备:电动扶梯、AFC(自动售检票)系统、屏蔽门、自动门、车辆空调、中央空调、通风设备、给排水设备、消防喷淋系统、地铁车辆牵引、道岔转辙设备、电源控制系统等等,机电设备包含在地铁的各个系统中。做最好的地铁生

3、地铁机电设备系统

1)供电系统

功能:为列车、设备系统及车站线路运行提供可靠能源供应,包括动力和照明等。

制式:(牵引供电)DC1500V、750V

供电方式:集中供电、分散供电、混合供电- 中国地铁生活门户论坛,涉及地铁规划、

2)信号系统

功能:指挥列车正常运行,保证列车运行安全。

制式:ATC列车运行自动控制系统

CTC(分散自律调度集中系统)+移频轨道电路+超速防护(固定)w

无线移动闭塞

组成:ATP子系统——通过对列车速度进行监控并使其保持安全运行间隔,从而防止列车碰撞与出轨。

ATO子系统——主要功能就是控制列车自动运行和在车站精确停车。

ATS子系统——行车指挥自动系统,必要时人工干预

地铁综合监控系统的未来

几年前,国内地铁的各个机电系统往往采用分立设置、独立管理,结果常常导致系统资源共享困难、不利于维护管理等问题。在这样的形势下,越来越多的地铁线路开始考虑和实施综合监控系统。随着自动化集成技术的成熟,国内的地铁项目逐渐开始通过综合监控系统建立统一的软硬件平台,实现资源共享、互联互通、设备集中管理和维护,同时还可对子系统进行故障监测,并为紧急情况下事件的处理提供全面、及时的信息和控制能力,提高地铁整体运营调度管理水平。

随着综合监控系统在全国各大城市的地铁项目中的广泛应用,许多问题也随之出现。由于各子系统的技术指标不同,实时性、可靠性等性能也存在差异,造价相对昂贵的综合监控系统的应用前提并不是在于设备的集成,而关键在于应用的需求与城市地铁运行的基本模式。未来地铁综合监控系统的发展将更加关注以下方面:

一、综合监控系统集成需注重安全问题

近年来,综合监控系统的集成方式成为了业内的焦点之争,按需集成还是深度总集成、集中式还是分布式等等问题已经凸显。由于一整套的地铁综合监控系统冗余复杂、造价很高,出现故障对各个子系统的正常使用也存在威胁,所以要不要集成、如何集成就成为了很难权衡的事情。目前新建或在建的很多地铁项目中,综合监控系统的集成大都采用了“小综合”的方式,采取分散的、“岛屿式”的综合方式能够解决监控过程中的安全问题,使得系统的集成更加可靠。

二、节能政策助推综合监控系统发展

发展低碳经济、大力倡导节能减排,已成为我国的一项基本国策。采用环境整体节能控制系统,利用主机群控与能效管理中心,对控制设备进行启停,对冷却水泵、空调风柜等设备进行变频控制,就能大大降低地铁机电设备的耗能。在这种情况下,地铁综合监控系统采集到的地铁站内的温度、湿度等参数就成为了重要的指标。这将大大节省人力资源,同时也能降低人力监测的误差、提高工作的可靠性,对于保障环境与节能也具有积极意义。

另外,传统的车站监控模式由于存在站务人员不能充分利用、设备的投资与维护成本高等缺点,也逐渐将被车站群组监控取代,即考虑各站的客流量和组别大小后,把沿线车站分为若干群组,每一群组大约2~4个车站。同时,选择轴心站,并设置车站控制室。这样整体系统设备也减少了,大大节省了相关资源,也在节能方面深化了综合监控系统的内容。

三、模块化、标准化与开放性趋势明显

模块化、标准化与开放性的设计理念,有利于项目完成的效率。作为地铁项目中的重要内容,综合监控系统的设计遵循模块化与标准化,将大大提高设备间的信息共享效率,并提升设备的可靠性。同时,要为系统预留尽量多的接口,并在设计之初进行周全考虑,以便于在紧急情况下,系统能够按照预定的程序进行正常运行。地铁综合系统的发展将与整个城市的智能交通网络进行融合,将统计、闸机控制、地铁舒适度监控等功能进行优化完善,按照“以人为本”的大趋势进行深化发展。

地铁综合监控系统是在需求逐渐细化、繁琐化的环境下应运而生的,城市轨道交通机电设备管理已经从单纯的面向设备管理转变为面向运营管理为主。控制投资成本及推动国产化设备进程、使节能及全系统运营维护管理更加行之有效以及全方位提升乘客服务质量,都将成为地铁监控系统日后发展的重要准则。在这样的发展趋势下,综合监控系统以及其他自动化集成系统也将遵循这样的发展路线,在运营管理、乘客服务以及整个城市交通综合指挥管理的具体要求下深入发展。

牵引供电系统的受电方式简介

通常城轨交通牵引供电系统有3种受电方式:

一、架空线受电方式是电流通过架空线向列车供电,电流经过架空线-列车电动机-行车轨-回流线-变电站整流器负极,这样构成一个完整的回路。

二、三轨受电方式是除两条是列车轮轨之外,还有一条是受电轨。电流经过第三轨(或称受电轨)——列车电动机——行走轨——回流线——变电站整流器负极,这样构成一个完整的回路。世界上许多城市轨道系统都采用这种方式,例如纽约、伦敦、巴黎等。

三、四轨受电方式是除两条是列车轮轨之外,还有一条是受电轨,另一条是回流轨。电流经过第三轨(或称受电轨)——列车电动机——回流轨——回流线——变电站整流器负极,这样构成一个完整的回路。如一些使用橡胶车轮的列车(巴黎地铁的部分列车)因回流电流不能经行走轨流回变电站整流器负极,只能增加一条回流轨。这种受电方式的优点是牵引供电的可靠性相对较高,并且避免了对基于轨道信号系统的干扰。当然一些使用普通金属轮轨列车受电方式也使用四轨受电方式,使供电用和行走用的轨道完全分开。例如伦敦地铁就是最大的四轨受电系统。

因为带电的架空线远离乘客和行人,以及检修人员,这种架空线受电方式的最大优点是安全。由于架空线结构较复杂,易受环境影响,所以缺点是供电的可靠性相对较低。

而三轨和四轨受电系统的优点是建造成本较低;环境对它影响小;带电轨比架空线更适合小半径轮轨弯道;不妨碍城市景观。缺点是对乘客、行人和检修人员有触电的危险;因为电压不能太高,只能适应短距离乘客运输;列车速度不高。

我国城市公共交通系统中,直流600V仅用于无轨电车的供电;北京、武汉、天津等城市的地铁采用750V直流供电,上海、广州、深圳等其他城市的城市轨道交通,都采用1500V 直流供电。

轨道交通行业BAS系统构成

BAS(Building Automation System)是环境与设备监控系统的英文缩写,是对轨道交通各车站暖通空调系统设备、给排水系统设备、电梯系统设备、低压配电与动力照明系统设备等车站机电设备进行全面、有效地自动化监控及管理,进行程序自动、实时、定时、现场就地监视设备运行状态,控制开启和关停,检测环境参数,调控环境舒适度及节能管理。采集、处理有关信息,进行历史资料档案和设备维修管理。确保设备处于安全、可靠、高效、节能的最佳运行状态,从而提供一个舒适的乘车环境,并能在列车阻塞事故状态下,更好地协调车站设备的运行,充分发挥各种设备应有的作用,保证乘客的安全和设备的正常运行。

BAS系统的构成主要包含以下方面:

1、车站BAS构成

车站BAS在车站控制室A端冗余的主PLC与车站ISCS的三层交换机进行通信,A、B端、IBP盘内的PLC通过光纤双环以太网方式相连,构成车站BAS局域网络。车站BAS 采用在A端或B端设置冗余PLC方案。

2、现场级控制网络构成

BAS现场级主要由PLC、RI/O、电源模块、通信模块设备等设备组成。传感器等现场

设备通过RI/O或通信模块设备接入BAS。

现场级控制网络采用冗余现场总线或光纤单环以太网。

地下车站区间水泵房电控室、区间风机电控室、车站控制室IBP盘处设置非冗余的PLC。车站的A、B两端环控电控室等处设置现场操作平台(触摸屏)。

BAS网络系统:

工业以太网络作为BAS系统中不可或缺的重要部分,在整个BAS系统中起着重要的作用。BAS系统在以太网设备选择上,由于受到安装环境的限制、受到网络稳定性、快速切换的设备需求,在BAS系统网络设计和实施过程中均采用工业以太网设备作为BAS系统的网络设备。

轨道交通模式和特点简介

目前世界范围内所使用的轨道交通技术,有轮轨承载与磁悬浮承载两种方式。从牵引方式分类,可以分为两大类,即粘着牵引与非粘着牵引。

轮轨承载模式的特点和演变

轨道是为车辆行驶修建的。铁轨铺设在道床上,把火车经过产生的压力均匀的传到地面。常见的钢轨的横断面是“工”字型,这样既有足够的强度,又节省了材料。火车的转向也是由铁轨引导的。通过钢轨边沿与轮缘的配合获得导向力,引导车辆前进。

在轨道交通发展的初期,火车的动力主要由机车上的蒸汽机提供,蒸汽机车是第一代牵引动力,由于效率低下,整备时间长,持续运行距离短,现在已经我国铁路干线上被淘汰,部分支线或厂矿专用线依然有少许在继续运行,但是由于蒸汽机车故有的特征,被内燃机车等其他机车取代已成必然。

内燃机车是第二代的牵引动力,至今仍然是我国最主要的牵引动力,内燃机车自带能源,具有灵活的运用范围,效率约为30~40%,即使在电气化铁上,依然被广泛运用于调车作业,小运转等场合。另外,电气化铁路接触网故障时,内燃机车也可作为后备的牵引动力。内燃机车在运行时需要消耗大量的空气,在环境开阔的线路上不会受到影响,但是一旦进入多隧道的山区,在隧道运行时,由于空气不足,内燃机车的功率发挥将受到影响,并且,当内燃机车牵引的列车在隧道中停车,排放的尾气在隧道中不能及时地散发出去,达到一定浓度时,将对列车上人员的安全造成威胁。

电力机车是第三代牵引动力,其典型特征为由接触网获取能量,机车本身并不带能源,供电容量由接触网及牵引变电所决定,因此,电力机车通常功率较内燃机车大,牵引车辆时,启动加速快,运行速度高,可以节省对区间线路的占用时间,提高铁路运输效率。同时,电力牵引可以在制动时将牵引电动机转为发电机运行,能量回馈给接触网,供其他列车使用,这样可以节约大量的能量,也减少了列车使用机械制动时的磨耗。目前,我国的城市轨道交通已经大量使用了这种技术,个别型号的铁路干线机车也具有再生制动的能力。电力牵引有

动力集中与动力分散的不同形式,动力分散方式能充分利用轮轨之间的粘着力,有利于高速运行和频繁启动停车,需要较大加速度的场合。

磁浮承载与非粘着牵引方式

磁悬浮列车实际上是依靠电磁吸力或电动斥力将列车悬浮于空中并进行导向,实现列车与地面轨道间的无机械接触,再利用线性电机驱动列车运行。磁悬浮列车仍然属于陆上有轨交通运输系统,并保留了轨道、道岔和车辆转向架及悬挂系统等许多传统机车车辆的特点。

目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电动力悬浮系统(EDS)。

电磁悬浮系统(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互吸引产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。

电力悬浮系统(EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。

作为一种完全脱离了传统的轨道交通模式,磁浮列车在牵引运行时与轨道之间无机械接触,从根本上克服了传统列车轮轨粘着限制、机械噪声和磨损等问题。磁浮列车采用电力(二次能源)驱动,不会产生废气和废水等污染;能耗低,由于磁浮系统特有的驱动和支撑原理,在同等速度下,TR磁浮列车单位能耗低于德国ICE高速轮轨列车。磁浮列车能在实际运用中轻松实现500km/H 的高速运行,而基于轮轨技术的常规高速列车由于受到弓网关系、轮轨作用的限制,几乎不可能在实际运用中达到如此高的速度。同时,由于磁浮列车的牵引力不受粘着限制,可以使用现有铁路无法使用的大坡度线路和小半径曲线,磁浮线路的选线将非常灵活,这对地形复杂地区降低土建工程造价是非常有利的。

在中低速城市轨道交通领域,磁浮技术噪音低,线路占地面积小,依然有非常明显的优势,由于EDS不适用于中低速运行,因此EMS是中低速磁浮交通的首选。

EMS与EDS两种截然不同的悬浮方式各有其优缺点,在高速磁浮列车领域,可能在相当长的时间里,两种方式还将并存并处于竞争的状态。

但是,作为一种全新的轨道交通方式,磁浮技术不能与现有的轨道交通网相连接,这

意味着磁浮列车不能基于现有的铁路网进行扩展,同时也存在着在磁浮列车和普通轮轨列车之间乘客换乘的问题,这就影响了磁浮技术的推广使用。

随着技术的进步,各种形式的轨道交通以其安全、节能、快速的特点,在社会经济发展中正在起到越来越重要的作用。

地铁信号系统中的自动信号功能分析

地铁系统的运营具有小编组、高密度、运行间隔短等特点,因此其信号系统在实现安全防护的基础上,必须尽可能地以提高运营效率为目标。为此,提高地铁信号系统的自动化和智能化程度就显得尤为重要。自动信号则是为了达到此目的而设计的,并已在地铁信号系统中广泛应用。

1自动信号功能概述

为了提高自动化程度,给车站的相关信号机赋予自动属性,使得以某信号机为始端,一条或几条进路可以根据列车的运行状况而自动办理出来,则称此始端信号机具有自动功能,或简称为自动信号。自动信号属于列车自动监控(ATS)系统的一部分。

如图1所示,由规定的操作赋予X2信号机自动属性后,X2为自动信号。当列车运行至轨道区段S2时,根据列车目的地自动办理出X2~X4或X2~X6进路,区段S2、S4、S6、S8为X2的触发区段。若将X2的自动属性取消后,X2即成为一般信号机,不具有自动触发功能,必须手工办理进路。

2 自动信号的触发机制

列车运行至触发区段时,由ATS系统根据列车目的地生成自动信号触发命令。若车载信号和地面信号系统之间有车地通信系统(TrainWaysideCommunication,以下简称TWC),则通过TWC系统,ATS可以由列车发至地面的信息中获得列车目的地;对于无TWC的系统,ATS可通过列车运行图获得列车目的地。为了保证命令的正确执行,在触发命令生成前ATS还应按照以下原则进行预先检查:

1.触发进路的始端信号为自动信号。

2.列车运行方向处于正向,即若运行方向为反向,则不允许自动信号触发。

3.所要触发进路内的道岔、区段等基本联锁条件满足。

4.为了防止错办进路,在车站同一咽喉内,同一时间只允许生成1条进路触发命令。

触发自动信号前,ATS系统会不断检查以上条件是否满足,若条件满足则生成触发命令并发送给联锁系统,由其办理出相应进路。在这里,ATS系统负责自动触发命令的生成,而联锁负责命令的执行。

3 自动信号触发距离的确定

在实际应用中,触发区的长短即在距自动信号多远处开始发出进路触发命令是一个值得注意的问题。距离太长则由于提前将相关道岔锁闭,影响其他进路的办理;太短则由于进路来不及办理出来使得列车提前减速甚至在区间停车,影响运行效率和旅客舒适度。这部分应和列车自动防护系统(ATP)结合在一起考虑,应根据列车的ATP速度距离曲线、联锁办理进路所需时间、以及ATP系统响应时间作综合考虑,使得列车接近该信号时,其速度距离曲线平滑。下面予以说明。

自动信号X前方有N个轨道区段,沿运行方向依次为S1、S2、…Sn…SN,在ATP防护下,列车在每一区段的运行时间(这里指列车头部占用本区段至列车头部占用前方下一区段所经历时间)为t1、t2、…tn…tN。为了确定触发区段,从区段S1开始,根据列车速度距离曲线找到因信号X不开放而导致列车开始减速的第1个区段Sn。为使列车在进入Sn后不会因信号X未开放而减速,X需在进入Sn前开放。

现设开放信号X的时间为T1(这里考虑最不利条件,如进路内道岔均在非期望位置等),系统响应时间为T2,列车在Sn后方区段Sn-1内的运行时间为tn-1。若tn-1>(T1+T2),即说明列车占用Sn-1时开始触发信号X能满足要求,因此区段Sn-1作为开始触发区段;若tn-1<(T1+T2),则说明Sn-1长度不够,应再后移1个区段,计算tn-1+tn-2>(T1+T2)是否满足;若满足则Sn-2作为开始触发的区段,如此不断重复,直至找到合适的区段。

4 自动信号的安全性前提

自动信号是根据列车运行状况而自动触发进路,在一定程度上提高了运营的自动化程度,但这种自动化是具有安全前提的,这个前提就是列车必须处于ATP系统的防护之下。若此项前提不具备(如列车ATP系统已切除),则很可能由于进路自动办理而引发安全性事故。因此,实际运营中若列车已无ATP防护,应避免使用自动信号,采取相应的安全措施后需人工办理进路以保证安全。

5 总结

自动信号可以有效地提高地铁运营效率,应结合联锁、ATP等其他信号系统综合考虑自动信号的设置、触发机制、触发区段的设计。

SCADA 在轨道交通行业的应用

城市轨道交通的电力系统主要由提供机车电力驱动的变电站和车站供电的变电站组成。电力系统的监控通过SCADA(Supervisory Control and Data Acquisition)系统,即“数据采集和监控”系统来实现。城市轨道交通SCADA 系统通常包括调度主站系统、变电站综合自动化系统和所间通信通道三部分构成。其中控制中心调度主站系统通过通信专业提供的通信通道与变电所主控单元进行信息交换;变电所综合自动化系统通过所内通信网与所内IED装置通信,通过通信信道与调度主站进行通信,变电所综合自动化系统由站控主单元和所内通信网及其他IED 装置组成。

上面所讲的SCADA 系统为电力监控系统,即P-SCADA,为狭义的SCADA 系统,广义的SCADA 系统是指综合监控系统,本报告介绍的就是综合监控系统。

综合监控系统在中国轨道交通行业并不是一开始就有的,而是随着轨道交通行业的发展而随之产生的需求,经过监控系统的人工监控-----分立监控----综合集成而逐步得到应用的。

以前的中国城市轨道交通普遍采用的是分立监控系统,该系统按照系统的控制功能、控制对象、控制范围、控制特点或根据操作管理上的分界,将全线系统划分为若干专业子系统,每个子系统按照自身的技术特点,程度不同地应用了计算机技术、网络技术,建立了各自独立的计算机自动化系统。如广州轨道交通1 号线、南京轨道交通1 号线、上海轨道交通1号线和2 号线、北京轨道交通4 号线就采用了分立监控系统。此时的SCADA 系统主要是指电力监控系统,也即P-SCADA,而不存在综合监控系统,所需要的SCADA 系统数量也很多。

分立监控系统遵循中央和车站两级调度,中央、车站和就地三级控制的原则,在实际运营中存在以下缺陷:

1)分立系统模式按专业分为行调、环调和电调等各个子系统,每个子系统分开建设,运行操作平台都不一样,造成各个自动化系统操作平台与管理软件彼此独立而且数量众多,全面掌握难度比较大,不仅在运营中投入大量的系统维护、管理人员,增加了运行与维护成本,而且使得各系统之间缺乏联系,资源不能共享。

2)这些系统均为分离的独立系统,系统之间的联锁关系仅限于简单的数据接口或继电器接口,传输的信息量有限,不能完全实现所有系统之间的联锁关系,且可靠性差,尤其要实现突发事件或灾害情况下各专业之间复杂的联动关系非常困难,降低了运营效率和救灾水平,不能完全满足现代运营的需求。

3)在围绕正常运营的行车调度和灾害情况下的救灾调度所进行的综合规划方面,缺少一个综合管理系统来进行信息收集和综合处理,影响了行车和救灾调度的效率。

由于以上缺陷的存在,导致了综合监控系统在国内的应用。综合监控系统的本质是轨道交通各专业自动化系统采用统一的计算机硬件和软件平台,无论是电力监控系统还是机电设备监控,无论是行车调度监控还是通信监控,都建立在一个统一的计算机网络平台上,由一个统一的软件体系结构支撑。综合监控系统仍然遵循两级调度和三级控制的机制,整个综合监控系统分为中央综合监控系统、骨干网(MBN)、车站综合监控系统和前置接口(FEP)。

这样可以实现轨道交通全线各专业资源共享、信息互通。

自动售检票系统(AFC)介绍

自动售检票系统是国际化大城市轨道交通运行中普遍应用的现代化联网收费系统,随着自动售检票系统的启用,乘客现在可以通过各入口处的自动售票机购买电子票。目前北京、上海、广州、天津、深圳、南京等大城市的轨道交通地铁站都广泛使用了AFC系统作为重要客运管理应用,简称AFC。

AFC系统实现轨道交通售票、检票、计费、收费、统计、清分、管理等全过程的自动处理。

自动售检票系统通常包括自动控制、计算机网络通信、现金自动识别、微电子计算、机电一体化、嵌入式系统和大型数据库管理等高新技术运用.

设备组成

动售检票系统主要有以下几个部分组成:

CC:Central Computer (中央计算机)

SC:Station Computer (车站计算机)

E/S:Encoder/Sorter (编码/分拣机)

BOM:Booking office machine (人工售票机)

EFO:Excess Fare office machine (人工补票机)

TVM:Ticket Vending machine (自动售票机)

Gate:闸机(进/出口检票机)

CVM:card vending machine(自动加值机)

AFC系统开通后增加了自助服务功能,一是在原有人工售票基础上,增设了自动购票机实现了乘客自助购票,并可减少排队等候时间。二是增加了自动查询机的数量,方便乘客自助查询。三是增设了一卡通卡自动充值机,实现自助充值,方便乘客。

AFC系统主要由线路中央AFC系统、车站AFC系统、终端设备和车票四部分组成。

终端设备包括出/入站检票闸机、自动售票机、车站票务系统、自动充值机、自动验票机等现场设备。车票有单程票、储值票、特殊票。

AFC系统是国际化大城市轨道交通运行中普遍应用的现代化联网收费系统,随着自动

售检票系统的启用,乘客现在可以通过各入口处的自动售票机购买电子票。

目前北京,上海,广州,天津,深圳,南京等大城市的轨道交通地铁站都广泛使用了AFC系统作为重要客运管理应用。

轨道交通基础知识

1、城市轨道交通发展简史 国内外各大城市的发展经验证明:发展城市轨道交通是解决大城市交通问题和实现可持续发展最有效的途径之一。自英国伦敦1863年建成世界上第一条地铁线以来,全世界已有40多个国家300多座城市修建了城市快速轨道交通系统。中国城市轨道交通的发展历史仅仅30余年时间,但目前发展势头迅猛,已有30多个大城市正在建设和筹建自己的轨道交通,2010年前,中国仅北京、上海、广州三个城市的轨道交通总长度就将达到1000km以上。 2、城市轨道交通的分类 城市轨道交通顾名思义就是车辆在轨道上行驶并主要用于城市公共客运的 交通系统。火车,有轨电车等等都属于轨道交通,前者属于较长距离的城际间的交通,后者是低速行驶于街市的公共交通,但两者都不属于通常所说的城市轨道交通系统。一般来说,城市轨道交通可以按照以下方式进行分类:按构筑物的形态或轨道相对于地面的位置划分,城市轨道交通可分为三类:(1)地下铁路:位于地下隧道内的那部分铁路称为地下铁路; (2)地面铁路:位于地面的铁路称为地面铁路; (3)高架铁路:位于地面之上的高架桥的铁路称为高架铁路。 按服务范围和列车运营组织方式划分,城市轨道交通可分为三类: (1)传统的城市轨道交通:服务范围以中心城区为主,包括城市与郊区、机场之间的传统的城市轨道交通,通常站间距在l~2km以内。 (2)区域快速铁路(Regional Express Railway,Regional Metro):服务范围包括城市郊区的轨道交通系统,通常站间距较大,含有地面线路或高架线路。例如德国的S—Bahn,巴黎的RER,旧金山的BART,上海的R线。 (3)市郊铁路(Suburban Railway): 是指位于城市范围内、部分或全部服务于城市客运的那些城市间铁路,通常其所有权不属于所在的城市政府,而由铁路部门经营,主要运送城市郊区与闹市区间的乘客,故也称通勤铁路。这种铁路通常在郊区采用平交道口形式,在市区为高架或地下铁路。其站距长,运营组织方式与城市间铁路相近,可开行不停靠全部或部分中间站的直达列车;为减少环境污染,多采用电气化牵引方式。纽约、东京等国际大都市的市郊铁路都很发达,营业里程达到2000km以上。

地铁知识科普(2)-运营及构成部分

百灵 地铁知识科普(2)——地铁运营及构称 [键入文档副标题] lenovo [选取日期]

目录 目录 (1) 第一章城市轨道交通 (2) 1.1 城市轨道交通的申报条件 (2) 1.2 城市轨道交通的线路设计阶段 (2) 第二章供电系统 (3) 2.1供电系统的组成 (3) 2.2城市电网对地铁的供电方式 (3) 2.2.1 细说城市电网对地铁的供电方式(了解) (5) 2.3 牵引供电系统 (7) 第三章基本设备 (8) 第四章基本建设 (8) 4.1 固定资产 (9) 4.2基础建设项目构成 (9) 4.3基本建设程序 (10) 第五章地铁运营及构成 (11) 5.1 按系统功能划分 (11) 5.1.1运营与地铁信号系统 (11) 5.1.2 车站自动售检票(AFC)系统 (12) 5.1.3 设备监控(BAS)系统 (12) 5.1.4 防灾报警(FAS)系统 (13) 5.1.5 地铁供电系统 (13) 5.1.6 控制中心(OCC) (13) 5.2按专业划分(部分待定) (13) 5.2.1 地铁车辆 (13) 5.2.2车辆段 (14) 第六章青岛地铁(部分待定) (14) 6.1 青岛地铁集团有限公司结构组成 (14)

第一章城市轨道交通1.1 城市轨道交通的申报条件 1.2 城市轨道交通的线路设计阶段

第二章供电系统2.1供电系统的组成 2.2城市电网对地铁的供电方式

牵引供电系统和供配电系统的电源电压一般是一致的。 分散式供电只比集中式供电少建主变电所,电源直接从城市电网引入

图2.1集中式供电地铁供电系统构成框图 图2.2 分散式供电地铁供电系统构成框图2.2.1 细说城市电网对地铁的供电方式(了解) 城市电网对地铁的供电方式可分为以下3种形式。

地铁线路设计常识

1、地铁线路的类别按其在运营中的地位和作用可分为哪几类? 地铁线路按其在运营中的作用,应分为正线、辅助线和车场线。其中辅助线又包括折返线、渡线、联络线、停车线、出入线、安全线等。(正线为载客运营的线路,行车速度高、密度大,且要保证行车安全和舒适,因此线路标准较高;辅助线是为保证正线运营而配置的线路,一般不行使载客车辆,速度要求较低,故线路标准也较低;车场线是场区作业的线路,行车速度低,故线路标准只要能满足场区作业即可。) 2、地铁的线路平面位置和高程应根据哪些因素确定? 地铁的线路平面位置和高程应根据城市现状与规划的道路、地面建筑物、管线和其他构筑物、文物古迹保护要求、环境与景观、地形与地貌、工程地质与水文地质条件、采用的结构类型与施工方法,以及运营要求等因素,经技术经济综合比较后确定。 3、正线及辅助线的圆曲线最小长度怎样确定? 正线及辅助线的圆曲线最小长度,A型车不宜小于25m,B型车不宜小于20m,在困难情况下不得小于一个车辆的全轴距。 4、地铁线路平面最小曲线半径如何确定? 区间正线:350m 困难地段:300m 辅助线: 200m 困难地段:150m 车场线: 150m 车站: 1200m 困难时:800m 5、地铁线路坡度如何确定? 区间正线:最大坡度不宜大于30‰,困难35‰。 联络线、出入线:最大坡度不宜大于35‰。 车站:地下站站台计算长度段线路坡度宜采用2‰,困难条件下可设在不大于3‰的坡道上;地面和高架车站一般设在平坡段上,困难时可设在不大于3‰的坡道上。 车场线:宜设在平坡道上,条件困难时库外线可设在不大于1.5‰的坡道上。 折返线和停车线应布置在面向车挡或区间的下坡道上,隧道内的坡度宜为2‰,地面和高架桥上的折返线、停车线,其坡度不宜大于2‰。 6、地铁线路竖曲线半径如何确定?

地铁基础知识

轨道交通基础知识

1.世界第一条地铁什么时候建成通车,情况如何? 答:1863年世界第一条地铁在伦敦建成通车,列车用蒸汽机车牵引,线路全长6.4 km。 2.我国第一条有轨电车线路何年建成?我国第一条地铁在何年何月建成? 答:1908年上海第一条有轨电车线路建成;1969年10月我国第一条地铁在北京建成通车,1971年投入运营。 3.轨道交通的基本类型有哪几种? 答:轨道交通模式种类繁多,分类方法也较多。目前,世界上轨道交通分类大体如下:按构筑物的形态或轨道相对于地面的位置划分为地下铁路、地面铁路和高架铁路;按列车服务范围划分为传统的城市轨道交通、区域快速铁路和市郊铁路;按运能等级(大运量、中运量、小运量)及车辆类型可分为地下铁道、轻轨交通、独轨交通、有轨电车、胶轮地铁、线性电机车辆、磁悬浮;按照列车驱动力可以大致分为轮轨系统和磁悬浮系统两大类,城市铁路、地铁、轻轨、独轨属于轮轨系统,而线性电机车辆严格地说属于磁悬浮系统一类; 4.什么是城市轨道交通?地铁、轻轨的概念及主要划分依据是什么? 答:城市轨道交通是指在不同型式轨道上运行的大、中运量城市公共交通工具,是当代城市中地铁、轻轨、单轨、自动导向、磁浮等轨道交通的总称。地铁是在城市中修建的快速、大运量用电车牵引的轨道交通系统,它可以修建在地下、地面或采用高架的方式,运量在3万人次/h以上;轻轨相对于地铁来说运量较小,在原有轨电车的基础上利用现代技术改造发展的城市轨道交通系统,运量在1.5~3万人次/h;主要划分依据是该线路远期的单向客运能力,而不是看其主要处在地下、地面或高架。 5.地铁旅行速度一般为多少?地铁列车的运行间隔一般为多少? 答:地铁列车的旅行速度一般不低于35km/h。设计最高运行速度大于80 km/h的系统,旅行速度应相应提高;各设计年度的列车运行间隔,应根据预测的客流量、列车编组、列车定员、系统服务水平等因素综合确定。为保证地铁的服务水平,高峰时段初期列车运行间隔不宜大于6min。 6.地铁、轻轨的特点是什么? 答:地铁、轻轨有如下的特点: A.采用标准轨距的钢轨。线路铺设方式灵活,根据地形条件,既可建于地下,也可采

地铁工程基础知识

地铁工程基础知识 限界(Load Gauge)是指列车沿固定的轨道安全运行时所需要的空间尺寸。城市轨道交通规定有车辆限界、接触轨(网)限界、设备限界、建筑限界等。限界是轨道交通的重要组成内容,它为车辆和土建设计提供控制依据,它确定轨道交通与线路有关的构筑物净空和各种设备相互关系。限界是根据车辆、行车速度等决定的。它是区间隧道、线路、轨道、桥梁、车站、信号、供电、消防、环控、屏蔽门等专业的设计依据。 车站建筑 一、功能概述 车站是城市轨道交通路网上一种重要的建筑物,供乘客乘降、换乘和候车的场所,是地铁工程中对外开放的重要窗口。 按功能划分,可分为一般车站和换乘车站;按站台类型划分,可分为岛式站台、侧式站台和混合式站台车站;按设置的位置可分为地下、地面和高架车站。 一般情况下车站由站厅层、站台层、设备及管理用房、人行通道,地面出入口、通风道、通风亭等组成。站厅层公共区是为乘客提供集散、售检票所必须的空间。站台层是为乘客提供候车、上下车和车辆停靠的空间。设备及管理用房是为改善站内环境、进行运营管理和为乘客服务设置的配套空间。人行通道、地面出入口是乘客进出站所需的空间,也是车站的重要组成部分。车站通风道、通风亭是改善车站内环境条件必不可少的建筑物。 二、设计要求 车站总平面设计包括车站、人行通道及地面出入口、通风道、通风亭等。由于车站是解决地面进、出站乘客和换乘乘客上、下车的公共交通建筑,由此车站应具有最大限度地吸引乘客,使乘客能方便进站、迅速出站、客流流向顺畅,并具有能方便、合理地结合其他公交系统来疏解客流的功能。要实现上述功能目标必须与下列专业相适应。 1、线路专业

线路专业是决定车站走向的重要因素,根据车站功能的需要应得到线路专业最大限度的配合和支持,线路走向可根据车站功能的需要做适应调整,否则车站功能难以得到实现。2、城市规划、交通规划专业 城市规划和交通规划是确定车站站址,地面出入口,车站埋深及车站形式的主要依据,能否充分吸引乘客,发挥大容量地下交通工程的综合效益,主要体现在车站站位及地面出入口的设置上。合理确定车站站位对地铁车站功能的实现、地铁工程投资减少、对城市旧城改造、城市的发展、城市交通的疏解都将起到举足轻重的作用。而这些作用又取决于地铁车站与城市规划,交通规划是否相适应、相协调。 3、行车组织与管理专业 车站建筑设计应根据行车组织所提出的车站客流预测资料,换乘客流量、地铁运营管理模式、列车编组以及车站内线路特性来确定合理的车站集散厅(公共区)、站台厅规模,以及站台有效长度和宽度,同时根据各专业的要求确定车站运营及管理用房规模和布置。因此,地铁行车组织与管理专业对车站规模起着主要控制作用。 4、限界专业 限界是控制车站站台层土建规模、站台层站台板与线路之间的关系,车站站台层设备管线设置、保证地铁列车安全运行的重要依据。因此,在车站建筑布置中要充分协调和解决好限界专业所提出的一系列技术参数和标准。 5、车站风、水、电及其他各系统专业 车站风、水、电及其他各系统专业是控制车站设备用房规模、车站规模及埋深的重要因素,合理布置以上专业的设备用房及管线,将对降低车站工程功能目标成本起着重要作用。 6、自动售检票(AFC)系统

地铁基础知识大全教学内容

8、交通对城市经济、社会发展的贡献 1. 对GDP 的贡献较大。 2. 对环保的贡献;有效抑制噪声、废气、废水、资源浪费。 3. 对节省资源的贡献 4. 对沿线房地产和商业的贡献 5. 对人身安全的贡献 6. 对交通运输时间的贡献 一.地铁是什么? 地铁是地下铁道的简称。它是一种独立的有轨交通系统,不受地面道路情况的影响,能够按照设计的能力正常运行,从而快速、安全、舒适地运送乘客。地铁效率高,无污染,能够实现大运量的要求,具有良好的社会效益。 地铁是有轨交通,其运输组织、功能实现、安全保证均应遵循有轨交通的客观规律。在运输组织上要实行集中调度、统一指挥、按运行图组织行车;在功能实现方面,各有关专业如隧道、线路、供电、车辆、通信、信号、车站机电设备及消防系统均应保证状态良好,运行正常;在安全保证方面,主要依靠行车组织和设备正常运行来保证必要的行车间隔和正确的行车经路。 为了保证地铁列车运行安全、正点,在集中调度、统一指挥的原则下,行车组织、设备、 车辆检修、设备运行管理、安全保证等均由一系列规章制度来规范。地铁是一个多专业多工种配合工作、围绕安全行车这一中心而组成的有序联动、时效性极强的系统。 地铁中采用了以电子计算机处理技术为核心的各种自动化设备,从而代替人工的、机械的、电气的行车组织、设备运行和安全保证系统。如ATC (列车自动控制)系统可以实现列车自动驾驶、自动跟踪、自动调度;SCADA (供电系统管理自动化)系统可以实现主变电所、牵引变电所、降压变电所设备系统的遥控、遥信、遥测;BAS (环境监控系统)和FAS (火灾报警系统)可以实现车站环境控制的自动化和消防、报警系统的自动化;AFC (自 动售检票系统)可以实现自动售票、检票、分类等功能。这些系统全线各自形成网络,均在OCC (控制中心)设中心计算机,实行统一指挥,分级控制。地铁路网的基本型式有:单线式、单环线式、多线式、蛛网式。每一条地铁线路都是由区间隧道(地面上为地面线路或高架线路)、车站及附属建筑物组成。车站按其功能分为四种: 1、中间站:只供乘客乘降用,此类车站数量最多。 2、折返站:在中间站设有折返线路设备即称为折返站,一般在市区客流量大的区段设立,可以满足乘客需要,同时节省运营开支。 3、换乘站:既用于乘客乘降又为乘客提供换乘的车站。 4、终点站:地铁线路两端的车站,除了供乘客上下或换乘外,通常还供列车停留、折返、临修及检修使用。 二.地铁的特点 (1)快速。列车运行最高时速达80 公里,平均行车时速为36 公里,每站停车30 秒,一号线由莘庄站至上海火车站站的行车时间为39 分钟。 (2)准确。城市地面交通工具受路面交通情况或天气的影响,但地铁却不受干扰。在交通繁忙的高峰时间,地铁列车每 5 分钟开出一班,列车运营由早晨4:55 起至晚上23:26 止。 (3)安全。列车采用安全自动控制系统来操作,严格保证列车行车间隔。地铁供电采用双电源,停电可能性甚微。地铁同样重视防火措施,设有足够的灭火设施设备,各车站均安装有闭路监控系统,以便随时了解车站的情况。此外,各车站均由上海市公安局城市轨道分局的警员负责治安。(4)舒适。列车与车站均有空气调节装置,使温度与湿度保持在最舒适的范围内。列车按 6 辆编组,每辆车定员310 人,其中座位62 个,全列车可运载乘客1860 人。(5)便利。车站美

信号专业地铁城市轨道交通知识点(高级).(良心出品必属精品)

信号专业高级应知应会知识点(51题 1. 简述移位接触器的检查。 答:当顶杆触头间隙为 1.5mm 时, 接点不应断开, 用 2.5mm 垫片试验或用副销带动道岔时,接点应断开,非经人工恢复不能接通电路。移位接触器应能经常监督主销良好,当主销折断时,接点应可靠断开,切断道岔表。 2、车辆段控制台黑屏故障的分析? 答:发生黑屏的原因主要有以下几点: 1. 显示器掉电; 2. 上位机掉电; 3. 显卡故障; 4. 视频线断线或插头松脱; 5. 控制台切换板故障; 6. 显示器故障。 3、 TYJL-Ⅱ (高密型计算机联锁系统上位机有几块通信卡?各自用途是什么? 答:上位机有三块通信卡。 ARCNET 通信卡 2块,分别用于与联锁 A 机、联锁 B 机通信,以太网卡 1块用于与维修机通信。如果两台监控机的 1口或 2口通信板均故障, 则为联锁 A 机或 B 机通信板不好, 如果某台监控机的 1口或 2口通信故障,则说明是该监控机的 1口或 2口通信板故障。 4、信号系统电源屏结构图

5、 UPS 工作过程可以分为以下三个部分: 1交流转变为直流。将来是电网的交流电经自耦变压器降压、全波整流、滤波变为直流电压, 供给逆变电路。交流转变为直流时在输入有软启动电路, 可避免开机时对电网的冲击。 2将直流转变为交流,即通过逆变电路:采用大功率 IGBT 模块全桥逆变电路,具有很大的功率富余量,在输出动态范围内输出阻抗特别小,具有快速响应特性 . 由于采用高频调制限流技术, 及快速短路保护技术 , 使逆变器无论是供电电压瞬变还是负载冲击或短路 , 均能安全可靠地工作。 3控制驱动:控制驱动是完成整机功能控制的核心,它除了提供检测、保护、同步以及各种开关和显示驱动信号外,还完成 SPWM 正弦脉宽调制的控制,由于采用静态和动态双重电压反馈。改善了逆变器的动态特性和稳定性。

地铁急救知识 (21页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 地铁急救知识 篇一:地铁基础知识 轨 道 交 通 基 础 知 识 1. 世界第一条地铁什么时候建成通车,情况如何? 答:1863年世界第一条地铁在伦敦建成通车,列车用蒸汽机车牵引,线路全长6.4 km。 2. 我国第一条有轨电车线路何年建成?我国第一条地铁在何年何月建成?答:1908年上海第一条有轨电车线路建成;1969年10月我国第一条地铁在北京建 成通车,1971年投入运营。 3. 轨道交通的基本类型有哪几种? 答:轨道交通模式种类繁多,分类方法也较多。目前,世界上轨道交通分类大 体如下:按构筑物的形态或轨道相对于地面的位置划分为地下铁路、地面铁路 和高架铁路;按列车服务范围划分为传统的城市轨道交通、区域快速铁路和市 郊铁路;按运能等级(大运量、中运量、小运量)及车辆类型可分为地下铁道、轻轨交通、独轨交通、有轨电车、胶轮地铁、线性电机车辆、磁悬浮;按照列 车驱动力可以大致分为轮轨系统和磁悬浮系统两大类,城市铁路、地铁、轻轨、独轨属于轮轨系统,而线性电机车辆严格地说属于磁悬浮系统一类;

4. 什么是城市轨道交通?地铁、轻轨的概念及主要划分依据是什么? 答:城市轨道交通是指在不同型式轨道上运行的大、中运量城市公共交通工具,是当代城市中地铁、轻轨、单轨、自动导向、磁浮等轨道交通的总称。地铁是 在城市中修建的快速、大运量用电车牵引的轨道交通系统,它可以修建在地下、地面或采用高架的方式,运量在3万人次/h以上;轻轨相对于地铁来说运量较小,在原有轨电车的基础上利用现代技术改造发展的城市轨道交通系统,运量 在1.5~3万人次/h;主要划分依据是该线路远期的单向客运能力,而不是看其主要处在地下、地面或高架。 5. 地铁旅行速度一般为多少?地铁列车的运行间隔一般为多少? 答:地铁列车的旅行速度一般不低于35km/h。设计最高运行速度大于80 km/h 的系统,旅行速度应相应提高;各设计年度的列车运行间隔,应根据预测的客 流量、列车编组、列车定员、系统服务水平等因素综合确定。为保证地铁的服 务水平,高峰时段初期列车运行间隔不宜大于6min。 6. 地铁、轻轨的特点是什么? 答:地铁、轻轨有如下的特点: A.采用标准轨距的钢轨。线路铺设方式灵活,根据地形条件,既可建于地下,也可采 用地下、地面及高架相结合的方式,以节约工程投资。 B.线路全隔离全封闭,可以实现信号控制调度的自动化,行车密度高,发车间隔最短可达1.5min,车辆最高运行速度可达80km/h,平均旅行速度可达35~ 50km/h。 C.对客运量的适应范围广,通过选取不同的车辆编组型式,既可以满足6~8 万人次/小时的大运能要求,也可以适应2~4万人次/h的中等运能的要求。 D.车辆按有无动力分为动车和拖车,一般采用动车和拖车混合编组方式,既满足城市轨道交通所特有的牵引特性需要,又可减少车辆购置费。车辆编组以相 对独立的动力单元为核心,容易实现扩大编组以适应设计年度不同阶段的客流 量需要。 E.受电方式主要有两种:AC25kV、DC1500V架空接触网受电和DC750V第三轨 受电。 F.牵引供电技术成熟,但该模式也存在噪声大、影响景观等缺点。可 以通过提高车辆制造技术及工艺水平,采用弹性车轮、径向转向架等措施,减 小车辆运行和通过曲线的噪音。采用无缝长钢轨线路、弹性钢轨扣件和路基弹 性层,高架线路可以在轨道两侧设置隔音屏障,以减少噪声和振动的传递。 7. 国家要求城市建设地铁的基本条件是什么?

轨道交通基础知识

轨道交通基础知识简读本 长沙市建设委员会 长沙市轨道交通集团有限公司 长沙市建筑业协会 二〇〇六年六月

目录 一、基础篇 (1) 二、线路篇 (4) 三、轨道篇 (7) 四、车辆篇 (8) 五、设备篇 (12) 六、土建篇 (13) (不涉及) 七、通风空调篇 (20) 八、给排水篇 (27) 九、供电篇 (29) 十、通信信号篇 (32) 十一、其他篇 (37)

一、基础篇 1.世界第一条地铁什么时候建成通车,情况如何? 答:1863年世界第一条地铁在伦敦建成通车,列车用蒸汽机车牵引,线路全长6.4 km。 2.我国第一条有轨电车线路何年建成?我国第一条地铁在何年何月建成? 答:1908年上海第一条有轨电车线路建成;1969年10月我国第一条地铁在北京建成通车,1971年投入运营。 3.轨道交通的基本类型有哪几种? 答:轨道交通模式种类繁多,分类方法也较多。目前,世界上轨道交通分类大体如下:按构筑物的形态或轨道相对于地面的位置划分为地下铁路、地面铁路和高架铁路;按列车服务范围划分为传统的城市轨道交通、区域快速铁路和市郊铁路;按运能等级(大运量、中运量、小运量)及车辆类型可分为地下铁道、轻轨交通、独轨交通、有轨电车、胶轮地铁、线性电机车辆、磁悬浮;按照列车驱动力可以大致分为轮轨系统和磁悬浮系统两大类,城市铁路、地铁、轻轨、独轨属于轮轨系统,而线性电机车辆严格地说属于磁悬浮系统一类; 4.什么是城市轨道交通?地铁、轻轨的概念及主要划分依据是什么? 答:城市轨道交通是指在不同型式轨道上运行的大、中运量城市公共交通工具,是当代城市中地铁、轻轨、单轨、自动导向、磁浮等轨道交通的总称。地铁是在城市中修建的快速、大运量用电车牵引的轨道交通系统,它可以修建在地下、地面或采用高架的方式,运量在3万人次/h以上;轻轨相对于地铁来说运量较小,在原有轨电车的基础上利用现代技术改造发展的城市轨道交通系统,运量在1.5~3万人次/h;主要划分依据是该线路远期的单向客运能力,而不是看其主要处在地下、地面或高架。 5.地铁旅行速度一般为多少?地铁列车的运行间隔一般为多少?

地铁系统投标相关知识

地铁系统相关知识简介 一、地铁发展趋势 国务院已批和将批的城市轨道交通规划共涉及23个城市,2020年之前轨道交通投资规模将超1万亿元。拥有地铁是全国许多大中型城市的梦想。其中,北京、上海、广州均在大规模续建地铁。此外,深圳、南京也加大了地铁网线的建设规模。除以上五个城市外,西安、成都、重庆、昆明、杭州、无锡、苏州、南昌、武汉、长沙、郑州、合肥、大连、青岛、天津、沈阳、福州、南宁等等城市地铁正在紧张建设之中,而兰州地铁也将在2011年开建。 上海轨道交通,也是目前世界线路最长的城市轨道交通系统。截止2010年4月20日,上海轨道交通线网已开通运营11条线、266座车站,运营里程达410公里(不含磁浮示范线),另有全线位于世博园区内,仅供世博园游客和工作人员搭乘的世博专线,近期及远期规划则达到510公里和970公里。目前,上海轨道交通的总长超过400公里,位居世界第一。 西安地铁二号线试验段工程于2006年9月29日在城北张家堡广场南环岛破土动工,标志着古都进入地铁时代!西安地铁近期规划为6条线(至2017年6条线开通运营),总长251.8公里,服务范围覆盖全市61个主要客流集散点中的52个,线路直接连接或延伸方向辐射中心城镇和组团,轨道交通客运量占居民出行总量的25%。先修建的2号线构成轨道交通南北方向骨干线,由铁路北客站至韦曲,全长26.4公里,2006年全线开工,2011年9月正式运营,西安地铁1号线2013年建成通车,西安地铁3号线2011年也将开建。根据西安建设国际化大都市的目标要求,在2005年编制的西安建设6条地铁线路,总长252公里的基础上,2010年正式开展了轨道交通线网规划修编工作,今后拟建设15条地铁线路,总长约600公里。目前规划方案已经规委会审查和专家评审,待进一步修改后上报市政府审定。该规划拟于2040年前实施完成,在2030年前建成通车里程力争达到350公里左右,以满足国际化大都市对城市轨道交通的基本需求。 二、地铁系统中机电安装专业分类 在机电安装系统招投标中普遍采取如下分法:地铁接触网系统、变电系统、通信系统、信号系统、自动售检票(AFC)系统、屏蔽门系统、地铁FAS、BAS系统、地铁PIS安装系统、车站风水电安装等等系统。

轨道交通基础知识

轨 道 交 通 基 础 知 识word文档可自由复制编辑

1.世界第一条地铁什么时候建成通车,情况如何? 答:1863年世界第一条地铁在伦敦建成通车,列车用蒸汽机车牵引,线路全长6.4 km。 2.我国第一条有轨电车线路何年建成?我国第一条地铁在何年何月建成? 答:1908年上海第一条有轨电车线路建成;1969年10月我国第一条地铁在北京建成通车,1971年投入运营。 3.轨道交通的基本类型有哪几种? 答:轨道交通模式种类繁多,分类方法也较多。目前,世界上轨道交通分类大体如下:按构筑物的形态或轨道相对于地面的位置划分为地下铁路、地面铁路和高架铁路;按列车服务范围划分为传统的城市轨道交通、区域快速铁路和市郊铁路;按运能等级(大运量、中运量、小运量)及车辆类型可分为地下铁道、轻轨交通、独轨交通、有轨电车、胶轮地铁、线性电机车辆、磁悬浮;按照列车驱动力可以大致分为轮轨系统和磁悬浮系统两大类,城市铁路、地铁、轻轨、独轨属于轮轨系统,而线性电机车辆严格地说属于磁悬浮系统一类; 4.什么是城市轨道交通?地铁、轻轨的概念及主要划分依据是什么? 答:城市轨道交通是指在不同型式轨道上运行的大、中运量城市公共交通工具,是当代城市中地铁、轻轨、单轨、自动导向、磁浮等轨道交通的总称。地铁是在城市中修建的快速、大运量用电车牵引的轨道交通系统,它可以修建在地下、地面或采用高架的方式,运量在3万人次/h以上;轻轨相对于地铁来说运量较小,在原有轨电车的基础上利用现代技术改造发展的城市轨道交通系统,运量在1.5~3万人次/h;主要划分依据是该线路远期的单向客运能力,而不是看其主要处在地下、地面或高架。 5.地铁旅行速度一般为多少?地铁列车的运行间隔一般为多少? 答:地铁列车的旅行速度一般不低于35km/h。设计最高运行速度大于80 km/h的系统,旅行速度应相应提高;各设计年度的列车运行间隔,应根据预测的客流量、列车编组、列车定员、系统服务水平等因素综合确定。为保证地铁的服务水平,高峰时段初期列车运行间隔不宜大于6min。 word文档可自由复制编辑

地铁基础知识大全

8、交通对城市经济、社会发展的贡献 1.对GDP的贡献较大。 2.对环保的贡献;有效抑制噪声、废气、废水、资源浪费。 3.对节省资源的贡献 4.对沿线房地产和商业的贡献 5.对人身安全的贡献 6.对交通运输时间的贡献 一.地铁是什么?地铁是地下铁道的简称。 它是一种独立的有轨交通系统,不受地面道路情况的影响,能够按照设计的能力正常运行,从而快速、安全、舒适地运送乘客。 地铁效率高,无污染,能够实现大运量的要求,具有良好的社会效益。 地铁是有轨交通,其运输组织、功能实现、安全保证均应遵循有轨交通的客观规律。 在运输组织上要实行集中调度、统一指挥、按运行图组织行车;在功能实现方面,各有关专业如隧道、线路、供电、车辆、通信、信号、车站机电设备及消防系统均应保证状态良好,运行正常;在安全保证方面,主要依靠行车组织和设备正常运行来保证必要的行车间隔和正确的行车经路。 为了保证地铁列车运行安全、正点,在集中调度、统一指挥的原则下,行车组织、设备、车辆检修、设备运行管理、安全保证等均由一系列规章制度来规范。 地铁是一个多专业多工种配合工作、围绕安全行车这一中心而组成的有序联动、时效性极强的系统。 地铁中采用了以电子计算机处理技术为核心的各种自动化设备,从而代替人工的、机械的、电气的行车组织、设备运行和安全保证系统。

如ATC(列车自动控制)系统可以实现列车自动驾驶、自动跟踪、自动调度;SCADA(供电系统管理自动化)系统可以实现主变电所、牵引变电所、降压变电所设备系统的遥控、遥信、遥测;BAS(环境监控系统)和FAS(火灾报警系统)可以实现车站环境控制的自动化和消防、报警系统的自动化;AFC(自动售检票系统)可以实现自动售票、检票、分类等功能。 这些系统全线各自形成网络,均在OCC(控制中心)设中心计算机,实行统一指挥,分级控制。 地铁路网的基本型式有: 单线式、单环线式、多线式、蛛网式。 每一条地铁线路都是由区间隧道(地面上为地面线路或高架线路)、车站及附属建筑物组成。 车站按其功能分为四种: 1、中间站: 只供乘客乘降用,此类车站数量最多。 2、折返站: 在中间站设有折返线路设备即称为折返站,一般在市区客流量大的区段设立,可以满足乘客需要,同时节省运营开支。 3、换乘站: 既用于乘客乘降又为乘客提供换乘的车站。 4、终点站: 地铁线路两端的车站,除了供乘客上下或换乘外,通常还供列车停留、折返、临修及检修使用。 二.地铁的特点(1)快速。

地铁知识科普

地铁车辆的组成部分 一、概述 地铁是地下铁道的简称。它是一种独立的有轨交通系统,不受地面道路情况的影响,能够按照设计的能力正常运行,从而快速、安全、舒适地运送乘客。地铁效率高,无污染,能够实现大运量的要求,具有良好的社会效益。 地铁是有轨交通,其运输组织、功能实现、安全保证均应遵循有轨交通的客观规律。 在运输组织上要实行集中调度、统一指挥、按运行图组织行车;在功能实现方面,各有关专业如隧道、线路、供电、车辆、通信、信号、车站机电设备及消防系统均应保证状态良好,运行正常;在安全保证方面,主要依靠行车组织和设备正常运行来保证必要的行车间隔和正确的行车经路。 为了保证地铁列车运行安全、正点,在集中调度、统一指挥的原则下,行车组织、设备、车辆检修、设备运行管理、安全保证等均由一系列规章制度来规范。地铁是一个多专业多工种配合工作、围绕安全行车这一中心而组成的有序联动、时效性极强的系统。 地铁中采用了以电子计算机处理技术为核心的各种自动化设备,从而代替人工的、机械的、电气的行车组织、设备运行和安全保证系统。如ATC(列车自动控制)系统可以实现列车自动驾驶、自动跟踪、自动调度;SCADA(供电系统管理自动化)系统可以实现主变电所、牵引变电所、降压变电所设备系统的遥控、遥信、遥测;BAS(环境监控系统)和FAS(火灾报警系统)可以实现车站环境控制的自动化和消防、报警系统的自动化;AFC(自动售检票系统)可以实现自动售票、检票、分类等功能。这些系统全线各自形成网络,均在OCC (控制中心)设中心计算机,实行统一指挥,分级控制。 地铁路网的基本型式有: 单线式、单环线式、多线式、蛛网式。每一条地铁线路都是由区间隧道(地面上为地面线路或高架线路)、车站及附属建筑物组成。车站按其功能分为四种:

地铁车站结构基本知识讲座

地铁车站结构基本知识讲座 一、建筑与结构设计的关系 地铁车站设计,从城市大环境看,总的说受城市布局、规划线路条件等限制。 从车站本身的设计看,内部布置方面,建筑综合各个专业内容,也包括结构专业内容;外部布置方面,受周边环境、道路条件等各种因素影响。 车站本身,建筑与结构密不可分,相互制约。 根本上说,结构专业配合建筑、服从于建筑,但是由于地铁车站结构的特殊性,结构专业也制约着建筑。 二、地铁车站结构设计的特殊性 地铁主要是地下工程(也有地上,我们主要做的还是地下),与房建设计有很大区别。具体体现在以下3点: 1、荷载差异大 主要概念上与房建差别大,结构尺寸大,原因是荷载大小有数量级的差别。 房建中,一般公用建筑,除自重外,主要按照2.0~2.5KN/m2(即200kg~250kg/m2)考虑活荷载。一般70kg的一个人,每m2就站不超过4个人。

地铁车站,处于上下左右均受力,顶板和侧墙是水、土,底板是水浮力(这个是一般房建没有的)。中板荷载8KN(4KN)/m2(相当于10个人(5个人)。顶板覆土一般在3m~4m,相当于60~80KN,是房建荷载的30~40倍;因地下水水位关系,标准的2层车站(有站厅层、站台层)底板深度约在15~17m,水浮力(不考虑土体的影响作用)达到120~150KN/m2,达到房建荷载中的60~70倍。 2、尺寸差异大 因为荷载差异大,导致地铁车站结构的尺寸,远大于一般房建。 房建结构,对于我院常设计的,梁高500、600,柱尺寸500*500就算比较大,柱、梁尺度达到800就是很高的高层、跨度很大的结构才有的。对于房建,房屋楼板一般在100~200mm,很少有更大板厚的。 地铁车站荷载大了30~40倍,相应的结构尺寸不得不加大很多。 一般标准明挖的10m、11m站台单柱双层车站,结构尺寸一般如下: 这属于比较常用的尺寸,在局部地区,因结构形式不同、业主要求不同略有区别。 武汉地区已经有部分车站采用了12m站台单柱形式,这样引起

轨道交通基础知识汇总

1、道岔:是钢轮钢轨系轨道车辆从一股道转入另一股道的线路连接设备。 2、线网密度:指单位人口拥有的线路规模或单位面积上分布的线路规模。 3、线间距:当左右线并行设置、两线路中心线之间的水平距离。 4、折返:列车通过进路改变、道岔转换、经过车站的调车路由一条线路至另一条线路运营的方式。 5、换乘流线:指乘客下车后,换乘轨道交通的客流根据不同线路的换乘方式通过站台、站厅和通道进行换乘,最终到达另一站台上车。1、纵断面设计影响因素:①地下线结构顶板覆土厚度;②地下管线及构筑物; ③地质条件④施工方法⑤排水站设置;⑥桥下净高⑦防洪水位。2、车站总平面布局设计设置的步骤:①分析影响因素,确定边界条件;②根据功能要求构思总体方案;③确定出入口与风亭数量及位置;④绘制车站总平面布置图。3、轨道交通线网规划的主要内容:①前提与基础研究。主要是对城市的人文背景和自然背景进行研究,从中总结指导城市轨道交通线网规划的技术政策和规划原则。②远景线网规模及其架构。重点内容包括:线网合理规模、线网架构方案的构思、线网方案客流测试、线网方案分析与综合评价。 ③分阶段实施规划。主要研究的内容包括工程条件、建设顺序、附属设施规划。4、根据线路位置和客流方向,简述客流换乘站形式:两条线之间的换乘关系一般取决于两条线路的走向和站位条件,在两条交叉的线路上一般采用“十”字换乘、“T”形换乘或“L”形换乘。在两条平行的线路上,可选择“一”字换乘或“工”字形换乘。换乘站周围的客流来源和方向是在考虑换乘站关系时要重点考虑的因素,一般来说,“T”形、“L”形、“工”形照顾的客流面比较大,可以使车站的客流吸引范围增大,但其客流换乘条件不如“十”形和“一”形;“十”形和“一”形换乘站可以提供良好的换乘条件,在换乘客流为主的车站应尽可能采用。5、简述车站站位的选择原则:①方便乘客使用;②与城市道路网及公交线网密切结合;③与旧城房屋和新区土地开发结合;④方便施工,减少拆迁,降低造价;⑤兼顾各车间距离的均匀性。6、客流(需求)预测的主要内容:①预测前提条件的确定;②不同预测年限运输需求总量及时空分布预测;③多方交通网络分配结果及综合交通结构目标的分析与评估;④预测结果的灵敏度分析。7、影响线路走向与路由的因素:①线路的性质、作用及地位;②客流集散点和主客流方向③城市道路网及建设情况;④线路的敷设方式和技术条件;⑤与城市发展的近、远期结合。 1、根据你对这门课的了解,如何提高轨道交通运行效率。 填空:城市轨道交通有地铁、轻轨、有轨电车、市郊铁路。车辆段是车辆的维修保养基地,也是车辆停放、运用、检查、整备和修理的管理单位。限界的种类:车辆限界、设备限界、建筑限界和接触轨或接触网限界。车站建筑类型:按运营性质,车站可分为中间站、换乘站、中间折返站和尽端折返站。线路敷设方式:地下线、地面线和高架线。设计的阶段:可行性研究阶段、总体设计阶段、初步设计阶段和施工图设计阶段。需求预测需要提供的输出指标:需求总体指标、流量流向指标、空间不均衡性指标、时间不均衡性指标、敏感性因素指标。城市轨道交通线网规模指标:城市轨道交通线网总长度L、城市轨道交通线网密度a、城市轨道交通线网日客运周转量P。线网规模的影响因素:城市交通需求规模、城市发展形态和土地使用格局、国家与地方政府的发展扶持政策。线网架构的基本类型:网格式、无环放射式及有环放射式。城市轨道交通系统线路按其在运营中的作用,可分为正线、辅助线和车场线。线路设计一般分为四个阶段可行性研究阶段、总体设计阶段、初步设计阶段和施工图设计阶段。车站地段线间距离:地下岛式车站、地下侧式车站、地面、高架车站线间距。车站一般有主体、出入口及通道、通风道及风亭(地下)和其他附属建筑物等组成。城市交通枢纽一般由轨道交通、常规公交、换乘通道、站厅、停车场、服务设施六个子系统组成。枢纽规划基本原则:网络化的原则、城市化的原则、可持续的原则、人性化的原则。换乘方式:站台直接换乘、站厅换乘、通道换乘、站外换乘、组合换乘。 名词解释:限界:指列车沿固定的轨道安全运行时所需要的空间尺寸。 道岔:是钢轮钢轨系轨道车辆从一股道转入另一股道的线路连接设备。 线网密度:指单位人口拥有的线路规模或单位面积上分布的线路规模。 列车折返:是列车通过进路改变、道岔转换,经过车站的调车进路由一条线路至另一条线路运营的方式。 换乘流线:指乘客下车后,换乘轨道交通的客流根据不同线路的换乘方式通过站台、站厅和通道进行换乘,最终到达另一线路站台上车;换乘其他交通方式的客流根据选择的交通方式经由不同的换乘通道到达换乘地点。 线间距:当左右线并行布置,两线路中心线之间的水平距离。 交通枢纽是当运输对象使用某种运输工具、沿特定线路运行到达并进行换乘或转运时,能满足其改用其他运输工具或沿其他线路运行的场所 简答:车站站位选择原则:1方便乘客使用2与城市道路网及公交线网密切结合3与旧城房屋改造和新区土地开发结合4方便施工,减少拆迁,降低造价5兼顾各车站间距离的均匀性。影响选线的因素:1线路的性质、作用及地位2客流集散点和主客流方向3城市道路网及建设状况4线路的敷设方式和技术条件5与城市发展的近、远期结合。通过特大型客流集散点的路由选择:1路由绕向特大型客流集散点2采用支路连接3延长车站出入口通道,并设自动步道4调整线网部分线路走向5调整特大型客流集散点选线方案比较:1线路条件比较2房屋拆迁比较3管线拆迁比较4改移道路及交通便道面积比较5其他拆迁物比较6主体结构施工方法比较需求预测的主要内容:1预测前提条件的界定2不同预测年限运输需求总量及时空分布预测3多方交通网络分配结果及综合交通结构目标的分析与评估4预测结果的灵敏度分析线网规划的主要内容:1前提与基础研究:具体的研究内容包括城市现状与发展规划、城市交通现状和规划、城市工程地质分析、既有铁路利用分析和建设必要性论证等2远景线网规模及其架构:重点内容包括:线网合理规模、线网架构方案的构思、线网方案客流测试、线网方案分析与综合评价。3分阶段实施规划:主要研究内容包括工程条件、建设顺序、附属设施规划。影响纵断面设计的因素:1地下线结构顶板覆土厚度2地下管线及构筑物3地质条件4施工方法5排水站位置6桥下净高7防洪水位车站总平面布局设计的步骤:1分析影响因素,确定边界条件2根据功能要求构思总体方案3确定出入口与风亭数量及位置4绘制车站总平面布置图依据线路位置和客流方向,确定换乘关系:两条线之间的换乘关系一般取决于两条线路的走向和站位条件,在两条交叉的线路上一般采用“十”字换乘、“T”形换乘或“L”形换乘。在两条平行的线路上,可选择“一”字形换乘或“工”字形换乘。换乘站周围的客流来源和方向是在考虑换乘站关系式要重点考虑的因素,一般来说,“T”形、“L”形、“工”字形照顾的客流面比较大,可以使车站的客流吸引范围增大,但其客流换乘条件不如“十”形和“一”字形;“十”形和“一”字形换乘站可以提供很好的换乘条件,在换乘客流为主的车站应尽可能采用。交通枢纽服务评价体系及指标:1运行效率评价:换乘顺畅性指标、换乘便捷性指标2设施布局评价:设施方便性指标、换乘安全性指标、换乘舒适性指标3效益水平评价论述:如何体现轨道交通运行效率:1提高城市轨道交通运行速度的措施:(1)减少加减速时间的措施主要有:①改善车辆的加速与制动性能②合理设计地下车站线路段的纵断面。(2)减少列车运行时间:①提高车辆构造速度②采用列车运行自动控制系统③提高列车的制动能力④适当延长站间距。(3)减少列车停站时间:①增加车辆的车门数及车门宽度②采用高站台或低地板车辆③组织乘客均匀分布候车④适当延长站间距⑤采用跨站停车和分段停车等列车运行方案2.提高出行速度的途径与措施:(1) 减少乘客从出行始、终点至车站的时间:①增加城市轨道交通网的密度②合理规划车站周围地区的土地使用③优化接运交通的设计(2) 减少乘坐城市轨道交通列车时间(3) 减少乘客进出车站及候车、换乘时间:①尽可能采用浅埋车站或地面车站②保证通道、升降设备和售检票设备等设施的通过能力③适当增加行车密度④优化换乘站的设计 轨道交通与其他交通相当一体化的规划设计思想:1、道岔:是钢轮钢轨系轨道车辆从一股道转入另一股道的线路连接设备。2、 线网密度:指单位人口拥有的线路规模或单位面积上分布的线路规模。3、 线间距:当左右线并行设置、两线路中心线之间的水平距离。4、折返:列 车通过进路改变、道岔转换、经过车站的调车路由一条线路至另一条线路运 营的方式。5、换乘流线:指乘客下车后,换乘轨道交通的客流根据不同线 路的换乘方式通过站台、站厅和通道进行换乘,最终到达另一站台上车。1、 纵断面设计影响因素:①地下线结构顶板覆土厚度;②地下管线及构筑物; ③地质条件④施工方法⑤排水站设置;⑥桥下净高⑦防洪水位。2、车站总 平面布局设计设置的步骤:①分析影响因素,确定边界条件;②根据功能要 求构思总体方案;③确定出入口与风亭数量及位置;④绘制车站总平面布置 图。3、轨道交通线网规划的主要内容:①前提与基础研究。主要是对城市 的人文背景和自然背景进行研究,从中总结指导城市轨道交通线网规划的技 术政策和规划原则。②远景线网规模及其架构。重点内容包括:线网合理规 模、线网架构方案的构思、线网方案客流测试、线网方案分析与综合评价。 ③分阶段实施规划。主要研究的内容包括工程条件、建设顺序、附属设施规 划。4、根据线路位置和客流方向,简述客流换乘站形式:两条线之间的换 乘关系一般取决于两条线路的走向和站位条件,在两条交叉的线路上一般采 用“十”字换乘、“T”形换乘或“L”形换乘。在两条平行的线路上,可选 择“一”字换乘或“工”字形换乘。换乘站周围的客流来源和方向是在考虑 换乘站关系时要重点考虑的因素,一般来说,“T”形、“L”形、“工”形照 顾的客流面比较大,可以使车站的客流吸引范围增大,但其客流换乘条件不 如“十”形和“一”形;“十”形和“一”形换乘站可以提供良好的换乘条 件,在换乘客流为主的车站应尽可能采用。5、简述车站站位的选择原则: ①方便乘客使用;②与城市道路网及公交线网密切结合;③与旧城房屋和新 区土地开发结合;④方便施工,减少拆迁,降低造价;⑤兼顾各车间距离的 均匀性。6、客流(需求)预测的主要内容:①预测前提条件的确定;②不 同预测年限运输需求总量及时空分布预测;③多方交通网络分配结果及综合 交通结构目标的分析与评估;④预测结果的灵敏度分析。7、影响线路走向 与路由的因素:①线路的性质、作用及地位;②客流集散点和主客流方向③ 城市道路网及建设情况;④线路的敷设方式和技术条件;⑤与城市发展的近、 远期结合。 1、根据你对这门课的了解,如何提高轨道交通运行效率。 填空:城市轨道交通有地铁、轻轨、有轨电车、市郊铁路。车辆段是车 辆的维修保养基地,也是车辆停放、运用、检查、整备和修理的管理单位。 限界的种类:车辆限界、设备限界、建筑限界和接触轨或接触网限界。车 站建筑类型:按运营性质,车站可分为中间站、换乘站、中间折返站和尽端 折返站。线路敷设方式:地下线、地面线和高架线。设计的阶段:可行 性研究阶段、总体设计阶段、初步设计阶段和施工图设计阶段。需求预 测需要提供的输出指标:需求总体指标、流量流向指标、空间不均衡性指标、 时间不均衡性指标、敏感性因素指标。城市轨道交通线网规模指标:城市 轨道交通线网总长度L、城市轨道交通线网密度a、城市轨道交通线网日客 运周转量P。线网规模的影响因素:城市交通需求规模、城市发展形态和 土地使用格局、国家与地方政府的发展扶持政策。线网架构的基本类型: 网格式、无环放射式及有环放射式。城市轨道交通系统线路按其在运营 中的作用,可分为正线、辅助线和车场线。线路设计一般分为四个阶段可 行性研究阶段、总体设计阶段、初步设计阶段和施工图设计阶段。车站地 段线间距离:地下岛式车站、地下侧式车站、地面、高架车站线间距。车 站一般有主体、出入口及通道、通风道及风亭(地下)和其他附属建筑物等 组成。城市交通枢纽一般由轨道交通、常规公交、换乘通道、站厅、停车 场、服务设施六个子系统组成。枢纽规划基本原则:网络化的原则、城市 化的原则、可持续的原则、人性化的原则。换乘方式:站台直接换乘、站 厅换乘、通道换乘、站外换乘、组合换乘。 名词解释:限界:指列车沿固定的轨道安全运行时所需要的空间尺寸。 道岔:是钢轮钢轨系轨道车辆从一股道转入另一股道的线路连接设备。 线网密度:指单位人口拥有的线路规模或单位面积上分布的线路规模。 列车折返:是列车通过进路改变、道岔转换,经过车站的调车进路由一条线 路至另一条线路运营的方式。 换乘流线:指乘客下车后,换乘轨道交通的客流根据不同线路的换乘方式通 过站台、站厅和通道进行换乘,最终到达另一线路站台上车;换乘其他交通 方式的客流根据选择的交通方式经由不同的换乘通道到达换乘地点。 线间距:当左右线并行布置,两线路中心线之间的水平距离。 交通枢纽是当运输对象使用某种运输工具、沿特定线路运行到达并进行换乘 或转运时,能满足其改用其他运输工具或沿其他线路运行的场所 简答:车站站位选择原则:1方便乘客使用2与城市道路网及公交线网密切 结合3与旧城房屋改造和新区土地开发结合4方便施工,减少拆迁,降低造 价5兼顾各车站间距离的均匀性。影响选线的因素:1线路的性质、作 用及地位2客流集散点和主客流方向3城市道路网及建设状况4线路的敷设 方式和技术条件5与城市发展的近、远期结合。通过特大型客流集散点的 路由选择:1路由绕向特大型客流集散点2采用支路连接3延长车站出入口 通道,并设自动步道4调整线网部分线路走向5调整特大型客流集散点选 线方案比较:1线路条件比较2房屋拆迁比较3管线拆迁比较4改移道路及 交通便道面积比较5其他拆迁物比较6主体结构施工方法比较需求预测 的主要内容:1预测前提条件的界定2不同预测年限运输需求总量及时空分 布预测3多方交通网络分配结果及综合交通结构目标的分析与评估4预测结 果的灵敏度分析线网规划的主要内容:1前提与基础研究:具体的研究 内容包括城市现状与发展规划、城市交通现状和规划、城市工程地质分析、 既有铁路利用分析和建设必要性论证等2远景线网规模及其架构:重点内容 包括:线网合理规模、线网架构方案的构思、线网方案客流测试、线网方案 分析与综合评价。3分阶段实施规划:主要研究内容包括工程条件、建设顺 序、附属设施规划。影响纵断面设计的因素:1地下线结构顶板覆土厚 度2地下管线及构筑物3地质条件4施工方法5排水站位置6桥下净高7 防洪水位车站总平面布局设计的步骤:1分析影响因素,确定边界条件2 根据功能要求构思总体方案3确定出入口与风亭数量及位置4绘制车站总平 面布置图依据线路位置和客流方向,确定换乘关系:两条线之间的换 乘关系一般取决于两条线路的走向和站位条件,在两条交叉的线路上一般采 用“十”字换乘、“T”形换乘或“L”形换乘。在两条平行的线路上,可选 择“一”字形换乘或“工”字形换乘。换乘站周围的客流来源和方向是在考 虑换乘站关系式要重点考虑的因素,一般来说,“T”形、“L”形、“工”字 形照顾的客流面比较大,可以使车站的客流吸引范围增大,但其客流换乘条 件不如“十”形和“一”字形;“十”形和“一”字形换乘站可以提供很好 的换乘条件,在换乘客流为主的车站应尽可能采用。交通枢纽服务评价体 系及指标:1运行效率评价:换乘顺畅性指标、换乘便捷性指标2设施布局 评价:设施方便性指标、换乘安全性指标、换乘舒适性指标3效益水平评价 论述:如何体现轨道交通运行效率:1提高城市轨道交通运行速度的措施: (1)减少加减速时间的措施主要有:①改善车辆的加速与制动性能②合 理设计地下车站线路段的纵断面。(2)减少列车运行时间:①提高车辆构 造速度②采用列车运行自动控制系统③提高列车的制动能力④适当延长 站间距。(3)减少列车停站时间:①增加车辆的车门数及车门宽度②采用 高站台或低地板车辆③组织乘客均匀分布候车④适当延长站间距⑤采用 跨站停车和分段停车等列车运行方案2.提高出行速度的途径与措施:(1) 减 少乘客从出行始、终点至车站的时间:①增加城市轨道交通网的密度②合 理规划车站周围地区的土地使用③优化接运交通的设计(2) 减少乘坐城市 轨道交通列车时间(3) 减少乘客进出车站及候车、换乘时间:①尽可能采 用浅埋车站或地面车站②保证通道、升降设备和售检票设备等设施的通过 能力③适当增加行车密度④优化换乘站的设计 轨道交通与其他交通相当一体化的规划设计思想: 1、道岔:是钢轮钢轨系轨道车辆从一股道转入另一股道的线路连接设备。 2、 线网密度:指单位人口拥有的线路规模或单位面积上分布的线路规模。3、 线间距:当左右线并行设置、两线路中心线之间的水平距离。4、折返:列 车通过进路改变、道岔转换、经过车站的调车路由一条线路至另一条线路运 营的方式。5、换乘流线:指乘客下车后,换乘轨道交通的客流根据不同线 路的换乘方式通过站台、站厅和通道进行换乘,最终到达另一站台上车。1、 纵断面设计影响因素:①地下线结构顶板覆土厚度;②地下管线及构筑物; ③地质条件④施工方法⑤排水站设置;⑥桥下净高⑦防洪水位。2、车站总 平面布局设计设置的步骤:①分析影响因素,确定边界条件;②根据功能要 求构思总体方案;③确定出入口与风亭数量及位置;④绘制车站总平面布置 图。3、轨道交通线网规划的主要内容:①前提与基础研究。主要是对城市 的人文背景和自然背景进行研究,从中总结指导城市轨道交通线网规划的技 术政策和规划原则。②远景线网规模及其架构。重点内容包括:线网合理规 模、线网架构方案的构思、线网方案客流测试、线网方案分析与综合评价。 ③分阶段实施规划。主要研究的内容包括工程条件、建设顺序、附属设施规 划。4、根据线路位置和客流方向,简述客流换乘站形式:两条线之间的换 乘关系一般取决于两条线路的走向和站位条件,在两条交叉的线路上一般采 用“十”字换乘、“T”形换乘或“L”形换乘。在两条平行的线路上,可选 择“一”字换乘或“工”字形换乘。换乘站周围的客流来源和方向是在考虑 换乘站关系时要重点考虑的因素,一般来说,“T”形、“L”形、“工”形照 顾的客流面比较大,可以使车站的客流吸引范围增大,但其客流换乘条件不 如“十”形和“一”形;“十”形和“一”形换乘站可以提供良好的换乘条 件,在换乘客流为主的车站应尽可能采用。5、简述车站站位的选择原则: ①方便乘客使用;②与城市道路网及公交线网密切结合;③与旧城房屋和新 区土地开发结合;④方便施工,减少拆迁,降低造价;⑤兼顾各车间距离的 均匀性。6、客流(需求)预测的主要内容:①预测前提条件的确定;②不 同预测年限运输需求总量及时空分布预测;③多方交通网络分配结果及综合 交通结构目标的分析与评估;④预测结果的灵敏度分析。7、影响线路走向 与路由的因素:①线路的性质、作用及地位;②客流集散点和主客流方向③ 城市道路网及建设情况;④线路的敷设方式和技术条件;⑤与城市发展的近、 远期结合。 1、根据你对这门课的了解,如何提高轨道交通运行效率。 填空:城市轨道交通有地铁、轻轨、有轨电车、市郊铁路。车辆段是车 辆的维修保养基地,也是车辆停放、运用、检查、整备和修理的管理单位。 限界的种类:车辆限界、设备限界、建筑限界和接触轨或接触网限界。车 站建筑类型:按运营性质,车站可分为中间站、换乘站、中间折返站和尽端 折返站。线路敷设方式:地下线、地面线和高架线。设计的阶段:可行 性研究阶段、总体设计阶段、初步设计阶段和施工图设计阶段。需求预 测需要提供的输出指标:需求总体指标、流量流向指标、空间不均衡性指标、 时间不均衡性指标、敏感性因素指标。城市轨道交通线网规模指标:城市 轨道交通线网总长度L、城市轨道交通线网密度a、城市轨道交通线网日客 运周转量P。线网规模的影响因素:城市交通需求规模、城市发展形态和 土地使用格局、国家与地方政府的发展扶持政策。线网架构的基本类型: 网格式、无环放射式及有环放射式。城市轨道交通系统线路按其在运营 中的作用,可分为正线、辅助线和车场线。线路设计一般分为四个阶段可 行性研究阶段、总体设计阶段、初步设计阶段和施工图设计阶段。车站地 段线间距离:地下岛式车站、地下侧式车站、地面、高架车站线间距。车 站一般有主体、出入口及通道、通风道及风亭(地下)和其他附属建筑物等 组成。城市交通枢纽一般由轨道交通、常规公交、换乘通道、站厅、停车 场、服务设施六个子系统组成。枢纽规划基本原则:网络化的原则、城市 化的原则、可持续的原则、人性化的原则。换乘方式:站台直接换乘、站 厅换乘、通道换乘、站外换乘、组合换乘。 名词解释:限界:指列车沿固定的轨道安全运行时所需要的空间尺寸。 道岔:是钢轮钢轨系轨道车辆从一股道转入另一股道的线路连接设备。 线网密度:指单位人口拥有的线路规模或单位面积上分布的线路规模。 列车折返:是列车通过进路改变、道岔转换,经过车站的调车进路由一条线 路至另一条线路运营的方式。 换乘流线:指乘客下车后,换乘轨道交通的客流根据不同线路的换乘方式通 过站台、站厅和通道进行换乘,最终到达另一线路站台上车;换乘其他交通 方式的客流根据选择的交通方式经由不同的换乘通道到达换乘地点。 线间距:当左右线并行布置,两线路中心线之间的水平距离。 交通枢纽是当运输对象使用某种运输工具、沿特定线路运行到达并进行换乘 或转运时,能满足其改用其他运输工具或沿其他线路运行的场所 简答:车站站位选择原则:1方便乘客使用2与城市道路网及公交线网密切 结合3与旧城房屋改造和新区土地开发结合4方便施工,减少拆迁,降低造 价5兼顾各车站间距离的均匀性。影响选线的因素:1线路的性质、作 用及地位2客流集散点和主客流方向3城市道路网及建设状况4线路的敷设 方式和技术条件5与城市发展的近、远期结合。通过特大型客流集散点的 路由选择:1路由绕向特大型客流集散点2采用支路连接3延长车站出入口 通道,并设自动步道4调整线网部分线路走向5调整特大型客流集散点选 线方案比较:1线路条件比较2房屋拆迁比较3管线拆迁比较4改移道路及 交通便道面积比较5其他拆迁物比较6主体结构施工方法比较需求预测 的主要内容:1预测前提条件的界定2不同预测年限运输需求总量及时空分 布预测3多方交通网络分配结果及综合交通结构目标的分析与评估4预测结 果的灵敏度分析线网规划的主要内容:1前提与基础研究:具体的研究 内容包括城市现状与发展规划、城市交通现状和规划、城市工程地质分析、 既有铁路利用分析和建设必要性论证等2远景线网规模及其架构:重点内容 包括:线网合理规模、线网架构方案的构思、线网方案客流测试、线网方案 分析与综合评价。3分阶段实施规划:主要研究内容包括工程条件、建设顺 序、附属设施规划。影响纵断面设计的因素:1地下线结构顶板覆土厚 度2地下管线及构筑物3地质条件4施工方法5排水站位置6桥下净高7 防洪水位车站总平面布局设计的步骤:1分析影响因素,确定边界条件2 根据功能要求构思总体方案3确定出入口与风亭数量及位置4绘制车站总平 面布置图依据线路位置和客流方向,确定换乘关系:两条线之间的换 乘关系一般取决于两条线路的走向和站位条件,在两条交叉的线路上一般采 用“十”字换乘、“T”形换乘或“L”形换乘。在两条平行的线路上,可选 择“一”字形换乘或“工”字形换乘。换乘站周围的客流来源和方向是在考 虑换乘站关系式要重点考虑的因素,一般来说,“T”形、“L”形、“工”字 形照顾的客流面比较大,可以使车站的客流吸引范围增大,但其客流换乘条 件不如“十”形和“一”字形;“十”形和“一”字形换乘站可以提供很好 的换乘条件,在换乘客流为主的车站应尽可能采用。交通枢纽服务评价体 系及指标:1运行效率评价:换乘顺畅性指标、换乘便捷性指标2设施布局 评价:设施方便性指标、换乘安全性指标、换乘舒适性指标3效益水平评价 论述:如何体现轨道交通运行效率:1提高城市轨道交通运行速度的措施: (1)减少加减速时间的措施主要有:①改善车辆的加速与制动性能②合 理设计地下车站线路段的纵断面。(2)减少列车运行时间:①提高车辆构 造速度②采用列车运行自动控制系统③提高列车的制动能力④适当延长 站间距。(3)减少列车停站时间:①增加车辆的车门数及车门宽度②采用 高站台或低地板车辆③组织乘客均匀分布候车④适当延长站间距⑤采用 跨站停车和分段停车等列车运行方案2.提高出行速度的途径与措施:(1) 减 少乘客从出行始、终点至车站的时间:①增加城市轨道交通网的密度②合 理规划车站周围地区的土地使用③优化接运交通的设计(2) 减少乘坐城市 轨道交通列车时间(3) 减少乘客进出车站及候车、换乘时间:①尽可能采 用浅埋车站或地面车站②保证通道、升降设备和售检票设备等设施的通过 能力③适当增加行车密度④优化换乘站的设计 轨道交通与其他交通相当一体化的规划设计思想:

相关主题
文本预览
相关文档 最新文档