当前位置:文档之家› 物理电子学(原电真空器件)历史沿革

物理电子学(原电真空器件)历史沿革

物理电子学(原电真空器件)历史沿革
物理电子学(原电真空器件)历史沿革

张锡庚 耿宝成沈友松

张相臣张 丰 卢一民

陈专科 仇伯仓王金辉 范玉峰黄 强 王

孙长印 翁 明徐伟军 王红

田 宏 王 忠刘学东 朱京

张彦鹏 谢叔寒高应才 吴佐良冯克俭 任世昌周佩白 李晋德

陈福兴 胡金

杨振民 江述斌周华玉 邓长青冯 烽 王桂英郑学刚 韩爱珍范利云 徐 蛟李创社 张元馨

李景春 张文广

分子电子学

分子电子学 董 浩 邓 宁 陈培毅 (清华大学微电子学研究所,北京100084) 摘 要:作为纳米电子学的一个重要分支,分子电子学在近年来得到了巨大的发展,并成为国际上研究的热点。本文介绍了各种分子器件的制作技术及基本工作原理,回顾了近年来分子电子学的最新进展,展望了分子电子学的未来发展。 关键词:分子电子学 分子电子器件 分子导线 分子开关 分子存贮器 分子整流器 有机场效应晶体管 Molecular Electronics DONG H ao DENG Ning CHEN Peiyi (Institute of Microelectronics,Tsinghu a U niversity,B eijing100084) Abstract:As one of the most i m portant parts of nanoelect ronics,molecular elect ronics have att racted more and more attentions and developed signif icantly.This paper i nt roduces the f abrication technolo2 gy and the basic pri nci ple of molecular devices.The latest developments of the molecular elect ronics are reviewed as well.Fi nally,the f urther t rends are also discussed. K ey w ords:molecular elect ronics,molecular elect ronic devices,molecular w i re,molecular sw itch, molecular memory,molecular rectif ier,O FE T 引言 经历了多年的发展后,目前超大规模集成电路的发展即将面临着极大的挑战,这些挑战包括原理性的物理限制、技术性的工艺限制等等。为了解决这些问题,向纳电子学的过渡已成为微电子学发展的必然趋势。而作为纳电子学的一个重要组成部分,分子电子学也越来越受到重视。 研究可控制或调制分子光电特性的材料、器件和基本构架被称作“分子电子学”[1]。诺贝尔奖获得者Feynman关于“从单个分子甚至原子开始进行组装”的猜想被认为是分子电子学概念的来源。20世纪70年代,科学家们逐步提出了分子器件的具体设想。1974年Aviram和Ratner提出了关于分子整流器的设想[2]。针对分子器件结构、性质等的一系列实验也随即展开。进入80年代,相关实验技术,如Langmuir-Blodgett(LB)膜、自组装(SA)技术、有机分子束外延生长(OMB E)和扫描探针显微镜(SPM)等技术的发展,更是大大促进了分子器件的研究。 本文介绍了用于分子器件研究的基本制作方法,阐述了几种分子器件的基本工作原理,并对分子电子学的发展进行了总结和展望。 1 分子合成及器件制作技术 目前广泛应用于分子器件研究的主要方法包

分子电子学中的碳基材料毕业正文

分子电子学中的碳基材料毕业正文

毕业论文 题目分子电子学中的碳基材料学院物理科学与技术学院专业物理学 班级0901 学生赵小明 学号20090922155 指导教师赵朋 二〇一三年五月十二日

摘要 伴随着日益复杂的电子技术产品的发展,过去自上而下都依赖的硅基技术正面临着技术方面和物理方面的双层挑战。在采用自下向上的方法建设电子电路时,碳基纳米材料是非常好的候选材料,因为它们有半导体的特性并且物理尺寸很小,可以用于建立电子连接。例如有独特的电子性质的富勒烯,已经允许在建设分子整流器和晶体三极管时,可以以多种状态存在。碳纳米管在建设分子电路和场效应晶体管方面具有很大的潜力。另一方面,石墨烯不仅是代替ITO组成透明电极的最有前景的材料,同时它也展现了它的量子霍尔效应和电导特性。本论文主要体现了碳纳米材料在分子电子学中最近的发展状况。 关键词:碳纳米材料;分子电导;分子电子学;单分子电子器件 19

ABSTRACT As the growing complexity of electronic devices, the top-down method used with silicon based technology is facing both technological and physical challenges. Carbon-based nanomaterials are good candidates to be used in the development of electronic circuitry using the bottom-up approach, because they have semiconductor properties and dimensions within the required physical limit to construct electrical connections. For example, the unique electronic properties of fullerenes have made the construction of molecular rectifiers and molecular transistors that can work with more than two logical states. Carbon nanotubes have shown their values to be used in the construction of molecular wires and FET transistors that can operate in the THz frequency bias range. On the other hand, graphene is not only the most promising material for replacing ITO in the construction of transparent electrodes but it has also shown quantum Hall effect and quantum conductance properties that depend upon the edges or chemical doping. The purpose of this work is to present recent developments on the utilization carbon nanomaterials in molecular electronics. Keywords:Carbon nanomaterials;Molecular conductance;Molecular electronics;Unimolecular electronic devices 19

分子电子器件的研究进展

分子电子器件的研究进展 一、分子电子器件背景介绍 分子电子器件是由能完成光、电、离子、磁、热、机械和化学反应的分子和超分子组装排列而成的有序结构,是在分子或超分子层次上能完成信息和能量的检测、转换、传输、存储与处理等功能的化学及物理系统,简单他说,分子电子器件就是在分子水平上,尺寸在纳米量级,使用的材料有纳米线、纳米管、纳米颗粒、有机小分子、生物分子、DNA等,具有特定功能的超微型电子器件[1]。 传统的电子器件只利用了电子波粒二象性的粒子性, 且都是通过控制电子数量来实现信号处理的,随着集成度的提高, 功耗、速度、漏电都将成为严重的问题[2]。分子器件主要利用电子的量子效应工作,在分子器件中,只要控制一个电子的行为即可完成特定的功能, 即分子器件不单纯通过控制电子数目的多少, 主要通过控制电子波动的相位来实现特定功能,所以与传统的从宏观到微观的微加工技术相反,分子电子学的研究主要是从微观到宏观的角度,对功能分子材料在分子尺寸范围内实现对分子电子运动的控制,包括功能分子的设计、合成,晶体生长,有序薄膜制备、结构、性能研究,特殊的物理化学现象和过程的研究,分子器件的组装以及相关科学问题的研究[1]。 分子电子学的基础研究主要包括分子材料的电子学(Molecular Material for Electronics,MME)和分子尺度的电子学(Molecular Scale Electronics,MSE)两个方面的相关内容。基于分子材料的器件涉及到各种薄膜器件、单晶器件、自组装器件等,而分子尺度器件是目前国际科技界竞争最为激烈的几个领域之一,在分子尺寸上构筑电子器件,实现对单个分子或若干分子聚集体的光电子行为的控制,可以实现器件的高度微小化和集成,是下一代电子器件的奋斗目标,很显然,这方面的研究具有明显的科学意义和广阔的应用前景。 二、分子电子器件研究发展方向及进展 分子器件有两种发展趋势,其一是将无机材料替换为有机材料,增强分子材料的柔性。其二是更加注重单分子的特异性功能,力争实现超高性能器件。 构筑任何一个分子器件的基本思想是将少数几个分子,甚至单个分子镶嵌在两个电极之间,形成电极-分子-电极的纳米连接,其间连接的分子大多是有机分子,其电光特性是由分子结构本身而不是以后的工艺步骤决定的,且分子内不能含有金属,因为金属原子有表面徙动的特性,在纳米间距的条件下室温时即易形成横向短路,所以研究工作者应该对加工分子电子器件的综合因素进行全面考虑,这些因素包括: ①如何选择电极材料,也就是什么电极材料最适合测量分子的导电性; ②如何有效控制电极的几何构型; ③如何构建分子与电极之间的键合方式; ④如何控制位于纳米电极对间的所测量分子的数目[5]。 在综合全面考虑以上因素的基础上,可以得出这样的结论:解决这些问题最可靠的方法是在分子与具有分子尺寸的电极之间,在真正意义的分子尺寸上,制造一种具有有限分子键合位置的精细的牢固共价键连接。 现如今,超大规模集成电路的发展已逼近物理极限和工艺极限,而突破这种极限的出路之一是发展分子电子器件,最近几年,人们已经发现和利用了一些有机和无机导电聚合物、生物聚合物、电荷转移盐和有机金属等分子材料的物理化学性质及电子特性,研制出了用于信息处理的各种新型元件,例如分子导线、分

[NSFC]碳基无掺杂纳电子器件和集成电路要点

项目名称:碳基无掺杂纳电子器件和集成电路首席科学家:xxx 起止年限:2011.1至2015.8 依托部门:教育部

二、预期目标 本项目的总体目标: 本项目的总体目标为发展有自主知识产权的低成本高性能碳基纳电子、光电子集成芯片,建设一支高水平的碳基纳米电子和光电子学的研究队伍,培养相关领域的优秀青年人才,将项目的主要支撑单位“纳米器件物理与化学教育部重点实验室”建设成为国际著名的纳米器件研究中心。在碳纳米管CMOS集成电路方面,制备出中等规模的碳纳米管CMOS集成电路,例如碳纳米管全加器。在高性能碳纳米管基光电器件方面,做到发光器件的室温电致发光光谱的半高宽和荧光光谱相当,即不大于30 meV,探测器的光电压不小于0.2 V,并初步实现纳电子电路的电信号与光通讯电路的光信号间的相互转换。 五年预期目标: 五年预期目标为探索碳基纳电子和光电子器件的极限性能,并利用这些器件构建成若干高性能电路,预计可以取得如下成果: (1)集成电路用碳纳米管阵列的可控生长。在晶片尺寸绝缘基底上制备出直径大约在1.5 nm,管径分布不超过 0.3 nm的平行半导体性单壁碳 管,初步实现碳纳米管的间距和位置可控,半导体性碳纳米管含量高 于95%。 (2)适合于碳基电子学的高κ栅介质材料。在碳纳米管或石墨烯上生长出等效氧化层厚度(EOT)小于2纳米的栅介质薄膜,薄膜材料能隙在5 电子伏特以上,在1MV/cm的电场下,漏电流低于10mA/cm2,对器 件载流子迁移率和电导的损害在10%以下。 (3)碳基新型射频电路。测量高频下碳基纳米结构的动能电感,利用碳纳米结构搭建新型的碳基射频电路。 (4)纳米阻变存储器。利用碳基材料作为存储介质,结合传统硅基驱动电路,实现可工作的原型碳基纳米存储器。 (5)优秀人才培养。将年轻学者培养成为能够独当一面的学科带头人,项目执行期间培养出1-2名国家杰出青年基金获得者;将一线工作的优 秀学生培养成为具有独立工作能力的优秀科研工作者,项目执行期间

电力电子器件

电力电子器件 电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。主电路:在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。 电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。 ◆由信息电子电路来控制,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器。 电力电子器件的功率损耗 断态损耗 通态损耗:是电力电子器件功率损耗的主要成因。 开关损耗:当器件的开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素。分为开通损耗和关断损耗。 电力电子器件在实际应用中,一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。 电力电子器件的分类 按照能够被控制电路信号所控制的程度

◆半控型器件:指晶闸管(Thyristor)、快速晶闸管、逆导晶闸管、光控晶闸管、双向晶闸管。 ◆全控型器件:IGBT、GTO、GTR、MOSFET。 ◆不可控器件:电力二极管(Power Diode)、整流二极管。 按照驱动信号的性质 ◆电流驱动型:通过从控制端注入或者抽出电流来实现导通或者关断的控制。Thyrister,GTR,GTO。 ◆电压驱动型:仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。电力MOSFET,IGBT,SIT。 按照驱动信号的波形(电力二极管除外) ◆脉冲触发型:通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。晶闸管,SCR,GTO。 ◆电平控制型:必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通并维持在通断状态。GTR,MOSFET,IGBT。 按照载流子参与导电的情况 ◆单极型器件:由一种载流子参与导电。MOSFET、SBD(肖特基势垒二极管)、SIT。 ◆双极型器件:由电子和空穴两种载流子参与导电。电力二极管,PN结整流管,SCR,GTR,GTO。 ◆复合型器件:由单极型器件和双极型器件集成混合而成,也称混合型器件。IGBT,MCT。 GTO:门极可关断晶闸管。SITH(SIT):静电感应晶体管。

微光电子集成系统芯片的研究进展

微光电子集成系统芯片的研究进展* 陈弘达 (集成光电子学国家重点联合实验室北京  微光电子集成系统芯片 随着现代社会信息化和科学技术的高度发展交换传输是目前 世界各国普遍高度重视的研究热点之一以计算机技术和通信技术为代表的电子信息技术带来了一场彻底改变人类生活和工作的信息革命微电子技术发展非常迅速性能完善集成制造工艺相当成熟正迅速 发展着的另一门高新技术——光子集成技术能够高速超大容量传输信息高速并行处理与 交换信息能力相互渗透构成微光电子集成系统 将成为二十一世纪信息技术的重要支柱 如何使光子集成与微电子集成充分融合是发展超高速超大容量多功能微光电子集成系统的关键所在微光电子集成技术和微光电机械集成技术的发展人们力图将大量多种功能的器件集成于同一个芯片上 System on Chip?ù?è??3é±?μí?é??D???μèó?μ? Integrated System ?ú1|?üoíD??ü·????ùè?μ?·é?ù·¢?1μ??¢1aμ?×ó?ˉ3é?μí3D???ê?1a×ó?ˉ3éó??¢μ?×ó??ê??à?áo?μ???′ó·¢?1 ?ú1a?¥á?1aí¨D??£ê?ê?±e1aD??¢′|àíó?′?′¢μèáìóò??óDoü1?·oμ?ó|ó??°?° ?1??óDμ?×óμ????-′|àí·?′óoí???ü????1|?ü ?àμ±3éêìμ?′ó1??£?ˉ3é??ê?oí1a×ó?ˉ3é?÷?tμ????ü?è2¢DD2ù×÷ ??1a×ó1|?üó?μ?×ó1|?ü?é??μ??áo??eà′ ??òaò??úóú1aê?3?1a????òyè?μ?×óD??¢′|àí?μí3áíò?·??? ±ào?69789802

IC电子元器件知识要点有哪些

IC电子元器件知识要点有哪些 1.什么是IC IC的英文全称Integrated circuit 指的就是集成电路,集成电路就是把多个电子元件制作到一个硅片上,成为一个一体化的电子元件,IC 就是集成电路。 电子元器件是电子元件和电小型的机器、仪器的组成部分,其本身常由立创商城若干零件构成,可以在同类产品中通用;常指电器、无线电、仪表等工业的某些零件,如电容、晶体管、游丝、发条等子器件的总称。常见的有二极管等。 电子元器件包括:电阻、电容器、电位器、电子管、散热器、机电元件、连接器、半导体分立器件、电声器件、激光器件、电子显示器件、光电器件、传感器、电源、开关、微特电机、电子变压器、继电器、印制电路板、集成电路、各类电路、压电、晶体、石英、陶瓷磁性材料、印刷电路用基材基板、电子功能工艺专用材料、电子胶(带)制品、电子化学材料及部品等。 2. IC的分类 (一)按功能结构分类 集成电路按其功能、结构的不同,可以分为模拟集成电路和数字集成电路两大类。

(二)按制作工艺分类 集成电路按制作工艺可分为半导体集成电路和薄膜集成电路。 膜集成电路又分类厚膜集成电路和薄膜集成电路。 (三)按集成度高低分类 集成电路按规模大小分为:小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)、特大规模集成电路(ULSI)。 (四)按导电类型不同分类 集成电路按导电类型可分为双极型集成电路和单极型集成电路。 双极型集成电路的制作工艺复杂,功耗较大,代表集成电路有TTL、ECL、HTL、LST-TL、STTL等类型。单极型集成电路的制作工艺简单,功耗也较低,易于制成大规模集成电路,代表集成电路有CMOS、NMOS、PMOS等类型。 (五)按用途分类 集成电路按用途可分为电视机用集成电路。音响用集成电路、影碟机用集成电路、录像机用集成电路、电脑(微机)用集成电路、电子琴用集成电路、通信用集成电路、照相机用集成电路、遥控集成电路、语言集成电路、报警器用集成电路及各种专用集成电路。

电子元器件的详细信息

半导体三极管又称“晶体三极管”或“晶体管”。在半导体锗或硅的单晶上制备两个能相互影响的PN结,组成一个PNP(或NPN)结构。中间的N区(或P区)叫基区,两边的区域叫发射区和集电区,这三部分各有一条电极引线,分别叫基极B、发射极E和集电极C,是能起放大、振荡或开关等作用的半导体电子器件。半导体三极管也称为晶体三极管,可以说它是电子电路中最重要的器件。它最主要的功能是电流放大和开关作用。三极管顾名思义具有三个电极。二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三极管。 二极管又称晶体二极管,简称二极管(diode),另外,还有早期的真空电子二极管;它是一种具有单向传导电流的电子器件。在半导体二极管内部有一个PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的转导性。一般来讲,晶体二极管是一个由p型半导体和n型半导体烧结形成的p-n结界面。在其界面的两侧形成空间电荷层,构成自建电场。当外加电压等于零时,由于p-n 结两边载流子的浓度差引起扩散电流和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的二极管特性。 电阻,因为物质对电流产生的阻碍作用,所以称其该作用下的电阻物质。电阻将会导致电子流通量的变化,电阻越小,电子流通量越大,反之亦然。没有电阻或电阻很小的物质称其为电导体,简称导体。

不能形成电流传输的物质称为电绝缘体,简称绝缘体。 电容器通常简称其为电容,用字母C表示。定义1:电容器,顾名思义,是‘装电的容器’,是一种容纳电荷的器件。英文名称:capacitor。电容是电子设备中大量使用的电子元件之一,广泛应用于电路中的隔直通交,耦合,旁路,滤波,调谐回路,能量转换,控制等方面。定义2:电容器,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。 电位器是具有三个引出端、阻值可按某种变化规律调节的电阻元件。电位器通常由电阻体和可移动的电刷组成。当电刷沿电阻体移动时,在输出端即获得与位移量成一定关系的电阻值或电压。电位器既可作三端元件使用也可作二端元件使用。后者可视作一可变电阻器。 继电器是一种电控制器件。它具有控制系统(又称输入回路)和被控制系统(又称输出回路)之间的互动关系。通常应用于自动化的控制电路中,它实际上是用小电流去控制大电流运作的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。 可控硅,是可控硅整流元件的简称,是一种具有三个PN 结的四层结构的大功率半导体器件,亦称为晶闸管。具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器

分子电子学与分子电子器件

文章编号:1671-9352(2002)04-0339-04 分子电子学与分子电子器件 张宏川 崔学桂 姜建壮 (山东大学化学与化工学院,济南 250100) 摘要:介绍了分子电子学与分子器件研究领域的最新进展,展望了分子电子学的发展前景,提出了 一些新的想法和建议. 关键词:分子电子学;分子电子器件;分子电子学进展中图分类号:O621.3;T N4 文献标识码:A 收稿日期:2002-04-24 基金项目:国家自然科学基金“手性及巨型三明治酞菁稀土配合物及其纳米材料的合成、结构和表征”(20171028)、国家科技部“973”项目“纳电 子运算器材料的表征与性能基础研究”(2001C B6105-04,2001C B6105-06)和山东省自然科学基金重点项目“卟啉酞菁基分子材料”(Z 99B03)资助课题. 作者简介:张宏川(1978-),男,硕士生,从事分子材料和分子电子器件的研究. Molecular E lectronics and Molecular E lectronic Devices ZH ANG H ong -chuan ,C UI Xue -gui &J I ANGJian -zhuang (Faculty o f Chemistry and Chemical Technology ,Shandong Univer sity ,Jinan 250100,China ) Abstract :The new progress of m olecular electronics and m olecular electronic device was introduced together with the potential de 2velopment and application of this rapidly -growing field in future. K ey w ords :m olecular electronics ;m olecular electronic device ;development of m olecular electronics 分子电子学研究的是分子水平上的电子学,其目标是用单个分子、超分子或分子簇代替硅基半导体晶体管等固体电子学元件组装逻辑电路,乃至组装完整的分子计算机.它的研究内容包括各种分子电子器件的合成、性能测试以及如何将它们组装在一起以实现一定的逻辑功能. 同传统的固体电子学相比,分子电子学有着强大的优势.现行的微电子加工工艺在10年以后将接近发展的极限,线宽的不断缩小将使得固体电子器件不再遵从传统的运行规律;同时,线宽缩小也使得加工成本不断增加.分子电子学有望解决这些问题.在奔腾电脑芯片中1cm 2的面积上可以集成107~108 个电子元件,而分子电子学允许在同样大小的面积上集成1014个单分子电子元件[1],集成度的提高将使运算速度极大的提高.同时,由于分子电子学采用自下而上的方式组装逻辑电路,所使用的元件 是通过化学反应大批量合成的,所以生产成本与传统的光刻方法相比将大大缩减.目前,为了抢夺未来科技的制高点,许多发达国家都制定了发展纳米电子学和分子电子学的专项计划,投入了巨大的人力物力,同时也取得了一系列的突破.2001年12月21日,美国《科学》杂志将分子电子学所取得的一系列成就评为2001年十大科技进展之首[2]. 1 分子电子器件 1.1 分子导线 同现行的以硅基半导体为基础的微电子学一样,分子导线、分子开关、分子整流器和分子场效应管也是构成分子电子学的基本器件.其中有效的分子导线是实现分子器件的关键单元.分子导线必须满足下列条件[3]:①导电;②有一个确定的长度;③ 第37卷 第4期V ol.37 N o.4 山东大学学报(理学版) JOURNA L OF SH ANDONG UNI VERSITY 2002年8月August 2002

电子元件 集成电路 IC 的封装 DIP、QFP、PGA、BGA CSP CGA LGA ZIF SOP PFP

电子元件集成电路 IC 的封装 DIP、QFP、PGA、BGA CSP CGA LGA ZIF SOP PFP... 从foundry厂得到圆片进行减薄、中测打点后,即可进入后道封装。封装对集成电路起着机械支撑和机械保护、传输信号和分配电源、散热、环境保护等作用。 芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。 近年来电子产品朝轻、薄、短、小及高功能发展,封装市场也随信息及通讯产品朝高频化、高I/O 数及小型化的趋势演进。 由1980 年代以前的通孔插装(PTH)型态,主流产品为DIP(Dual In-Line Package),进展至1980 年代以SMT(Surface Mount Technology)技术衍生出的SOP(Small Out-Line Package)、SOJ(Small Out-Line J-Lead)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)封装方式,在IC 功能及I/O 脚数逐渐增加后,1997 年Intel 率先由QFP 封装方式更新为BGA(Ball Grid Array,球脚数组矩阵)封装方式,除此之外,近期主流的封装方式有CSP(Chip Scale Package 芯片级封装)及Flip Chip(覆晶)。 BGA(Ball Grid Array)封装方式是在管壳底面或上表面焊有许多球状凸点,通过这些焊料凸点实现封装体与基板之间互连的一种先进封装技术。 BGA封装方式经过十多年的发展已经进入实用化阶段。1987年,日本西铁城(Citizen)公司开始着手研制塑封球栅面阵列封装的芯片(即BGA)。而后,摩托罗拉、康柏等公司也随即加入到开发BGA的行列。1993年,摩托罗拉率先将BGA应用于移动电话。同年,康柏公司也在工作站、PC电脑上加以应用。直到五六年前,Intel 公司在电脑CPU中(即奔腾II、奔腾III、奔腾IV等),以及芯片组(如i850)中开始使用BGA,这对BGA应用领域扩展发挥了推波助澜的作用。目前,BGA已成为极其热

分子器件的研究进展

2012学年-2013学年第二学期 选修课程《配位化学》期末论文 论文题目: 分子器件的研究进展 院系:化学与材料科学学院应化系 姓名:程楚涵 学号:08100260 提交日期:2013年6月10日 授课老师:陈晓峰

分子器件的研究进展 分子器件的研究进展 程楚涵 (南京师范大学化学与材料科学学院2010级应化系) 【摘要】随着电子设备和器件的尺寸越来越小,基于分子的器件研究引起了人们的广泛关注。本文对分子马达、分子开关等几种分子器件的现状和前景进行了简单总结。 【关键词】分子器件,分子马达,分子开关

0 前言 分子器件的概念可以追溯到1959年。美国Feynman教授提出了由微小的导线和其他组件组成的微型计算机的设想。其导线的直径只有10到100nm,整个电路只有102nm的长度。1974年Aviram和Batner首次提出分子可以成为传统硅基芯片的替代品。然而直到扫描隧道显微技术的出现以及电子束加工等技术手段的不断完善,分子器件的研究才取得了实质性进展。正是在这一时期分子器件的一个典型组件——分子导线的研究逐渐得到了广泛的关注[1-8]。 随着现代社会对信息处理的要求越来越高,集成电路的规模越来越大。在这样的趋势下,分子器件(主要是分子电子器件)逐渐成为化学和材料学家研究的热点[9]。 1 分子马达的研究现状及前景 近些年,随着光钳技术、分子遗传学方法、X射线晶体结构分析以及显微成像等实验方法应用于分子生物学领域,人们对于分子马达的结构及动力学行为的认识有了长足的进展,也使直接研究和操纵单个分子马达成为可能。实验中观测到的分子马达一般在几万到几十万道尔顿,因此分子马达通常被看作布朗粒子,也被称作纳米粒子。在纳米技术的萌芽阶段,科学家已经制造了很多微型器件,但是要实现纳米机器的设想,动力系统是个关键部分,否则工艺再精确,人们也不可能制作出纳米数量级的机械动力系统,因此人们寄希望于分子马达为纳米器件提供动力,如果这个设想可以实现的话,那么分子马达就可以为纳米器件提供能量来源[10]。 纳米器件要投入使用,离不开能量的传递,也就是说需要分子数量级的微小马达。DNA(脱氧核糖核酸)是生物遗传物质的载体。DNA分子马达的优点是可以直接将生物体的生物化学能转换成机械能,而不像通常意义上的马达需要电力。因此,从理论上说,DNA分子马达可以借助一些生物化学变化而进行药物和基因等的传递,比如说,将药物分子直接输送至癌细胞的细胞膜。人们已经利用多个DNA分子制造出了分子马达,但这些马达存在着效率不高、难以控制的缺陷,与多分子DNA马达相比,单DNA分子马达应用起来更为方便,两位旅美中国

电子元器件的种类

电子元器件选择使用快速入门 一.电子元器分类 1.电阻R (1)电阻器(2)电位器。 2.电容C 3.电感L 4.变压器T 5.继电器 6.集成电路: A.稳压器: (1)三端稳压器(2)五端稳压器(3)固定稳压器(4)可调稳压器(5)开关集成稳压器 B.DC/DC变换器 C.运算放大器 D.厚膜电路 (1)电源厚膜电路(2)功放厚膜电路 E.数字电路 (1)TTL集成电路(2)COMS集成电路 F.A/D,D/A变换电路 H.音乐电路 G.语言电路

I.专用电路: (1)电视机用集成电路(2)遥控用集成电路(3)音响用集成电路(4)影碟机用集成电路 J.555时基电路 7.二极管VD A.普通二极管。 (1)整流/检波二极管(2)稳压二极管 B.晶体管 C.专用二极管: (1)双向触发二极管 (2)快恢复二极管 (3)变容二极管 (4)开关二极管 8.保险器件: A.保险丝管 B.可恢复保险丝管 C.熔断电阻器 9.三极管 A.普通三极管 (1)低频三极管(2)高频三极管(3)大功率三极管(4)开关三极管(5)达林顿管 B.场效应管:

(1)结型场效应管(2)绝缘栅型场效应管 C.晶闸管: (1)单向晶闸管(2)双向晶闸管(3)可关断晶闸管10.开关S/SB 11.接插件 12.石英晶体与陶瓷器件: A.石英晶体谐振器件 B.陶瓷滤波器与陷波器 C.声表面波器件 13.发光器件: A.发光二极管 (1)普通发光二极管(2)电压型光二极管(3)闪烁型光二极管 B.数码管 C.氖管 D.指示灯 E.显像管 F.液晶显示器 G.等离子显示器 14.片状器件: A.片状电阻器B.片状电容器C. 片状电感器E.片状二极管F. 片状三极管

分子器件

分子器件 由于加工极限和半导体内部某些特有物理效应的限制,以无机半导体晶体材料为基础的大规模集成电路必定会有尺寸的限制。 以硅材料为基础的集成电路: 1985年达到加工极限(0.5mm) 2000年达到物理极限(0.2 mm) 如果想进一步提高集成度必须另辟新路。 科学家提出:在有机分子的分子尺寸范围实现对电子运动的控制,从而使分子聚集体构成有特殊功能的器件。 开发分子器件的目标: 利用有机或无机导电聚合物 电荷转移复合物 有机金属 其他分子材料 研制信息和微电子学的新型元件。 分子器件的主要研究内容: 分子导线、分子开关、分子整流器、分子储存器、分子计算机等 分子器件也定义为: 具有一定组织和特定功能的化学体系所形成的超分子结构单元 分子器件的一般要求: 具有给定的功能并适合组装成更大系统的有序分子元件 元件:是光、电、磁、热、离子、机械或化学活性的 最重要的要求:这些分子器件在分子水平或超分子水平而不是在主体材料水平上发挥功能。 分子导线同现行的以硅基半导体为基础的微电子学一样,分子导线、分 子开关、分子整流器和分子场效应管也是构成分子电子学的基本器件。 其中有效的分子导线是实现分子器件的关键单元。分子导线必须满足下 列条件: ①导电; ②有一个确定的长度; ③含有能够连接到系统单元的 连接点; ④允许在其端点进行氧化还原反应; ⑤与周围绝缘以阻止电子 的任意传输。目前研究的分子导线多是具有大Π共轭体系的有机分子 长链。在Tour 所描述的方法中,分子的长度在每一步反应中都成倍增长; 并且,由于产物的链长总是比原料增加一倍,所以很容易分离提纯。得 到所需的长度后,还可在分子的末端加上某些可以起到鳄鱼夹作用的基 团(如SH 等) ,以便同金属电极或其它功能分子连接。 使用两端都带有活性基团的初始反应物,分子链可以同时向两个方向生长。这种方法允许在分子导线中插入不同的功能单元以实现特定的 功能。当分子导线中含有不同的结构单元而形成分子节时,其I - V 曲线 是非线性的。具有大Π共轭体系的卟啉环是构造分子导线的理想单元。 Anderson 曾以卟啉环为基本单元合成链状共轭结构,以卟啉为中心功能 单元,两端带有鳄鱼夹的分子导线也已合成出来。最近,Tsuda 等报道 了共轭的带状卟啉聚合物的合成和性能,其中的卟啉单元之间以三个单 键相连,所有的卟啉环都处在同一面上,随链长的增加,聚合物的紫外- 可见- 近红外光谱吸收峰发生红移,丢失一个电子的氧化电势也随之降

纳米技术在电子器件上的应用与发展

浅谈纳米技术在电子器件上的应用与发展 一、纳米技术和纳米电子学 纳米技术是20世纪末期崛起的崭新科学技术。美国早在1992年就把纳米技术列为20世纪末和21世纪初的10大研究项目中的5个项目。美国国防部每年拨款3500万美元用于微系统的研究。日本1995年宣布将这项技术列为后10年的4大科技项目之一,是为期10年、耗资2.25亿美元、有26家公司参加的微系统研究项目。德国在1993年提出10年内重点发展的9个领域的80项关键技术中,有4个领域的12个项目涉及纳米技术,每年拨款6500万美元支持系统研究。欧盟在1995年提出的一项研究报告称,未来10年纳米技术的开发将成为仅次于芯片制造的世界第二大制造业,到2070年,纳米技术市场的价值将达到400亿英镑。澳大利亚也在1993年将原子测检技术列为21世纪最优先开发的项目。经过多年的努力,各国专家从原子、分子级对一些物质的特性有了新的认识,纳米技术研究取得一些突破。 纳米技术是一个崭新的高科技学科群,它包含纳米电子学、纳米物理学、纳米材料学、纳米机械学、纳米生物学、纳米测量学、纳米工艺学等,是一门基础研究与应用探索相互融合的新兴科学技术。 纳米电子学是纳米技术的重要组成部分,是传统微电子学发展的必然结果,是纳米技术发展的主要动力。纳米电子学在传统的固态电子学基础上,借助最新的物理理论和最先进的工艺手段,按照全新的概念来构造电子器件与系统。纳米电子学在更深层次上开发物质潜在的信息和结构的能力,使单位体积物质储存和处理信息的能力提高百万倍以上,实现信息采集和处理能力的革命性突破。纳米电子学与光电子学、生物学、机械学等学科结合,可以制成光电器件、分子器件、微电子机械系统、微型机器人等,将对人类的生产和生活方式产生变革性的影响,纳米电子学将成为21世纪信息时代的关键技术。 二、纳米电子器件简介 纳米电子技术是指在纳米尺寸范围内构筑纳米和量子器件,集成纳米,从而实现量子计算机和量子通信系统的信息计算、传输与处理的相关技术,其中,纳米电子器件是目前纳米电子技术发展的关键与核心。现在,纳米电子技术正处在蓬勃发展时期,其最终目标在于立足最新的物理理论和最先进的工艺手段,突破传统的物理尺寸与技术极限,开发物质潜在的信息和结构潜力,按照全新的概念设计制造纳米器件、构造电子系统,使电子系统的储存和处理信息能力实现革命性的飞跃。 目前,人们利用纳米电子材料和纳米光刻技术,已研制出许多纳米电子器件,如电子共振隧穿器件(共振二极管、三极共振隧穿、单电子晶体管、金属基、半导体、纳米粒子、单电子静电计、单电子、半导体存储器、硅纳米晶体制造的存储器、纳米浮栅存储器、纳米硅微晶薄膜器件和聚合体电子器件等。 三、纳米电子器件的分类 关于纳米电子器件的分类,国内外有着不同的看法。根据纳米电子技术的发展和对未来的预测,一种分法把纳米电子器件广义地分为以下类: (1)纳米级CMOS器件,如绝缘层上硅MOSFET、异质结MOSFET 、低

纳米电子器件

纳米电子器件 学号:M201472157 姓名:张路 指导老师:范桂芬 课程:微纳尺度制造工程

摘要:介绍了纳米电子器件与纳米电子技术的概念以及纳米电子器件的分类;综述了现有的光刻、外延、SPM、特种精细加工等相关的纳米电子器件制备与加工技术:阐述了纳米电子技术中急需解决的若干关键问题。 关键词:纳米电子器件;纳米电子技术;纳米器件加工 Abstract:The concept and classification of nano-electronic component and nano-electonic technology are introduced, and the fabrication technologies of nano-electronic components, such as lithography, epitaxial growth and SPM, are reported. At last some impending problems on nano-electronic technology are listed as well. It should be beneficial for readers to comprehend nano-electronic components and nano-electronic technology. Key words:nano-electronic components; nano-electronic technology; fabrication of nano-electronic components 1引言 研究的目的及意义 按摩尔定律推算,在未来的10余年里,继续提高计算机的储存密度和运算能力将面临严峻的挑战。这些挑战既有原理性的物理限制,又有技术性的工艺限制。其主要表现为:1电子器件的尺寸处于微米量级时,其中的电子主要呈粒子性。但是当器件的尺寸小到纳米量级时,电子则以波动性为主。电子的波动性是一种量子效应,这时电子器件将在一个全新的原理下进行工作;2任何多体系统都存在热的统计起伏,当器件尺寸缩小到纳米量级时,这种热起伏便会限制器件性能的一致性,以致集成芯片无法正常工作。然而,纳米电子技术、纳米电子器件与纳米电子学的出现为微电子技术的发展提供了新的途径和转机。这一方面可归功于微电子技术与纳米技术的不断发展;另一方面则要归功于半个多世纪来微电子学与量子物理学对纳米电子器件的制备、特性、机理与表征提供的有力支持。本文将对纳米电子器件与纳米电子技术的概念、纳米电子器件的分类以及现有的纳米电子器件制备技术进行剖析和阐述。最后,指出了纳米电子技术中急需解决的若干关键问题。 2纳米电子器件 2.1纳米电子器件与纳米电子技术 纳米电子器件指利用纳米级加工和制备技术,如光刻、外延、微细加工、自组装生长及分子合成技术等,设计制备而成的具有纳米级(1-100nm)尺度和特定功能的电子器件。目前,人们利用纳米电子材料和纳米光刻技术,已研制出许多纳米电子器件,如电子共振隧穿器件(共振二极管RTD、三极共振隧穿晶体管RTT)、单电子晶体管(SET)、金属基SET、半导体SET、纳米粒子SET、单电子静电计、单电子存储器(SEM)、单电子逻辑电路、金属基单电子晶体管(SET)存储器、半导体SET 存储器、硅纳米晶体制造的存储器、纳米浮栅存储器、纳米硅微晶薄膜器件和聚合体电子器件等。 纳米电子技术是指在纳米尺寸范围内构筑纳米和量子器件,集成纳米电路,从而实现量子计算机和量子通信系统的信息计算、传输与处理的相关技术,其中,纳米电子器件是目前

电力电子元件简介

電力電子元件簡介
Introduction to Power Electronic Devices
C. M. Liaw Department of Electrical Engineering National Tsing Hua University Hsinchu, Taiwan, ROC.
兩段式電熱控制
(應用 Power diode)
AC source Power diode AC source
Load
無段式電熱控制 (應用 SCR)
SCR
P
Load
Firing circuit
Diode: Uncontrolled turn-on and turn-off
SCR: Controlled turn-on and uncontrolled turn-off
不可控制交流輸出電壓 故控制性能較差
可控制交流輸出電壓 故控制性能較佳
Page 1

常用功率半導體元件之額定(表二) Voltage/current ratings Switching frequency (speed) Switching time On-state resistance (or on-state voltage/current)
功率半導體元件 功率半導體元件
(A) 閘流體 (Thyristor) 或矽控整流器 (Silicon Controlled Rectifier, SCR) : Controlled turn-on, uncontrolled turn-off (B) 雙向閘流體 (Bidirectional Thyristor 或 TRIAC) (C) GTO (Gate Turn-off Thysistor) (D) 基體閘換向閘流體 (Integrated Gate-Commutated Thyristor, IGCT): It is introduced by ABB in 1997. It is a high-voltage, hard-driven, asymmetrical-blocking GTO with unity gain. The gate drive circuit is built-in on the device module. (E) 功率電晶體 (Power BJT) : Current control device (F) IGBT (Insulated Gate Bipolar Transistor): - Combines the conduction characteristic of BJT and the control characteristic of the MOSFET (G) MOS控制閘流體 (MOS -controlled Thyristor, MCT): - Combines the load characteristic of the thyristor and the control characteristic of the MOSFET - Low on-state voltage (H) 功率金氧半電晶體 (Power MOSFET) : Voltage control device (I) 其它
耐壓 耐流
操作 速度
Page 2

相关主题
文本预览
相关文档 最新文档