当前位置:文档之家› 分子电子器件的研究进展

分子电子器件的研究进展

分子电子器件的研究进展
分子电子器件的研究进展

分子电子器件的研究进展

一、分子电子器件背景介绍

分子电子器件是由能完成光、电、离子、磁、热、机械和化学反应的分子和超分子组装排列而成的有序结构,是在分子或超分子层次上能完成信息和能量的检测、转换、传输、存储与处理等功能的化学及物理系统,简单他说,分子电子器件就是在分子水平上,尺寸在纳米量级,使用的材料有纳米线、纳米管、纳米颗粒、有机小分子、生物分子、DNA等,具有特定功能的超微型电子器件[1]。

传统的电子器件只利用了电子波粒二象性的粒子性, 且都是通过控制电子数量来实现信号处理的,随着集成度的提高, 功耗、速度、漏电都将成为严重的问题[2]。分子器件主要利用电子的量子效应工作,在分子器件中,只要控制一个电子的行为即可完成特定的功能, 即分子器件不单纯通过控制电子数目的多少, 主要通过控制电子波动的相位来实现特定功能,所以与传统的从宏观到微观的微加工技术相反,分子电子学的研究主要是从微观到宏观的角度,对功能分子材料在分子尺寸范围内实现对分子电子运动的控制,包括功能分子的设计、合成,晶体生长,有序薄膜制备、结构、性能研究,特殊的物理化学现象和过程的研究,分子器件的组装以及相关科学问题的研究[1]。

分子电子学的基础研究主要包括分子材料的电子学(Molecular Material for Electronics,MME)和分子尺度的电子学(Molecular Scale Electronics,MSE)两个方面的相关内容。基于分子材料的器件涉及到各种薄膜器件、单晶器件、自组装器件等,而分子尺度器件是目前国际科技界竞争最为激烈的几个领域之一,在分子尺寸上构筑电子器件,实现对单个分子或若干分子聚集体的光电子行为的控制,可以实现器件的高度微小化和集成,是下一代电子器件的奋斗目标,很显然,这方面的研究具有明显的科学意义和广阔的应用前景。

二、分子电子器件研究发展方向及进展

分子器件有两种发展趋势,其一是将无机材料替换为有机材料,增强分子材料的柔性。其二是更加注重单分子的特异性功能,力争实现超高性能器件。

构筑任何一个分子器件的基本思想是将少数几个分子,甚至单个分子镶嵌在两个电极之间,形成电极-分子-电极的纳米连接,其间连接的分子大多是有机分子,其电光特性是由分子结构本身而不是以后的工艺步骤决定的,且分子内不能含有金属,因为金属原子有表面徙动的特性,在纳米间距的条件下室温时即易形成横向短路,所以研究工作者应该对加工分子电子器件的综合因素进行全面考虑,这些因素包括: ①如何选择电极材料,也就是什么电极材料最适合测量分子的导电性; ②如何有效控制电极的几何构型; ③如何构建分子与电极之间的键合方式; ④如何控制位于纳米电极对间的所测量分子的数目[5]。

在综合全面考虑以上因素的基础上,可以得出这样的结论:解决这些问题最可靠的方法是在分子与具有分子尺寸的电极之间,在真正意义的分子尺寸上,制造一种具有有限分子键合位置的精细的牢固共价键连接。

现如今,超大规模集成电路的发展已逼近物理极限和工艺极限,而突破这种极限的出路之一是发展分子电子器件,最近几年,人们已经发现和利用了一些有机和无机导电聚合物、生物聚合物、电荷转移盐和有机金属等分子材料的物理化学性质及电子特性,研制出了用于信息处理的各种新型元件,例如分子导线、分

子二极管、分子开关、分子存储器件、分子场效应晶体管以及分子计算机等[5]。

1、分子导线

目前,人们研究的分子导线体系主要集中在如下4 类:

①线型碳氢共轭低聚物分子体系;②卟啉低聚物分子体系;③碳纳米管体系;

④DNA生物分子体系。碳原子线是最简单的碳氢分子导线,碳原子线中所有的碳原子都采用sp杂化,因而具有交替的单三键结构[3]。Gladysz等合成了长达20个碳原子的以手性Re为端基的碳原子线。

具有大π2共轭体系的卟啉环是构造分子导线的理想单元,Anderson以卟啉环为基本单元合成链状共轭结构。Tsuda等报道了共轭的带状卟啉聚合物的合成和性能,其中的卟啉单元之间以3个单键相连,所有的卟啉环都处在同一平面上,紫外-可见-近红外光谱表明随着链长的增加体系失去1个电子的氧化势也随之降低,说明体系共轭程度增加,这些研究表明这种低聚物是有前景的分子导线。

碳纳米管在未来的分子电子器件与电路中的潜在应用近年来也受到了人们的广泛关注。它可以被看作是一种由六角网状的石墨片卷成的具有螺旋周期的管状结构。碳纳米管具有很好的电学性能和刚性结构,是一种理想的分子导线,通过改变管径大小和卷曲角可以调节它的导电性[4]。

DNA 分子以其独特的双螺旋结构和它在生物、生理学上的意义一直都是众多学科所关注的热点。现在分子电子学家也逐渐认识到了DNA分子在构筑分子器件,尤其是生物分子计算机方面所具有的巨大价值,以往的研究关于DNA 分子的导电性及导电机理还存在一定的争论,在最近2 年以来,通过理论研究上的突破和运用更为复杂的实验技术,科学家们逐渐达成了一些共识,对于那些以往完全不相容的研究结果, 很可能具有各不相同的机理和原因,目前DNA作为分子导线的应用还在进一步的研究中。

2、分子二极管

最初,人们对分子二极管的研究主要集中在Aviram和Ratner提出的模型分子体系。由于研究分子的偶极较小,加上缺乏有效的实验手段一直没有取得大的进展。随着Langmuir-Blodgett (LB) 膜、分子自组装( SA) 和扫描探针显微镜(SPM) 等技术的不断发展,人们对分子器件的研究得到了飞速发展,对分子二极管的研究也从原来的Aviram和Ratner模型分子体系拓展到其它共轭分子体系。Dhiraai 等使用STM 研究了单巯基苯乙炔低聚物自组装在金和银上的单层膜,发现随着共轭链的增长,分子显示的整流作用也增强。中科院化学所刘云圻等合成了一系列

含有电子给体(-NH

2)和电子受体(-NO

2

、-CN等) 的不对称酞菁,将它们组装为LB

膜,并利用STM技术测量了它们的I-V 曲线,证实该类单酞菁分子也具有整流特性。最近芝加哥大学俞陆平等合成了一类新型的二极管分子,这种分子由富电子

的噻吩(C

4S)和电子的噻唑(C

3

NS)2部分组成,他们成功地将这种分子通过巯基自

组装在2 个金电极之间,并利用STM方法证明了这种整流行为确实来源于分子的自身特性,而不是因为分子与电极的不对称耦合或分子电极界面因素引起的[7]。

尽管大量实验已经证实了分子的整流特性,但目前人们对分子的整流机理仍不是很清楚,最近的研究表明Ranter最初提出的分子整流模型(A-R model)过于粗略,在一些情况下并不能用来解释分子的整流特性,因此如何在分子层次上认识并把握分子的整流特性和机理是极其重要的。

3、分子开关及分子存储器件

开关是电子器件的基础控制元件,也是分子存储和逻辑器件的重要组成部分。轮烷(Rotaxanes)和索烃(Cate-nanes)是目前人们研究得较多的2类双稳态分子。轮烷由1个环状的部分和1个棒状的部分组成,环可以以棒为轴进行旋转或沿棒的方向滑动,棒的两端带有位阻较大的基团可以阻止环的脱落。若在棒上引入2个不同的位点,当环停留于这2个不同的位点时,就对应了2 种不同的状态。电化学或化学环境诱导的轮烷分子开关早已报道,索烃由2个套在一起的环组成,2个环之间可以发生转动。在索烃中的1个环上引入不同的位点,同样可以构成双稳态分子开关[3]。

研究分子存储器件的目标是在很小的面积上采用各种加工方法来制作高密度的存储器件,在分子水平上的电子学存储应该是通过双稳态或多稳态分子来实现。这种材料在电场下,可以从原来的绝缘态直接跃迁为导电态,相当于计算机存储器件中的“0”、“1”2 种状态。

Reed 等利用自组装技术,用苯乙炔低聚物分子组装成可擦写的分子存储器,

因为在分子中部的苯环上引入-NO

2和-NH

2

2种功能基团,它们分别位于苯环的两

边,并指向分子外部,这种不对称的结构使得分子的电子云极容易受干扰,因而在外电场作用下其分子的扭曲变形非常敏感。当对这个分子施加电压时,分子发生扭曲阻碍电流的流通,当撤去电压后,分子变回原形,电流可以继续通过,这个存储器是靠存储高、低电导状态来运行的,其比特保留时间能大于15min 。

4、分子场效应晶体管

随着器件尺寸的减小,基本的放大单元将由三极晶体管变为三极单电子管(SET)。SET的工作原理是量子隧穿,主要是金属-绝缘体-金属间的隧穿效应。当金属电极的势垒足够窄时,费米能级上的电子就能够隧穿通过绝缘层,形成隧穿电流[2]。

在分子场效应管的发展过程中,人们最初利用碳纳米管(CNT)获得了突破,制成了由单个碳纳米管构成的场效应管。随着纳米技术的发展,人们又制成了由单

个C

60分子构成的场效应管。除了CNT和C

60

外,最近几年其它材料的研究也取得了很

大进展。Park 等将1个中心离子为Co的配合物分子连接在2个金电极之间构成场效应管。实验结果表明随着栅压的改变,可以很好地调控源极与漏极之间的电流;此外,电流-电压曲线不是传统的平滑曲线,而是台阶状的, 呈现出载流子传输的量子特性。Robert等提出并设计了一种全新概念的单分子场效应晶体管,在这种分子场效应晶体管中,电子的传递行为是通过分子附近的某个单原子荷电来调控的,通过改变分子附近某个单个原子的荷电状态可以控制分子电流导通或断开。以往的分子场效应管实验中为了测量分子电导的变化,必须在紧接绝对零度的条件下进行 ,而这种全新概念的分子晶体管的场效应在室温下即可观察到;这种全新概念的分子场效应晶体管的另一个特点是仅需要来自原子上的1个电子就可以实现分子的导通或断开,而传统的场效应管要实现这种开关则需要上百万个电子。

5、分子计算机

分子计算机就是尝试利用分子计算的能力进行信息的处理,分子计算机的运行靠的是分子晶体可以吸收以电荷形式存在的信息,并以更有效的方式进行组织排列,凭借着分子纳米级的尺寸,分子计算机的体积将剧减。此外,分子计算机耗电可大大减少并能更长期地存储大量数据,能够利用生物分子——特别是蛋白质

分子的一些特性来建造计算机组体制改革,它将比任何电子装置更小、更快、功能更强。计算机芯片由开关阵列组成,随着通过它们的电压变化而在两种状态0与1之间倒转。有两种状态的生物分子很多,如现在研究得最多的细菌视紫红蛋白,它可被光激活发生构象变化,代表0、1两种状态,氨基酸分子也有D、L态,我们的相变研究如果能控制D、L态转化,就可以使氨基酸分子成为未来分子计算机的开关。生物分子具有吸引力还在于它们能够一次加进一个原子基团,如D-Ala、Dal 两种氨基酸就具有类似特性。许多计算机科学家相信,如果以生物分子作为神经网络,制造人工智能的相联储存器是有希望的。惠普的一群研究人员公布了他们的一项最新研究成果——一种分子量级的晶体管替代品,这种技术,为新一代超小型电子设备的出现奠定了坚实基础。

三、结束语

自20世纪后期以来,科学家们在分子材料的光、电、磁性能的研究及分子器件的探索中,取得了长足的进步。近年来,在有机薄膜场效应管方面也取得了重要进展,在分子尺寸器件探索研究方面也是如此,例如分子的导电性的直接测量,分子逻辑门器件的研制分子马达的研究,除了上述器件外,分子机器等领域的研究也取得了可喜的进展[3]。然而,目前所有的分子器件还都是原理性的,其可靠性、重复性、成本等方面还有大量的工作要做,离稳定可靠的分子计算机的实现还有漫长的路要走。此外,分子器件的互连、分子电路的组装等很多问题亟待解决,有关功能分子电子材料在器件中的行为(例如分子是处于基态还是离子态,外电场、溶剂化、温度等因素对分子电子传递行为的影响及内在机理等) 、分子的电子传输机理等最根本的问题还缺乏全面深入的认识[5]。

作为下一代电子器件,分子器件代表了现代微电子学的发展方向,它的进步和成熟是电子学发展的必然趋势,所以从真空电子器件到微电子器件的变革将是一次影响重大的科学和技术飞跃。

参考文献:

[1] 刘松,郭雪峰.基于单壁碳纳米管的功能分子电子器件研究[J].化学学报,

2013,71: 478—484

[2] 刘志勇.分子电子器件简介及研究进展[J].科技信息,2009,33

[3] 张耀中, 张亚非.纳米分子电子器件的研究[J].纳米器件与技术,2009,47(3)

[4] Prasongkit J, Mechano-switching devices from carbon wire-carbon nanotube

junctions [J], PHYSICAL REVIEW B 87, 155434 (2013)

[5] Droghetti A,Alf`e D,Ground state of a spin-crossover molecule calculated by

diffusion Monte Carlo [J].PHYSICAL REVIEW B 87, 205114 (2013)

[6] Raphael Schlesinger,Yong Xu.Controlling the work function of ZnO and the

energy-level alignment at the interface to organic

semiconductors with a molecular electron acceptor [J].PHYSICAL REVIEW B 87, 155311 (2013)

[7] Hai Huang1,Bryce Carande2.Development of a micro seismometer based on

molecular electronic transducer technology for planetary exploration [J]. IEEE Photonics Journal 2013:20 – 24

[8] Weidong Zhou,Zhenqiang Ma,Breakthroughs in Nanomembranes and

Nanomembrane Lasers [J]. IEEE Photonics Journal 2013

大功率电力电子器件的新进展

大功率电力电子器件前沿技术分析 贾海叶山西吕梁供电 摘要:本文对大功率电力电子器件技术进行了简述,阐述了大功率电力电子器件发展热点,并对其前沿技术和未来的发展方向进行了分析。 关键词:大功率、电子电力器件,前沿技术 1 引言 随着半导体制造工艺的进步和对电力电子设备容量增大的需求,对电力电子器件的性能和功率要求也越来越高,由此产生了耐高压、大功率的电力电子器件。近来,伴随着器件的大功率化,新的HVIGBT(HighVoltage Insulated Gate BipolarTran-sistor Module)高压绝缘栅双极型半导体模块、HVIPM(High Voltage Intelligent Power Module)高压智能电力模块的MOS型电力电子器件的开发、GCT(Gate Commutated Turn-off Thyristor)闸门换相关断可控硅器件的开发,都有了较大的进展。以新一代器件问世为标志,必然在电力电子设备的开发方面,向着小型化、高效率化、高速控制化的目标飞跃前进。 1.1 大功率电力电子器件的分类 大功率电力电子器件主要分为:二极管、可控硅、光触发可控硅、GTO(Gate Turn-off Thyristor)闸门关断可控硅、GCT、HVIGBT及HVIPM器件。 从1960年开发初期的1英寸硅片开始至今,发展到直径为6英

寸硅片的耐高压、大功率电力电子器件系列化产品,其容量和当初相比,提高了100多倍。而且在使用上减少了串联或并联元件的数量,提高了可靠性,减小了设备的体积。 按照电力电子器件能够被控制电路信号所控制的程度分类,大功率电力电子器件分为: 1.半控型器件,例如晶闸管; 2.全控型器件,例如GTO(门极可关断晶闸管)、GTR(电力晶体管),MOSFET(电力场效应晶体管)、IGBT(绝缘栅双极晶体管); 3.不可控器件,例如电力二极管; 按照驱动电路加在电力电子器件控制端和公共端之间信号的性质分类: 1.电压驱动型器件,例如IGBT、MOSFET、SITH(静电感应晶闸管); 2.电流驱动型器件,例如晶闸管、GTO、GTR; 根据驱动电路加在电力电子器件控制端和公共端之间的有效信号波形分类: 1.脉冲触发型,例如晶闸管、GTO; 2.电子控制型,例如GTR、MOSFET、IGBT; 按照电力电子器件内部电子和空穴两种载流子参与导电的情况分类: 1.单极型器件,例如电力二极管、晶闸管、GTO、GTR; 2.双极型器件,例如MOSFET、IGBT;

分子电子学

分子电子学 董 浩 邓 宁 陈培毅 (清华大学微电子学研究所,北京100084) 摘 要:作为纳米电子学的一个重要分支,分子电子学在近年来得到了巨大的发展,并成为国际上研究的热点。本文介绍了各种分子器件的制作技术及基本工作原理,回顾了近年来分子电子学的最新进展,展望了分子电子学的未来发展。 关键词:分子电子学 分子电子器件 分子导线 分子开关 分子存贮器 分子整流器 有机场效应晶体管 Molecular Electronics DONG H ao DENG Ning CHEN Peiyi (Institute of Microelectronics,Tsinghu a U niversity,B eijing100084) Abstract:As one of the most i m portant parts of nanoelect ronics,molecular elect ronics have att racted more and more attentions and developed signif icantly.This paper i nt roduces the f abrication technolo2 gy and the basic pri nci ple of molecular devices.The latest developments of the molecular elect ronics are reviewed as well.Fi nally,the f urther t rends are also discussed. K ey w ords:molecular elect ronics,molecular elect ronic devices,molecular w i re,molecular sw itch, molecular memory,molecular rectif ier,O FE T 引言 经历了多年的发展后,目前超大规模集成电路的发展即将面临着极大的挑战,这些挑战包括原理性的物理限制、技术性的工艺限制等等。为了解决这些问题,向纳电子学的过渡已成为微电子学发展的必然趋势。而作为纳电子学的一个重要组成部分,分子电子学也越来越受到重视。 研究可控制或调制分子光电特性的材料、器件和基本构架被称作“分子电子学”[1]。诺贝尔奖获得者Feynman关于“从单个分子甚至原子开始进行组装”的猜想被认为是分子电子学概念的来源。20世纪70年代,科学家们逐步提出了分子器件的具体设想。1974年Aviram和Ratner提出了关于分子整流器的设想[2]。针对分子器件结构、性质等的一系列实验也随即展开。进入80年代,相关实验技术,如Langmuir-Blodgett(LB)膜、自组装(SA)技术、有机分子束外延生长(OMB E)和扫描探针显微镜(SPM)等技术的发展,更是大大促进了分子器件的研究。 本文介绍了用于分子器件研究的基本制作方法,阐述了几种分子器件的基本工作原理,并对分子电子学的发展进行了总结和展望。 1 分子合成及器件制作技术 目前广泛应用于分子器件研究的主要方法包

电子元器件的发展历程及未来趋势

电子元器件的发展历程及未来趋势 每种事物都有其自身的发展历史和发展规律,电子元器件也不例外,它历经了经典电子元器件、小型化电子元器件、一般微电子元器件、智能微电子元器件时代,未来正在迈向量子电子元器件时代。 电子元器件的发展离不开电子信息技术和整机的发展,二者是相互促进,相互牵制的关系。 微电子元器件包括集成电路、混合集成电路、片式和扁平式元件和机电组件、片式半导体分立器件等。微电子指采用微细工艺的集成电路,随集成电路集成度和复杂度的大幅度提高、线宽越来越细和采用铜导线,其基频和处理速度也大幅度提高,在电子线路中其周边的其他元器件必然要有相应速率的处理速度,才能完成所承担的功能。因此,需要通过整个设备及系统来分析元器件的发展。 表1电子元器件的发展阶段及特点

上述电子元器件的发展阶段的划分是2001年提出来的,但近年来电子技术和电子产业的发展很快,新技术,新产品不断涌现,尤其是智能化产品和系统越来越普及,智能化已经到来,同时,量子技术有了突破,信息技术有可能进入“量子化时代”。 智能化已经到来观察一下我们周围,可以发现,智能化家用电子及电器,如智能电视机、电灶具、电热水器等;智能化终端如手机、手表式终端等,智能化汽车电子及智能化公交系统等,其发展的总趋势是以智能化为核心的信息化,系统化和网络化。 这些变化也可以从智能化设备和系统框图构成来分析对电子元器件的新要求: 1)指挥控制系统--嵌入式处理器芯片,高速,大容量的集成电路,计算芯片已经渗入到各种系统和产品中。整机采用双核、四核,八核以至更多的芯片并行,以加速运算速率的智能化处理。 2)信息采集系统--以传感器为代表将各种信息转化为电信号,并进行处理。传感器技术是一项当今世界令人瞩目的迅猛发展起来的高新技术之一,也是当代科学技术发展的一个重要标志,它与通信技术、计算机技术构成信息产业的三大支柱。 如果说计算机是人类大脑的扩展,那么传感器就是人类五官的延伸,当集成电路、计算机技术飞速发展时,人们才逐步认识信息摄取装置--传感器没有跟上信息技术的发展而惊呼“大脑发达、五官不灵”. 但是目前传感器的发展已成为一个瓶颈,对其品质、稳定性、一致性与可靠性等程度要求越来越高。还出现如数字话筒、智能传感器模块等一些数字化器件。 3)传输系统--信号荷载信息,经过不同的频率交换、调制或编码,变成适当的形式,以便适合于各种不同媒介质的传输。传输系统需要高速大容量网络,包括无线、有线传输,常由两者结合传输。 a)传输系统为有更高的传输速率和带宽,对元器件品质要求如;高频、带宽、阻抗匹配、电磁干扰、稳定性与耗损等等特性有更加严格的要求,这将导致这些符合条件的元器件发展更快。 b)光网络,光电结合更加普及,如光纤到户(FTTH),光纤到桌(FTTD),许多终端都有光接口。光电结合和转化的元器件如光器件,光电转化元器件等不断出现和高速发展。 网络传输速率越来越快,如3G通信,国际电联“IMT-2000”(国际移动电话2000)标准规定,移动终端以车速移动时,其传转数据速率为144kbps,室外静止或步行时速率为384kbps,而室内为2Mbps.4G是集3G与WLAN于一体,并能够传输高质量视频图像,它的图像传输质量与高清晰度电视不相上下。4G系统能够以100Mbps的速度下载,上传的速度也能达到20Mbps. 4)执行系统--如控制元件(继电器,包括固体继电器)、微特电机及功能性电子元器件发展更快。功能性电子元器件是具有某些独特功能的元器件,如频率、时频及显示器件

碳化硅电子器件发展分析报告

碳化硅电力电子器件的发展现状分析 目录 1.SiC器件的材料与制造工艺 (2) 1.1 SiC单晶 (2) 1.2 SiC外延 (3) 1.3 SiC器件工艺 (4) 2. SiC二极管实现产业化 (5) 3. SiC JFET器件的产业化发展 (7) 4. SiC MOSFET器件实用化取得突破 (7) 5. SiC IGBT器件 (8) 6. SiC功率双极器件 (9) 7. SiC 功率模块 (10) 8. 国内的发展现状 (11) 9. SiC电力电子器件面对的挑战 (11) 9.1 芯片制造成本过高 (11) 9.2 材料缺陷多,单个芯片电流小 (12) 9.3 器件封装材料与技术有待提高 (12) 10. 小结 (12)

在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN 型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1.SiC器件的材料与制造工艺 1.1 SiC单晶 碳化硅早在1842年就被发现了,但直到1955年,飞利浦(荷兰)实验室的Lely 才开发出生长高品质碳化硅晶体材料的方法。到了1987年,商业化生产的SiC衬底进入市场,进入21世纪后,SiC衬底的商业应用才算全面铺开。碳化硅分为立方相(闪锌矿结构)、六方相(纤锌矿结构)和菱方相3大类共260多种结构,目前只有六方相中的4H-SiC、6H-SiC才有商业价值,美国科锐(Cree)等公司已经批量生产这类衬底。立方相(3C-SiC)还不能获得有商业价值的成品。 SiC单晶生长经历了3个阶段, 即Acheson法、Lely法、改良Lely法。利用SiC 高温升华分解这一特性,可采用升华法即Lely法来生长SiC晶体。升华法是目前商业生产SiC单晶最常用的方法,它是把SiC粉料放在石墨坩埚和多孔石墨管之间,在惰性气体(氩气)环境温度为2 500℃的条件下进行升华生长,可以生成片状SiC晶体。由于Lely法为自发成核生长方法,不容易控制所生长SiC晶体的晶型,且得到的晶体尺寸很小,后来又出现了改良的Lely法。改良的Lely法也被称为采用籽晶的升华法或物理气相输运法 (简称PVT法)。PVT法的优点在于:采用 SiC籽晶控制所生长晶体的晶型,克服了Lely法自发成核生长的缺点,可得到单一晶型的SiC单晶,且可生长较大尺寸的SiC单晶。国际上基本上采用PVT法制备碳化硅单晶。目前能提供4H-SiC晶片的企业主要集中在欧美和日本。其中Cree产量占全球市场的85%以上,占领着SiC晶体生长及相关器件制作研究的前沿。目前,Cree的6英寸SiC晶片已经商品化,可以小批量供货。此外,国内外还有一些初具规模的SiC晶片供应商,年销售量在1万片上下。Cree生产的SiC晶片有80%以上是自己消化的,用于LED衬底材料,所以Cree是全球

电子元器件的发展历程及未来趋势

电子元器件的发展历程及未来趋势

电子元器件的发展历程及未来趋势 每种事物都有其自身的发展历史和发展规 律,电子元器件也不例外,它历经了经典电子元器件、小型化电子元器件、一般微电子元器件、 智能微电子元器件时代,未来正在迈向量子电子元器件时代。 电子元器件的发展离不开电子信息技术和 整机的发展,二者是相互促进,相互牵制的关系。 微电子元器件包括集成电路、混合集成电路、片式和扁平式元件和机电组件、片式半导体分立器件等。微电子指采用微细工艺的集成电路,随集成电路集成度和复杂度的大幅度提高、线宽越来越细和采用铜导线,其基频和处理速度也大幅度提高,在电子线路中其周边的其他元器件必然要有相应速率的处理速度,才能完成所承担的功能。因此,需要通过整个设备及系统来分析元器件的发展。

年提出来的,但近年来电子技术和电子产业的发展很快,新技术,新产品不断涌现,尤其是智能化产品和系统越来越普及,智能化已经到来,同时,量子技术有了突破,信息技术有可能进入“量子化时代”。 智能化已经到来观察一下我们周围,可以发 现,智能化家用电子及电器,如智能电视机、电

灶具、电热水器等;智能化终端如手机、手表式终端等,智能化汽车电子及智能化公交系统等,其发展的总趋势是以智能化为核心的信息化,系统化和网络化。 这些变化也可以从智能化设备和系统框图构成来分析对电子元器件的新要求: 1)指挥控制系统--嵌入式处理器芯片,高速,大容量的集成电路,计算芯片已经渗入到各种系统和产品中。整机采用双核、四核,八核以至更多的芯片并行,以加速运算速率的智能化处理。 2)信息采集系统--以传感器为代表将各种信息转化为电信号,并进行处理。传感器技术是一项当今世界令人瞩目的迅猛发展起来的高新技术之一,也是当代科学技术发展的一个重要标志,它与通信技术、计算机技术构成信息产业的三大支柱。 如果说计算机是人类大脑的扩展,那么传感器就是人类五官的延伸,当集成电路、计算机技术飞速发展时,人们才逐步认识信息摄取装置--传感器没有跟上信息技术的发展而惊呼“大脑发达、五官不灵”. 但是目前传感器的发展已成为一个瓶颈,对其品质、稳定性、一致性与可靠性等程度要求越来越高。还出现如数字话筒、智能传感器模块等一些数字化器件。 3)传输系统--信号荷载信息,经过不同的频率交换、调制或编码,变成适当的形式,以便适合于各种不同媒介质的传输。传输系统需要高速大容量网络,包括无线、有线传输,常由两者结合传输。 a)传输系统为有更高的传输速率和带宽,对元器件品质要求如;高频、带宽、阻抗匹配、电磁干扰、稳定性与耗损等等特性有更加严格的

电力电子器件的最新发展趋势

电力电子器件的最新发展趋势 现代的电力电子技术无论对改造传统工业(电力、机械、矿冶、交通、化工、轻纺等),还是对新建高技术产业(航天、激光、通信、机器人等)至关重要,从而已迅速发展成为一门独立学科领域。它的应用领域几乎涉及到国民经济的各个工业部门,毫无疑问,它将成为本世纪乃至下世纪重要关键技术之一。近几年西方发达的国家,尽管总体经济的增长速度较慢,电力电子技术仍一直保持着每年百分之十几的高速增长。 从历史上看,每一代新型电力电子器件的出现,总是带来一场电力电子技术的革命。以功率器件为核心的现代电力电子装置,在整台装置中通常不超过总价值的20%~30%,但是,它对提高装置的各项技术指标和技术性能,却起着十分重要的作用。 众所周知,一个理想的功率器件,应当具有下列理想的静态和动态特性:在截止状态时能承受高电压;在导通状态时,具有大电流和很低的压降;在开关转换时,具有短的开、关时间,能承受高的di/dt和dv/dt,以及具有全控功能。 自从50年代,硅晶闸管问世以后,20多年来,功率半导体器件的研究工作者为达到上述理想目标做出了不懈的努力,并已取得了使世人瞩目的成就。60年代后期,可关断晶闸管GTO实现了门极可关断功能,并使斩波工作频率扩展到1kHz以上。70年代中期,高功率晶体管和功率MOSFET问世,功率器件实现了场控功能,打开了高频应用的大门。80年代,绝缘栅门控双极型晶体管(IGBT) 问世,它综合了功率MOSFET和双极型功率晶体管两者的功能。它的迅速发展,又激励了人们对综合功率MOSFET和晶闸管两者功能的新型功率器件- MOSFET门控晶闸管的研究。因此,当前功率器件研究工作的重点主要集中在研究现有功率器件的性能改进、MOS门控晶闸管以及采用新型半导体材料制造新型的功率器件等。下面就近几年来上述功率器件的最新发展加以综述。 一、功率晶闸管的最新发展 1.超大功率晶闸管 晶闸管(SCR)自问世以来,其功率容量提高了近3000倍。现在许多国家已能稳定生产8kV / 4kA的晶闸管。日本现在已投产8kV / 4kA和6kV / 6kA的光触发晶闸管(LTT)。美国和欧洲主要生产电触发晶闸管。近十几年来,由于自关断器件的飞速发展,晶闸管的应用领域有所缩小,但是,由于它的高电压、大电流特性,它在HVDC、静止无功补偿(SVC)、大功率直流电源及超大功率和高压变频调速应用方面仍占有十分重要的地位。预计在今后若干年内,晶闸管仍将在高电压、大电流应用场合得到继续发展。 现在,许多生产商可提供额定开关功率36MVA ( 6kV/ 6kA )用的高压大电流GTO。传统GTO的典型的关断增量仅为3~5。GTO关断期间的不均匀性引起的“挤流效应”使其在关断期间dv/dt必须限制在500~1kV/μs。为此,人们不得不使用体积大、昂贵的吸收电路。另外它的门极驱动电路较复杂和要求较大的驱动功率。但是,高的导通电流密度、高的阻断电压、阻断状态下高的dv/dt耐量和有可能在内部集成一个反并二极管,这些突出的优点仍使人们对GTO感到兴趣。到目前为止,在高压(VBR > 3.3kV )、大功率(0.5~20 MVA)牵引、工业和电力逆变器中应用得最为普遍的是门控功率半导体器件。目前,GTO的最高研究水平为6in、6kV / 6kA以及9kV/10kA。为了满足电力系统对1GVA以上的三相逆变功

电力电子器件的发展分析

电力电子技术课程论文 电力电子器件的发展分析 摘要:电力电子器件发展至今已有近60年的历史,本文简单介绍了电力电子器件的发展历程,然后对IGCT、IGBT、MCT等新型电力电子器件的发展状况及其优缺点进行了分析,最后, 展望了电力电子器件的未来发展。 关键字:电力电子器件;IGCT;ICBT;MCT; 1、引言 电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中,电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“机车”。 电力电子器件的发展时间并不长,但是至今已经发展出多个种类的产品,其中最早为人们所应用的是普通晶闸管,普通晶闸管是由美国通用电气公司在1958年时研制并投产的,它为之后的电力电子器件发展奠定了基础,在1964年时,美国公司又成功研制了可关断的GT0;到了二十世纪七十年代,电力电子器件的研究有了又一成果——GTR系列产品,二十世纪八九十年代,以功率M0SFET和IGBT为代表的,集高频、高压和大电流于一身的功率半导体复合器件,标志着传统电力电子技术已经进入现代电力电子时代。 2、电力电子器件发展史

电力电子器件又称作开关器件,相当于信号电路中的A-D采样,称之为功率采样,器件的工作过程就是能量过渡过程,其可靠性决定了装置和系统的可靠性。根据可控程度以及构造特点等因素可以把电力电子器件分成四类: (1)半控型器件——第一代电力电子器件 2O世纪5O年代,由美国通用电气公司发明的硅晶闸管的问世,标志着电力电子技术的开端。到了2O世纪7O年代,已经派生出了许多半控型器件,这些电力电子器件的功率也越来越大,性能日渐完善,但是由于晶闸管的固有特性,大大限制了它的应用范围。 (2)全控型器件一一第二代电力电子器件 从2O世纪7O年代后期开始,可关断晶闸管(GTO)、电力晶体管(GTR或BJT)及其模块相继实用化。此后,各种高频率的全控型器件不断问世,并得到迅速发展。这些器件主要有:电力场控晶体管(即功率MOSFET)、静电感应晶体管(SIT)、静电感应晶闸管(SITH)等,这些器件的产生和发展,已经形成了一个新型的全控电力电子器件的大家族。 (3)复合型器件——第三代电力电子器件 前两代电力电子器件中各种器件都有其本身的特点。近年来,又出现了兼有几种器件优点的复合器件。如:绝缘门极双极晶体管IGBT(Insulated Gate Bipolar Transistor)。它实际上是MOSFET驱动双极型晶体管,兼有M0sFET的高输入阻抗和GTR的低导通压降两者的优点。它容量较大、开关速度快、易驱动,成为一种理想的电力电子器件。 (4)模块化器件——第四代电力电子器件 随着工艺水平的不断提高,可以将许多零散拼装的器件组合在一起并且大规模生产,进而导致第四代电力电子器件的诞生。以功率集成电路PIC(Power Intergrated Circuit)为代表,其不仅把主电路的器件,而且把驱动电路以及具有过压过流保护,甚至温度自动控制等作用的电路都集成在一起,形成一个整体。 3、电力电子器件的最新发展 现代电力电子器件仍然在向大功率、易驱动和高频化方向发展。其中,电力电子模块化是电力电子器件向高功率密度发展的重要一步。下面介绍几种新型电力电子器件: 3.1 IGCT IGCT(Intergrated Gate Commutated Thyristors)是一种用于巨型电力电子成套装置中的新型电力半导体器件[1]。它是将GTO芯片与反并联二极管和门极驱动电路集成在一起,再与其门极驱动器在外围以低电感方式连接,它是结合了晶体管和晶闸管两种器件的优点,即晶体管的稳定的关断能力和晶闸管的低通态损耗的一种新型器件。IGCT在导通阶段发挥晶闸管的性能,关断阶段呈类似晶体管的特性。IGCT具有电流大、电压高、开关频率高、可靠性高、结构紧凑、损耗低的特点。此外,IGCT还像GT0一样,具有制造成本低和成品率高的

分子电子器件的研究进展

分子电子器件的研究进展 一、分子电子器件背景介绍 分子电子器件是由能完成光、电、离子、磁、热、机械和化学反应的分子和超分子组装排列而成的有序结构,是在分子或超分子层次上能完成信息和能量的检测、转换、传输、存储与处理等功能的化学及物理系统,简单他说,分子电子器件就是在分子水平上,尺寸在纳米量级,使用的材料有纳米线、纳米管、纳米颗粒、有机小分子、生物分子、DNA等,具有特定功能的超微型电子器件[1]。 传统的电子器件只利用了电子波粒二象性的粒子性, 且都是通过控制电子数量来实现信号处理的,随着集成度的提高, 功耗、速度、漏电都将成为严重的问题[2]。分子器件主要利用电子的量子效应工作,在分子器件中,只要控制一个电子的行为即可完成特定的功能, 即分子器件不单纯通过控制电子数目的多少, 主要通过控制电子波动的相位来实现特定功能,所以与传统的从宏观到微观的微加工技术相反,分子电子学的研究主要是从微观到宏观的角度,对功能分子材料在分子尺寸范围内实现对分子电子运动的控制,包括功能分子的设计、合成,晶体生长,有序薄膜制备、结构、性能研究,特殊的物理化学现象和过程的研究,分子器件的组装以及相关科学问题的研究[1]。 分子电子学的基础研究主要包括分子材料的电子学(Molecular Material for Electronics,MME)和分子尺度的电子学(Molecular Scale Electronics,MSE)两个方面的相关内容。基于分子材料的器件涉及到各种薄膜器件、单晶器件、自组装器件等,而分子尺度器件是目前国际科技界竞争最为激烈的几个领域之一,在分子尺寸上构筑电子器件,实现对单个分子或若干分子聚集体的光电子行为的控制,可以实现器件的高度微小化和集成,是下一代电子器件的奋斗目标,很显然,这方面的研究具有明显的科学意义和广阔的应用前景。 二、分子电子器件研究发展方向及进展 分子器件有两种发展趋势,其一是将无机材料替换为有机材料,增强分子材料的柔性。其二是更加注重单分子的特异性功能,力争实现超高性能器件。 构筑任何一个分子器件的基本思想是将少数几个分子,甚至单个分子镶嵌在两个电极之间,形成电极-分子-电极的纳米连接,其间连接的分子大多是有机分子,其电光特性是由分子结构本身而不是以后的工艺步骤决定的,且分子内不能含有金属,因为金属原子有表面徙动的特性,在纳米间距的条件下室温时即易形成横向短路,所以研究工作者应该对加工分子电子器件的综合因素进行全面考虑,这些因素包括: ①如何选择电极材料,也就是什么电极材料最适合测量分子的导电性; ②如何有效控制电极的几何构型; ③如何构建分子与电极之间的键合方式; ④如何控制位于纳米电极对间的所测量分子的数目[5]。 在综合全面考虑以上因素的基础上,可以得出这样的结论:解决这些问题最可靠的方法是在分子与具有分子尺寸的电极之间,在真正意义的分子尺寸上,制造一种具有有限分子键合位置的精细的牢固共价键连接。 现如今,超大规模集成电路的发展已逼近物理极限和工艺极限,而突破这种极限的出路之一是发展分子电子器件,最近几年,人们已经发现和利用了一些有机和无机导电聚合物、生物聚合物、电荷转移盐和有机金属等分子材料的物理化学性质及电子特性,研制出了用于信息处理的各种新型元件,例如分子导线、分

电子技术发展史概述-首次

电子技术发展史概述电子技术是十九世纪末、二十世纪初发展起来的新兴技术。由于物理学的重大突破,电子技术在二十世纪发展最为迅速,应用最为广泛,成为近代科学技术发展的一个重要标志。 从20世纪60年代开始,电子器件出现了飞速的发展,而且随着微电子和半导体制造工艺的进步,集成度不断提高。CPLD/FPGA、ARM、DSP、A/D、D/A、RAM和ROM等器件之间的物理和功能界限正日趋模糊,嵌入式系统和片上系统(SOC)得已实现。以大规模可编程集成电路为物质基础的EDA技术打破了软硬件之间的设计界限,使硬件系统软件化。这已成为现代电子设计的发展趋势。 现在,人们已经掌握了大量的电子技术方面的知识,而且电子技术还在不断的发展着。这些知识是人们长期劳动的结晶。 我国很早就已经发现电和磁的现象,在古籍中曾有“磁石召铁”和“琥珀拾芥”的记载。磁石首先应用于指示方向和校正时间,在《韩非子》和东汉王充着《论衡》两书中提到的“司南”就是指此。以后由于航海事业发展的需要,我国在十一世纪就发明了指南针。在宋代沈括所着的《梦溪笔谈》中有“方家以磁石磨针锋,则能指南,然常微偏东,不全南也”的记载。这不仅说明了指南针的制造,而且已经发现了磁偏角。直到十二世纪,指南针才由阿拉伯人传入欧洲。 在十八世纪末和十九世纪初的这个时期,由于生产发展的需要,在电磁现象方面的研究工作发展的很快。库仑在1785年首先从实验室确定了电荷间的相互作用力,电荷的概念开始有了定量的意义。1820年,奥斯特从实验时发现了电流对磁针有力的作用,揭开了电学理论的新的一页。同年,安培确定了通有电流的线圈的作用与磁铁相似,这就指出了此现象的本质问题。有名的欧姆定律是欧姆在1826年通过实验而得出的。法拉第对电磁现象的研究有特殊贡献,他在1831年发现的电磁感应现

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

电力电子器件的发展历程

电力电子器件的发展历程 电力电子器件的发展对电力电子技术的发展起着决定性的作用,因此,电力电子技术的发展史是以电力电子器件的发展史为纲的。 ● 1904年出现了电子管(Vacuum tube),能在真空中对电子流进行控制,并应 用于通信和无线电,从而开了电子技术之先河 ● 20年代末出现了水银整流器(Mercury Rectifier),其性能和晶闸管 (Thyristor)很相似。在30年代到50年代,是水银整流器发展迅速并大量应用的时期。它广泛用于电化学工业、电气铁道直流变电所、轧钢用直流电动机的传动,甚至用于直流输电 ● 1947年美国贝尔实验室发明晶体管(Transistor),引发了电子技术的一场革 命 ● 1957年美国通用电气公司研制出第一个晶闸管(Thyristor) ● 1960年我国研究成功硅整流管(Silicon Rectifying Tube/Rectifier Diode) ● 1962年我国研究成功晶闸管(Thyristor) ● 70年代出现电力晶体管(Giant Transistor-GTR)、电力场效应管(Metallic Oxide Semiconductor Field Effect Transistor-MOSFET) ● 80年代后期开始:复合型器件。 以绝缘栅极双极型晶体管(Insulated -Gate Bipolar Transistor-IGBT)为代表,IGBT是电力场效应管(MOSFET)和双极结型晶体管( Bipolar ● 90年代主要有: 功率模块(Power Module):为了使电力电子装置的结构紧凑、体积减小,常常把若干个电力电子器件及必要的辅助元件做成模块的形式,这给应 用带来了很大的方便。 功率集成电路(Power Integrated Circuit-PIC):把驱动、控制、保 护电路和功率器件集成在一起,构成功率集成电路(PIC)。目前其功率 都还较小,但代表了电力电子技术发展的一个重要方向。 智能功率模块(Intelligent Power Module-IPM)则专指IGBT及其辅助器件与其保护和驱动电路的单片集成,也称智能IGBT(Intelligent IGBT)。 高压集成电路(High Voltage Integrated Circuit-HVIC):一般指横 向高压器件与逻辑或模拟控制电路的单片集成。 智能功率集成电路(Smart Power Integrated Circuit-SPIC):一般指纵向功率器件与逻辑或模拟控制电路的单片集成。 一个弗莱明发明了二极管,另一个弗莱明发明了盘尼西林

电力电子技术的发展趋势及应用

电力电子的现代运用 半导体的出现成为20世纪现代物理学的一项最重大的突破,标志着电子技术的诞生。而由于不同领域的实际需要,促使半导体器件自此分别向两个分支快速发展,其中一个分支即是以集成电路为代表的微电子器件,而另一类就是电力电子器件,特点是功率大、快速化。自20世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。 电子电力技术包括电力电子器件、变流电路和控制电路3部分,是以电力为处理对象并集电力、电子、控制三大电气工程技术领域之间的综合性学科。电力技术涉及发电、输电、配电及电力应用,电子技术涉及电子器件和由各种电子电路所组成的电子设备和系统,控制技术是指利用外加的设备或装置使机器设备或生产过程的某个工作状态或参数按照预定的规律运行。电力电子器件是电力电子技术的基础,电力电子器件对电能进行控制和转换就是电子电力技术的利用。在21世纪已经成为一种高新技术,影响着人们生活的各种领域,因此对对电子电力技术的研究具有时代意义。 传统电力电子技术是以低频技术处理的,现代电力电子的发展向着高频技术处理发展。其发展先后经历了整流器时代、逆变器时代和变频器时代,在不断的发展中促进了现代电力电子技术的广泛应用。电力电子技术在1947年晶体管诞生开始形成,接着1956的晶闸管的出现标志电力电子技术逐渐形成一门学科开始发展,以功率MOS-FET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件的出现,表明已经进入现代电子电力技术发展时代。 1.整流器时代 在60年代到70年代被称为电力电子技术的整流时代。该期间主要是大功率硅整流管和晶闸管的开发与应用。1948年的晶体管的出现引发了电子工业革命,半导体器件开始应用与通信领域,1957年,晶闸管的诞生扩展了半导体器件功率控制范围,属于第一代电力电子器件。大功率硅整流器能够高效率地把工频交流电转变为直流电,当地办硅整流器厂逐渐增多,大功率的工业用电由工频50Hz)交流发电机提供,其中电解、牵引、和直流传动是以直流形式消费。 2.逆变器时代 20世纪70年到80年代期间成为逆变器时代,该期间的电力电子技术已经能够实现逆变,但是仅局限在中低频范围内。当时变频调速装置因为能节能大量普及,巨型功率晶体管(GTR)、门极可关断晶闸管(GTO)和大功率逆变用的晶闸管成为当时电力电子器件的主流。它们属于第二代电力电子器件。 3.变频器时代 进入80年代,功率MOSFET和绝缘栅极双极晶体管(IGBT)的问世,电力电子技术开始向高频化发展,高压、高频和大电流的功率半导体复合器件为第三代电器元件的大规模集成电路技术迅速发展,他们的性能更进一步得到了完善,具有小、轻和高效节能的特点。 4.现代电力时代 20世纪以来,电力电子作为自动化、节材、节能、机电一体化、智能化的基础,正朝着应用技术高频化、产品性能绿色化、硬件结构模块化的现代化方向发展。在1995年,功率MOSFET和GTR在功率半导体器件出现并广泛被人们应用,功率器件和电源单元的模块

[NSFC]碳基无掺杂纳电子器件和集成电路要点

项目名称:碳基无掺杂纳电子器件和集成电路首席科学家:xxx 起止年限:2011.1至2015.8 依托部门:教育部

二、预期目标 本项目的总体目标: 本项目的总体目标为发展有自主知识产权的低成本高性能碳基纳电子、光电子集成芯片,建设一支高水平的碳基纳米电子和光电子学的研究队伍,培养相关领域的优秀青年人才,将项目的主要支撑单位“纳米器件物理与化学教育部重点实验室”建设成为国际著名的纳米器件研究中心。在碳纳米管CMOS集成电路方面,制备出中等规模的碳纳米管CMOS集成电路,例如碳纳米管全加器。在高性能碳纳米管基光电器件方面,做到发光器件的室温电致发光光谱的半高宽和荧光光谱相当,即不大于30 meV,探测器的光电压不小于0.2 V,并初步实现纳电子电路的电信号与光通讯电路的光信号间的相互转换。 五年预期目标: 五年预期目标为探索碳基纳电子和光电子器件的极限性能,并利用这些器件构建成若干高性能电路,预计可以取得如下成果: (1)集成电路用碳纳米管阵列的可控生长。在晶片尺寸绝缘基底上制备出直径大约在1.5 nm,管径分布不超过 0.3 nm的平行半导体性单壁碳 管,初步实现碳纳米管的间距和位置可控,半导体性碳纳米管含量高 于95%。 (2)适合于碳基电子学的高κ栅介质材料。在碳纳米管或石墨烯上生长出等效氧化层厚度(EOT)小于2纳米的栅介质薄膜,薄膜材料能隙在5 电子伏特以上,在1MV/cm的电场下,漏电流低于10mA/cm2,对器 件载流子迁移率和电导的损害在10%以下。 (3)碳基新型射频电路。测量高频下碳基纳米结构的动能电感,利用碳纳米结构搭建新型的碳基射频电路。 (4)纳米阻变存储器。利用碳基材料作为存储介质,结合传统硅基驱动电路,实现可工作的原型碳基纳米存储器。 (5)优秀人才培养。将年轻学者培养成为能够独当一面的学科带头人,项目执行期间培养出1-2名国家杰出青年基金获得者;将一线工作的优 秀学生培养成为具有独立工作能力的优秀科研工作者,项目执行期间

电力电子器件

电力电子器件 电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。主电路:在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。 电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。 ◆由信息电子电路来控制,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器。 电力电子器件的功率损耗 断态损耗 通态损耗:是电力电子器件功率损耗的主要成因。 开关损耗:当器件的开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素。分为开通损耗和关断损耗。 电力电子器件在实际应用中,一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。 电力电子器件的分类 按照能够被控制电路信号所控制的程度

◆半控型器件:指晶闸管(Thyristor)、快速晶闸管、逆导晶闸管、光控晶闸管、双向晶闸管。 ◆全控型器件:IGBT、GTO、GTR、MOSFET。 ◆不可控器件:电力二极管(Power Diode)、整流二极管。 按照驱动信号的性质 ◆电流驱动型:通过从控制端注入或者抽出电流来实现导通或者关断的控制。Thyrister,GTR,GTO。 ◆电压驱动型:仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。电力MOSFET,IGBT,SIT。 按照驱动信号的波形(电力二极管除外) ◆脉冲触发型:通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。晶闸管,SCR,GTO。 ◆电平控制型:必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通并维持在通断状态。GTR,MOSFET,IGBT。 按照载流子参与导电的情况 ◆单极型器件:由一种载流子参与导电。MOSFET、SBD(肖特基势垒二极管)、SIT。 ◆双极型器件:由电子和空穴两种载流子参与导电。电力二极管,PN结整流管,SCR,GTR,GTO。 ◆复合型器件:由单极型器件和双极型器件集成混合而成,也称混合型器件。IGBT,MCT。 GTO:门极可关断晶闸管。SITH(SIT):静电感应晶体管。

电力电子器件发展论文

引言 电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。从年美国通用电气公司研制出世界上第一个工业用普通晶闸管开始,电能的变换和控制从旋转的变流机组和静止的离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子技术的诞生。到了70 年代,晶闸管开始形成由低压小电流到高压大电流的系列产品。同时,非对称晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等晶闸管派生器件相继问世,广泛应用于各种变流装置。由于它们具有体积小、重量轻、功耗小、效率高、响应快等优点,其研制及应用得到了飞速发展。由于普通晶闸管不能自关断,属于半控型器件,因而被称作第一代电力电子器件。在实际需要的推动下,随着理论研究和工艺水平的不断提高,电力电子器件在容量和类型等方面得到了很大发展,先后出现了GTR 、GTO、功率MOSET 等自关断、全控型器件,被称为第二代电力电子器件。近年来,电力电子器件正朝着复合化、模块化及功率集成的方向发展,如GPT,MCT,HVIC等就是这种发展的产物。 普通晶闸管及其派生器件 晶闸管诞生后,其结构的改进和工艺的改革,为新器件的不断出现提供了条件。1964年,双向晶闸管在GE公司开发成功,应用于调光和马达控制。1965 年,小功率光触发晶闸管出现,为其后出现的光祸合器打下了基础60年代后期,大功率逆变晶闸管问世,成为当时逆变电路的基本元件。1974年,逆导晶闸管和非对称晶闸管研制完成。 普通晶闸管广泛应用于交直流调速、调光、调温等低频等领域,运用由它所构成的电路对电网进行控制和变换是一种简便而经济的办法。不过,这种装置的运行会产生波形畸变和降低功率因数、影响电网的质量。目前水平为12KV/1KA和6500V/4000A。 双向晶闸管可视为一对反并联的普通晶闸管的集成,常用于交流调压和调功电路中。正、负脉冲都可触发导通,因而其控制电路比较简单。其缺点是换向能力差、触发灵敏度低、关断时间较长,其水平己超过2000V/500A 。 光控晶闸管是通过光信号控制晶闸管触发导通的器件,它具有很强的抗干扰能力、良好的高绝缘性能和较高的瞬时过电压承受能力,因而被应用于高压直流输电、静止无功功率补偿等领域。其研制水平大约为8000V/3600A 。 逆变晶闸管因具有较短的关断时间一而主要用于中频感应加热。在逆变电路中,它己让位于GTR 、GTO 、IGBT等新器件。目前,其最大容量介于2500V/1600A 和800V/50A/20KHz 的范围之内。 非对称晶闸管是一种正、反向电压耐量不对称的晶闸管。而逆导晶闸管不过是非对称晶闸管的一种特例,是将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件。与普通晶闸管相比,它具有关断时间短、正向压降小、额定结温高、高温特性好等优点,主要用于逆变器和整流器中。目前,国内有厂家生产3000V/900A的非对称晶闸管。 全控型电力电子器件 门极可关断晶闸管 1964年,美国第一次试制成功了500V/10A 的GTO。在此后的近10年内,的容量一直停留在较小水平,只在汽车点火装置和电视机行扫描电路中进行试用。自70 年代中期开始,GTO的研制取得突破,相继出世了1300V/600A 、2500V/1000A 、4500V/2000A的产品,目前已达

相关主题
文本预览
相关文档 最新文档