当前位置:文档之家› 分子电路的器件装配及特性

分子电路的器件装配及特性

分子电路的器件装配及特性
分子电路的器件装配及特性

分子电路的器件装配及特性

(贵州大学2006级工程硕士贵州贵阳 550003)

中图分类号:tn 文献标识码:a 文章编号:1007-0745(2008)11-00

摘要:传统的cmos电路技术已经接近极限,需要使用分子器件来缩小器件尺度。本文在高于器件层次之上探讨了分子电路的结构和器件装配方法及分子电路的特性。

关键词:分子电路纳米电路纳米器件纳米技术缺陷容忍

0.引言

传统的硅基电子技术在目前取得巨大成功的同时,这样的技术已经接近了理论的极限。在传统的cmos技术下,芯片制造似乎不能继续遵守摩尔定律。克服了很多技术难点之后,2012年cmos可能达到10nm最小尺寸和的器件集成度。要实现的集成度,必须找到新方法,现有的cmos技术不能达到这样的集成度。现在快速发展的分子电子学(纳米电子学)很可能就是这样的技术,目前分子电子学取得了很多进步,很有可能超越现在半导体技术的瓶颈,从而使芯片的集成度和成本继续满足摩尔定律。新出现的分子电路具有高集成度、低功耗,甚至有可能和生物器件集成在一起的潜力。以前人们的工作主要集中在分子器件的制造和器件的材料上。但目前对于将这些分子器件集成为一个高集成度的具有特定功能的电路取得了很大的进展。本文主要探讨使用现有的分子器件来装配一个功能电路,并不考虑单个分子器件的原理和制造方法。

实验四__电阻元件伏安特性的测定

实验四电阻元件伏安特性的测定 【实验简介】 电阻是电学中常用的物理量。利用欧姆定律测导体电阻的方法称为“伏安法”。 为了研究材料的导电性,通常作出其伏安特性曲线,了解它的电压和电阻的关系。伏安特性曲线是直线的元件称为“线性元件”,伏安特性曲线不是直线的元件称为“非线性元件”。这两种元件的电阻都可以用伏安法测量。但是,由于测量时电表被引入测量电路,电表内阻必然会影响测量结果,因而应考虑对测量结果进行必要的修正,以减小系统误差。 【实验目的】 1、了解电学实验常用仪器的规格、性能,学习它们的使用方法。 2、学习电学实验的基本操作规程和连接电路的一般方法。 3、掌握电阻元件伏安特性的测量方法,用伏安法测电阻。 4、了解系统误差的修正方法,学会作图法处理实验数据。 【实验仪器和用具】 直流稳压电源,直流电压表,直流电流表,滑线变阻器,电阻元件盒(一个百欧,一约千欧,一个二极管),导线10根。 【实验原理】 1、伏安特性曲线 实验中常用的线绕电阻、碳膜电阻和金属膜电阻等,它们都具有以下共同特性,即加在该电阻上的电压与通过其上的电流总是成正比例的变化(忽略电流热效应对阻值的影响)。若以纵坐标表示电流,横坐标表示电压,电流与电压的关系如图4-2(a)所示。具有这种特性的电阻元件成为“线性电阻元件”。 2、非线性电阻 如果电阻电阻元件两端的电流、电压关系为曲线,则这类电阻元件称为“非线性电阻元件”(如热敏电阻、二极管等)。这种元件的特点是电阻随加在它两端的电压改变而改变如图4-2(b)所示。一般均用伏安特性曲线来反映非线性电阻元件的特性。 3、伏安法测电阻 欧姆定律告诉我们,通过一段电路的电流,与这段电路两端的电压成正比,与这段电路

实验一 电路元件伏安特性的测试

实验一电路元件伏安特性的测试 一、实验目的 1.学会识别常用电路元件的方法 2.掌握线性电阻、非线性电阻元件伏安特性的测试方法 3.熟悉实验台上直流电工仪表和设备的使用方法 二、原理说明 电路元件的特性一般可用该元件上的端电压U 与通过该元件的电流I 之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。 万用表的欧姆档只能在某一特定的U和I下测出对应的电阻值,因而不能测出非线性电阻的伏安特性。一般是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式R=U/I求测电阻值。 1.线性电阻器的伏安特性符合欧姆定律U=RI,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。 图1-1 元件的伏安特性 2.白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得U/I不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。 3.半导体二极管也是一种非线性电阻元件,其伏安特性如图1-1(c)所示。二极管的电阻值随电压或电流的大小、方向的改变而改变。它的正向压降很小(一般锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急剧上升,而反向电压从零一直增加到十几至几十伏时,其反向电

放大电路的频率特性

返回>> 第三章 放大电路的频率特性 通常,放大电路的输入信号不是单一频率的正弦信号,而是各种不同频率分量组成的复合信号。由于三极管本身具有电容效应,以及放大电路中存在电抗元件(如耦合电容和旁路电容),因此,对于不同频率分量,电抗元件的电抗和相位移均不同,所以,放大电路的电压放大倍数A u 和相角φ成为频率的函数。我们把这种函数关系称为放大电路的频率特性。 §1频率特性的一般概念 一、频率特性的概念 以共e 极基本放大电路为例,定性地分析一下当输入信号频率发生变化时,放大倍数将怎样变化。 在中频段,由于电容可以不考虑,中频A um 电压放大倍数基本上不随频率而变化。ο 180=?,即无附加相移。对共发射极放大电路来说,输出电压和输入电压反相。 在低频段,由耦合电容的容抗变大,电压放大倍数A u 变小,同时也将在输出电压和输入电压间产生相移。我们定义:当放大倍数下降到中频 率放大倍数的0.707倍时,即 2um ul A A =时的频率称为下限频率f l 对于高频段。由于三极管极间电容或分布电容的容抗在低频时较大,当频率上升时,容抗减小,使加至放大电路的输入信号减小,输入电压减小,从而使放大倍数下降。同时也会在输出电压与输入电压间产生附加相移。同样我们定义:当电压放大倍数下降到中频区放大倍数的0.707 倍时,即2um uh A A =时的频率为上限频率f h 。 共e 极的电压放大倍数是一个复数, ?<=? u u A A 其中,幅值A u 和相角?都是频率的函数,分别称为放大电路的幅频特性和相频特性。 我们称上限频率与下限频率之差为通频带。

l h bw f f f -= 表征放大电路对不同频率的输入信号的响应能力,它是放大电路的重要技术指标之一。 二、线性失真 由于通频带不会无穷大,因此对于不同频率的信号,放大倍数的幅值不同,相位也不同。当输入信号包含有若干多次谐波成分时,经过放大电路后,其输出波形将产生频率失真。由于它是电抗元件产生的,而电抗元件又是线性元件,故这种失真称为线性失真。线性失真又分为相频失真和幅频失真。 1.相频失真 由于放大器对不同频率成分的相位移不同,而使放大后的输出波形产生了失真。 2.幅频失真 由于放大器对于不同频率成分的放大倍数不同,而使放大后的输出波形产生了失真。 线性失真和非线性失真本质上的区别:非线性失真产生新的频率成分,而线性失真不产生新的频率成分。 §2三极管的频率参数 影响放大电路的频率特性,除了外电路的耦合电容和旁路电容外,还有三极管部的级间电容或其它参数的影响。前者主要影响低频特性,后者主要影响高频特性。 一、三极管的频率特性 中频时,认为三极管的共发射极放大电路的电流放大系数β是常数。实际上

电路元件伏安特性的测绘实验报告

广东第二师范学院学生实验报告 院(系)名称班 别 姓名 专业名称学号 实验课程名称电路与电子线路实验 实验项目名称电路元件伏安特性的测绘 实验时间实验地点 实验成绩指导老师签名 一、实验目的: (1)学会识别常用电路元件的方法; (2)掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; (3)掌握实验台上直流电工仪表和设备的使用方法。 二、实验仪器: (1)电路实验箱一台 (2)万用表一块,2AP9二极管一个,2CW51稳压管一个,不同阻值线性电阻器若干。 三、实验内容及步骤: 1.测定线性电阻器的伏安特性 按图3-3接线,调节稳压电源的输出电压U,从0V开始缓慢地增加,一直到10V,在表3-1记下相应的电压表和电流表的读数U R和I。 表3-1 测定线性电阻的伏安特性 U R/V 0 1 2 3 4 5 6 7 8 9 10 I/mA 0 1.14 2.18 3.22 4.27 5.22 6.10 7.12 8.13 9.14 10.16 2.测定半导体二极管的伏安特性 按图3-4接线,R为限流电阻器。测二极管的正向特性时,其正向电流不得超过25mA,二极管D的正向压降U D+可在0~0.75V之间取值。在0.5~0.75V之间应多取几个测量点。做反向特性实验的时候,只需将图1-3中的二极管D反接,且其反向电压可加到30V左右。 表3-2 测定二极管的正向特性 U D+/V 0 0.2 0.4 0.45 0.5 0.55 0.60 0.65 0.70 0.75 I/mA 0 0 0.01 0.07 0.26 0.73 2.05 6.03 17.85 56.0 图3-4 二极管伏安特性测试 图3-3 线性电阻伏安特性测试

元件符号及丝印作用

R 电阻欧姆(Ω)符号: RV1 可调电阻符号: 作用:宁补普通电阻的误差。 C 电容法拉(F)符号:或 特性;阻直流通交流。作用是保护,产生震荡。 CX 安规cbb电容 作用:电源滤波作用,分别对共模、差模干扰起滤波 CY 安规Y电容 应用范围:跨电源线连接、旁路、耦合、及开关浪涌抑制器等电子和电气设备 L 电感亨(H)符号:(实芯电感)、空心电感特性及作用:主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振 电路。 D 二极管 特性及作用:单向导通。整流,滤波,保护,稳压 LED 发光二极 DB1 整流桥 ZD1 稳压二极符号: Q 三极管符号: b NPN管PNP管特性:三极管又称“晶体三极管”或“晶体管”。在半导体锗或硅的单晶上制备两个能相互影响的PN结,组成一个PNP(或NPN)结构,中间的N区(或P区)叫基区,两边的区域

叫发射区和集电区,这三部分各有一条电极引线,分别叫基极B、发射极E和集电极C,是能起放大、振荡或开关等作用的半导体电子器件。 Q/QE 场效应管(N沟道)符号: F或FU1 保险丝符号: NTC1 热敏电阻符号: 热敏电阻的主要特点是:①灵敏度较高,其电阻温度系数要比金属大10~100倍以上; ②工作温度范围宽,常温器件适用于-55℃~315℃, ③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在0.1~100kΩ间任意选择;⑤稳定性好、过载能力强. 应用方面它不仅可以作为测量元件(如测量温度、流量、液位等),还可以作为控制元件(如热敏开关、限流器)和电路补偿元件。热敏电阻广泛用于家用电器、电力工业、通讯、军事科学、宇航等各个领域,发展前景极其广阔。 IC 集成芯片符号;7500B 作用:是使用半导体工艺或薄、厚膜工艺(或者这些工艺的结合),将电路的有源元件、无源元件及其互连布线一起制作在半导体或绝缘基片上,在结构上形成紧密联系的整体电路。 I C按功能可分为:数字IC、模拟IC、微波IC及其他IC 稳压IC TL431 符号; 主要应用:1、在差动放大电路中用于稳压输出源 2、在可调整的电压或电流交换中做稳压电源输入 3、电压监控 4、涉及精密电压输出的数字或模以电路 5、用做低电压齐钠二极管的代替

实验一元件伏安特性的测定

《电路原理(电路分析)》 实验指导书 四川理工学院自动化与电子信息学院 课程教研组编

实验要求与须知 科学实验是科学得以发展的保证,是自然科学研究的重要手段。对于电路分析这门课程来说,实验是整个教学过程中必不可少的重要实践性环节,它是在系统学习本学科基础理论和基本知识的基础上,通过实验和实际操作使学生得到实验基本技能的训练,学习常用仪器仪表的使用方法,进一步巩固和加深所学的理论知识,培养和提高学生运用基本理论去分析、处理实际问题的能力和创新精神。 一、实验目的和要求: 1、通过实验,学习常用仪器、仪表的使用方法和测量技术,培养学生的基本实验技能; 2、进一步巩固加深所学的理论基础知识,培养运用基本理论知识去分析、解决实际问 题的能力; 3、培养整理实验数据,分析实验结果,编写实验报告和选择实验方法的能力; 4、培养事实求实、严肃认真、踏实细致的科学作风和良好的实验习惯。 二、实验方式 实验课一般分课前预习、进行实验和课后写实验报告三个阶段。为使学生做每次实验,达到预期目的,现将各个阶段的要求简述如下: 1、课前预习 实验能否顺利进行和收到预期效果,很大程度上取决预习准备是否充分。因此要求每次实验之前仔细阅读实验指导书,明确本次实验的目的、任务,了解实验的基本原理以及实验线路、方法、步骤,清楚本次实验要观察哪些现象,记录哪些实验数据和哪些问题。以及搞清楚实验中所要遇到的仪器、仪表的使用方法。 学生只有认真做好预习后才能到实验室做实验,凡达不到预习要求者,不得进行实验。 2、进行实验 一般实验课按下列程序进行: (1)首先认真听取教师在实验前讲授的实验要求及注意事项。 (2)到指定的桌位上做实验,实验前应做到: 1)检查仪器、仪表设备是否齐全、完好,并了解仪器、设备的额定容量,使用方法,量程和操作规程。当未搞清楚性能和用法时,不得随意使用该仪器、设备。 2)做好实验记录的准备工作。 3)按实验要求接线。

电路元件特性曲线的伏安测量法和示波器观察法

实验报告 课程名称:__实验二____ 指导老师: 成绩:___________________ 实验名称:电路元件特性曲线的伏安测量法和示波器观察法 实验类型:________________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、学习非线性电阻元件特性曲线的伏安测量方法 2、掌握伏安测量法中测量样点的选择和绘制曲线的方法 3、学习如何使用示波器观测电容的特性曲线 二、实验内容和原理 1、测量非线性元件晶体二极管和稳压二极管的伏安特性 普通晶体二极管的特点是正向电阻和反向电阻区别很大。正向压降很小,正向电流随正向压降 的升高而急剧上升,而反向电压从零一直增加到十几伏至几十伏,其反向电流增加很小,初略地可视为零。 稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但反向特性则与普通 二极管不同,在反向电压开始增加时,其反向电流几乎为零,但当反向电压增加到某一数值时,电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。 2、学习示波器的使用 三、主要仪器设备 1、数字万用表 2、电工综合实验台 3、DG07多功能网络实验组件 4、信号源 5、示波器 四、实验结果 1、测量非线性元件晶体二极管和稳压二极管的伏安特性 (1)晶体二极管 数据如下所示: U/V -1 0.577 0.686 0.696 0.709 0.716 0.725 I/mA 0 0.93 9 11 14.4 17.1 20.8 U/V 0.736 0.750 0.772 0.784 0.805 0.812 0.817 I/mA 26.7 37.3 61.6 83.6 131.2 160.8 180.3 伏安特性曲线如下所示: 专业: 姓名: 学号: _ 日期:_ 地点:_

电路基本元件作用

电阻器的品种有很多,通常分为三大类:固定电阻,可变电阻,特种电阻。在电子产品中,以固定电阻利用最多。而固定电阻以其制造资料又可分为好多类,但常用、常见的有 rt 型碳膜电阻、 rj 型金属膜电阻、 rx 型线绕电阻,还有近年来开始普遍运用的片状电阻。型号命名很有法则, r 代表电阻, t -碳膜,j -金属, x -线绕,是拼音的第一个字母。在国产老式的电子产品中,常可以看到表面涂覆绿漆的电阻,那就是 rt 型的。而红颜色的电阻,是 rj 型的。一般老式电子产品中,以绿色的电阻居多。为什么呢?这涉及到产品本钱的问题,因为金属膜电阻虽然精度高、温度特性好,但制造成本也高,而碳膜电阻特殊价廉,而且能满意民用产品请求。 二、电阻器的标识 热敏电阻是一个特别的半导体器件,它的电阻值随着其名义温度的高下的变化而变化。它底本是为了使电子设备在不同的环境温度下畸形工作而使用的,叫做温度弥补。新型的电脑主板都有 cpu 测温、超温报警功效,就是利用了的热敏电阻。 电容器的选用波及到良多问题。首先是耐压的问题。加在一个电容器的两真个电压超过了它的额外电压,电容器就会被击穿破坏。普通电解电容的耐压分档为6.3v , 10v , 16v , 25v , 50v 等。 一、电阻器的种类 举一个事实生涯中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会持续亮一会儿,然后逐步燃烧,就是因为里面的电容当时存储了电能,而后释放。当然这个电容本来是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的阅历,一般低质的电源因为厂家出于节俭成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容( 1000 μ f ,注意正极接正极),一般可以改良效果。发热友制作 hifi 音响,都要用至少 1 万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越濒临直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得本来汹涌的水流平滑地输出,并可以保障下游大批用水时的供给。

放大电路频率特性

第三章放大电路的频率特性 §3.1 频率特性的一般概念 一.频率特性的概念 对低频段, 由于耦合电容的容抗变大, 高频时1/ωc<

《电学元件伏安特性的测量》实验报告附页

《电学元件伏安特性的测量》实验报告 (数据附页) 一、半定量观察分压电路的调节特点 二、用两种线路测电阻的对比研究 电流表准确度等级1.5,量程I m=5mA,R I=8.38±0.13Ω 电压表准确度等级1.5,量程U m=0.75V,R V=2.52±0.04kΩ; 量程U m=3V,R V=10.02±0.15kΩ

三、测定半导体二极管正反向伏安特性 由于正向二极管的电阻很小,采用外接法的数据;反向电阻很大,采用内接法的数据。 四、戴维南定理的实验验证 1.将9V电源的输出端接到四端网络的输入端上,组成一个有源二端网络,求出等效 e e

取第二组和第七组数据计算得到: E e =2.15V R e =319.5Ω 由作图可得: E e =2.3V R e =352.8Ω 3. 理论计算。 % 6.17% 7.10.30034.2951.14917.19932.6162 12 132 12 321的相对误差为的相对误差为与实验值比较e e e e R E R R R R R R V R R ER E V E R R R Ω =++ ==+= =Ω=Ω=Ω= 4.讨论。 等效电动势的误差不是很大,而等效电阻却很大。原因是多方面的。但我认为最大的原因应该是作图本身。所有数据的点都集中在一个很小的区域,点很难描精确,直线的绘制也显得过于粗糙,人为的误差很大。 如果对数据进行拟合,可以得到I=-3.298U+6.836,于是得到E e =2.07V ,R e =303.2Ω,前者误差为11.5%,后者误差为1.1%,效果比直接读图好,因为消除了读图时人为的误差。 另外一点,仪表读数也是造成误差大的一个原因。比如电流表没有完全指向0,电压表不足一格的部分读得很不准等等。

电路主要元件的作用及原理

第一章:基本元件 第一节电阻器 电阻,英文名resistance,通常缩写为R,它是导体的一种基本性质,与导体的尺寸、材料、温度有关。欧姆定律说,I=U/R,那么R=U/I,电阻的基本单位是欧姆,用希腊字母“Ω”表示,有这样的定义:导体上加上一伏特电压时,产生一安培电流所对应的阻值。电阻的主要职能就是阻碍电流流过。事实上,“电阻”说的是一种性质,而通常在电子产品中所指的电阻,是指电阻器这样一种元件。师傅对徒弟说:“找一个100欧的电阻来!”,指的就是一个“电阻值”为100欧姆的电阻器,欧姆常简称为欧。表示电阻阻值的常用单位还有千欧(kΩ),兆欧(MΩ)。 一、电阻器的种类 电阻器的种类有很多,通常分为三大类:固定电阻,可变电阻,特种电阻。在电子产品中,以固定电阻应用最多。而固定电阻以其制造材料又可分为好多类,但 常用、常见的有RT型碳膜电阻、RJ型金属膜电阻、RX型线绕电阻,还有近年来开始广泛应用的片状电阻。型号命名很有规律,R代表电阻,T-碳膜,J-金属,X-线绕,是拼音的第一个字母。在国产老式的电子产品中,常可以看到外表涂覆绿漆的电阻,那就是RT型的。而红颜色的电阻,是RJ型的。一般老式 电子产品中,以绿色的电阻居多。为什么呢?这涉及到产品成本的问题,因为金属膜电阻虽然精度高、温度特性好,但制造成本也高,而碳膜电阻特别价廉,而且能满足民用产品要求。 电阻器当然也有功率之分。常见的是1/8瓦的“色环碳膜电阻”,它是电子产品和电子制作中用的最多的。当然在一些微型产品中,会用到1/16瓦的电阻,它 的个头小多了。再者就是微型片状电阻,它是贴片元件家族的一员,以前多见于进口微型产品中,现在电子爱好者也可以买到了(做无线窃听器?) 二、电阻器的标识 这些直接标注的电阻,在新买来的时候,很容易识别规格。可是在装配电子产品的时候,必须考虑到为以后检修的方便,把标注面朝向易于看到的地方。所以在弯脚的时候,要特别注意。在手工装配时,多这一道工序,不是什么大问题,但是自动生产线上的机器没有那么聪明。而且,电阻器元件越做越小,直接标注的 标记难以看清。因此,国际上惯用“色环标注法”。事实上,“色环电阻”占据着

电路元件的伏安特性

课程名称电路原理实验日期 实验名称电路元件伏安特性的测定成绩 实验目的: 1. 掌握几种元件的伏安特性的测试方法; 2. 掌握实际电压源和电流源的使用调节方法; 3. 学习常用电工仪表和设备的使用方法。 实验条件: 机房七,Multisim 仿真平台。 实验内容及步骤: (1)测定线性电阻的伏安特性 按图1-2接线,依次调节稳压电源的输出电压为原始数据为表 1 —1中数值,并测相应的电流值记入表中。 图1-2

_|_V1 ::: 二 10& (2) 测定理想电压源的伏安特性 直流稳压电源,其内阻很小,作为理想的电压源。按图 1 —3线路接好后,接通 晶体管稳压电源,调节输出电压 Us=10v ,再调节可变电阻R L ,使直流电流表读数分 别为表1 —4中数据,将相应的电压数据写入表 1 —3中。 200 0 R L 图1-3 (t (3) 测定实际电源内阻及伏安特性 晶体管直流稳压电源和一个 51欧的电阻串联,作为一个实际电压源。按图 1— 4 0.020 一 WV-」 ::::::: DC 1e-&032 R2:: 丄⑷] 二 10 V 10.000 DC U2 0.0 0 UT ; I ; DC 10MC-■ mA

接线,当负载R L开路时调节稳压电源的输出电压U=10V,再调节负载,当电流表的数据分别为表1-1~表1-3中的数值时,将相应的电压、电流数值写入表1-3中,并计算相应的功率值。 图1-4 数据记录: 表1-2 理想电压源的伏安特性 表1-3实际电压源伏安特性

实验总结: 通过本次实验,我学会了用Multisim仿真平台测定电路元件的伏安特性。并且,在连接电路时一定要注意电压表和电流表的正负极,使之正确的接入电路中。否者,电表的读数可能会出现负值。在进行电压源伏安特性的研究中,我们可以看到当电阻R L小于51 Q时电阻的功率随着电阻的增大而增大,当R L大于51Q时,功率随着电阻的增大而减小。因此,我们可以知道当R L等于51Q时,电源的输出功率达到最大。实验思考: 用电压表和电流表测量元件的伏安特性时,电压表可接在电流表之 前或之后,两者对测量误差有何影响? 答:电流表内接,电流测量准确,电压测的是元件和电流表共同的电压,所以会较实际偏大。使得测量的电阻偏大。电流表外接的话,电压表测量准确,电流表测的是电压表和元件并联电路的电流,较实际偏大,根据公式算出结果电阻偏小。

反馈放大电路的特性分析与仿真要点

长春理工大学 国家级电工电子实验教学示范中心学生实验报告 2016 —— 2017 学年第一学期 实验课程反馈放大电路的特性分 析与仿真 实验地点 学院 专业 学号 姓名

图2-1 电流并联负反馈放大电路 ,输出信号电流为i0=i C2。电阻R6,R4组成反馈网 所示的反馈放大电路分解成基本放大电路和反馈网络两部分,根据前面所述的两 所示。图中直流电压V3、直流电流I E2均为保证直流工作

图2-2 电路的基本放大电路 三、预习内容 、预习用PSPICE进行电路频率特性分析的语句描述方法。 、熟悉反馈放大器所对应的基本放大器的等效原则。 四、实验内容 、根据题目要求编写输入网单文件,运行程序,分别获得负反馈电路和对应的基本放大器的电流增益、电压增益、输入电阻、输出电阻的频率特性仿真波形。

图2-4 开环电压增益的幅频特性图2-3 开环电流增益的幅频特性 )理论上,因为电流反馈系数F i≈-R6/(R4+R6),所以反馈深度D=1+A iM F i。 按方框图法,可计算闭环电流增益A if=A iM/D,把这个结果与对图2-1所示电路直接计算所得结果进行比较,看两者是否很接近。闭环源电压增益A VSf=υ0/υs =-i0R L′/[(R S+R if)i i]=- A if R L′/(R S+R if),输Rif由下面的图2-8分析获得,则计算出的| A VSf|(上面的计算忽略了Q2管的r Ce的影响),与图计算所得结果是否接近。 图2-5 闭环电流增益的幅频特性图2-6 闭环电压增益的幅频特性

图 2-7 开环输入阻抗特性 图2-8 闭环输入阻抗特性 (4)输出电阻 所示为开环输出阻抗特性曲线。其中图(a)是由晶体管Q2集电极看进去的阻抗特性(不包 ,该值较大其原因是基本放大电路中Q射极下接有负反

电子电路基本元器件及其特性

电子电路基本元器件及其特性 任何电子线路都是内电子元器件组成,所以电子元器件是组成电子线路的最小的独 立个体。正确识别电子元器件及掌握好电子元器件的测量,对于电子线路图的正确识 谈是不可缺少的。本章主要讲述常用电子元器件的舶皿测量。第一节电阻器和电位器在电子线路中,电阻器是构成电子线路的基本元件,它主要作为负载、分流、降压、 限流、分压、取样等之用。电阻器又分为固定电阻器和可变电阻器。固定电阻器常 简称为电阻,其阻值是固定不变的;可变电阻器又称为电位器,其阻值可以通过调节 电位器上的旋钮而改变。电阻和电位器统称为电阻器。 1.电阻器的符号及单位 电阻器在电子线路中的图形符号及文字符号表示法,如图1所示。 2.电阻器的分类 电阻器主要有两种分类法用途来分。电阻器按其制造材料可分为:碳膜电阻器、企届膜电阻器、金属氧化股电阻器、线绕电阻器;按其用途来分可分为:光敏电阻器、气敏电阻器、压敏电阻器、热敏电阻器等。 (1)碳膜电阻器碳膜电阻器表而一般涂有绿色的保护漆,其咀值范围宽,有良好的阻 值稳定性,受电压和频率的影响小,脉冲负载稳定,电阻器温度系数不大B—为负值。但其特件比企届腆电阻器差,故在军用员中很少采用,而在民用品中出于价格较便仓,所以大旦采用。 (2)金属膜电阻器金属膜电阻器表而一舶涂有红色或棕红色的保护漆。金属膜电阻器 工作环境温度范围宽、耐热性好、体积小、温度系数和噪声比较小、精密度高,适应 于要求较高的电子电路小。其主要缺点是脉冲负能力差,所以在脉冲状态下〕:作的 电阻器,不:定选用金属膜电阻器。 (3)金届氧化膜电阻器金届氧化膜电阻器除了具有金属膜电阻器的优点外,还具有耐 尚温,低阻值(100 o)时性能好及成本低等优点。但金属氧化膜电阻器在直流负载下缄 化膜容易发生电解使氧化物还原,性能不太稳定。

电阻元件伏安特性的测定

电阻元件伏安特性的测定 一、引言 电阻是电学中最常用到的物理量之一,我们有很多方法可以测量电子组件的电阻,采用补偿原理的方法称为补偿法测电阻,利用欧姆定律来求导体电阻的方法称为伏安法,其中,伏安法是测量电阻的基本方法之一。为了研究元件的导电性,我们通常测量出其两端电压与通过它的电流之间的关系,然后作出其伏安特性曲线,根据曲线的走势来判断元件的特性。伏安特性曲线是直线的元件称为线性元件,不是直线的元件称为非线性元件,这两种元件的电阻都可以用伏安法来测量。采用伏安法测电阻,有两种接线方式,即电压表的外接和内接(或称为电流表的内接和外接)。不论采取那种方式,由于电表本身有一定的内阻,测量时电表被引入电路,必然会对测量结果有一定的影响,因此,我们在测量过程中必须对测量结果进行必要的修正,以减小误差。 二、实验内容 本实验包含测量金属膜的伏安特性和测量小灯泡的伏安特性两个实验,其中,测量金属膜的伏安特性又分为电压表外接和电压表内接两种方式。 三、实验原理 当一个电子元件接入电路构成闭合回路,其两端的电压与通过它的电流的比值即为该条件下电子组件的电阻。若电子元件两端的电压与通过它的电流成固定的正比例,则其伏安特性曲线为一条直线,这类元件称为线性元件;而当电子元件两端的电压与通过它的电流不成固定的正比例时,其伏安 特性曲线是一条曲线,这类元件称为非线性元件。 般金属导体的电阻是线性电阻,其伏安特性曲线是一条直线。 电阻是电子元件的重要特性,在电学实验中我们经常要测量其大小。在要求不是很精确的条件

下,我们可以采用伏安法测电阻,即测出被测元件两端的电压U 和通过它的电流I,然后运用欧姆定律R=U/I ”即可求得被测元件的电阻R。同时,我们也可以运用作图法,作出其伏安特性曲线,从曲线上求得电阻的阻值。伏安特性曲线是直线的电阻称为线性电阻,否则则为非线性电阻。非线性电阻的阻值是不确定的,只有通过作图法才能反映其特性。 用伏安法测电阻,原理和操作都很简单,但由于电表有一定的内阻,必然就会给实验带来一定的误差。伏安法测电阻的电路连接方式有电压表的内接和外接两种方式。 在电压表内接法中,电流表测出的电流值I 是通过电阻和电压表的电流之和,即 I=I X + I V,因此,R=U X/|=U X/(I X+I V)=R X/(1+R X/R V)。可见,这种条件下,电压表的内阻对实验有一定的影响,运用电压表内接法,会导致测量值比真实值要小。 在电压表外接法中,电压表测出的电压值U 包含了电流表两端的电压,即 U=U mA+U x,因此,R=U/I X=(U X+U mA)/I X=R X +R mA (其中,U X为电阻两端的真实电压,R X为电阻的真实值,R mA为电流表的内阻,R为测量值)。可见,电流表的内阻对实验结果有一定的影响,运用电压表外接法,会导致测量值比真实值要大,而其差值正好是电流表的内阻。 上述两种伏安法测电阻的电路连接方式,都会给实验结果带来一定的系统误差,为了减小上述误差,我们可以根据被测电阻的大小与电表内阻的大小来选择合适的电路连接方式。当:R x〈〈R V 且R x〉R mA 时,选择电压表的内接法;R x〉〉R mA 且R x〈R V 时,选择电压表的外接法;R X >> R mA且R X << RV时,两种接法均可。

电路元件特性曲线的伏安测量法 实验报告

实验报告 课程名称:电路与模拟电子技术实验指导老师:张冶沁成绩:__________________ 实验名称:电路元件特性曲线的伏安测量法实验类型:电路实验同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.熟悉电路元件的特性曲线; 2.学习非线性电阻元件特性曲线的伏安测量方法; 3掌握伏安测量法中测量样点的选择和绘制曲线的方法; 4.学习非线性电阻元件特性曲线的示波器观测方法。 二、实验内容和原理 1、电阻元件、电容元件、电感元件的特性曲线 在电路原理中,元件特性曲线是指特定平面上定义的一条曲线。例如,白炽灯泡在工作时,灯丝处于高温状态,其灯丝电阻随着温度的改变而改变,并且具有一定的惯性;又因为温度的改变与流过灯泡的电流有关,所以它的伏安特性为一条曲线。电流越大、温度越高,对应的灯丝电阻也越大。一般灯泡的“冷电阻”与“热电阻”可相差几倍至十几倍。该曲线的函数关系式称为电阻元件的伏安特性,电阻元件的特性曲线就是在平面上的一条曲线。当曲线变为直线时,与其相对应的元件即为线性电阻器,直线的斜率为该电阻器的电阻值。电容和电感的特性曲线分别为库伏特性和韦安特性,与电阻的伏安特性类似。 线性电阻元件的伏安特性符合欧姆定律,它在u-i 平面上是一条通过原点的直线。该特性曲线各点斜率与元件电压、电流的大小和方向无关,所以线性电阻元件是双向性元件。非线性电阻的伏安特性在u-i平面上是一条曲线。 普通晶体二极管的特点是正向电阻和反向电阻区别很大。正向压降很小正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为零。可见,二极管具有单向导电性,如果反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性则与普通二极管不同,在反向电压开始增加时,其反向电流几乎为零,但当反向电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。 上述两种二极管的伏安特性均具属于单调型。电压与电流之间是单调函数。二极管的特性参数主要有开启电压V th,导通电压V on,反向电流I R,反向击穿电压V BR以及最大整流电流I F。 2、非线性电阻元件特性曲线的逐点伏安测量法 元件的伏安特性可以用直流电压表、电流表测定,称为逐点伏安测量法。伏安法原理简单,测量方便,但由于仪表内阻会影响测量的结果,因此必须注意仪表的合理接法。 采用伏安法测量二极管特性时,限流电阻以及直流稳压源的变化范围与特性曲线的测量范围是有关系的,要根据实验室设备的具体要求来确定。在综合考虑测量效率和获得良好曲线效果的前提下,测量点的选择十分关键,由于二极管的特性曲线在不同的电压的区间具有不同的性状,因此测量时需

电路元件伏安特性的测量

实验一:电路元件伏安特性的测量 一、实验目的 1. 掌握线性、非线性电阻元件及电源的概念。 2.学习线性电阻和非线性电阻伏安特性的测试方法。 3.学习直流电压表、直流电流表及直流稳压电源等设备的使用方法。 二、实验仪器 电路分析实验箱、数字万用表、直流电流表、直流电压表、二极管、稳压二极管、电阻 三、实验原理 1、数字万用表的构成及使用方法 数字万用表一般由二部分构成,一部分是被测量电路转换为直流电压信号,我们称为转换器,另一部分是直流数字电压表。 直流数字电压表构成了万用表的核心部分,主要由模-数转换器和显示器组成。可用于测量交直流电压和电流、电阻、电容、二极管正向压降及电路通断,具有数据保持和睡眠功能。 2、整体结构 1)交直流电压测量 (1)将红表笔插入VQ插孔,黑表笔插入COM插孔。 (2)将功能开关置于V量程档。 将测试表笔并联在被测元件两端 2)交直流电流测量 (1)将红表笔插入mA或A插孔,黑表笔插入COM插孔。(2)将功能开关置A量程。 (3)表笔串联接入到待测负载回路里。 3)电阻测量 (1)将红表笔插入VQ插孔,黑表笔插入COM插孔。 (2)将功能开关置于Q量程。 (3)将测试表笔并接到待测电阻.上 4)二极管和蜂鸣通断测量 (1)将红表笔插入VQ插孔,黑色表笔插入”COM”插孔。(2)将功能开关置于二极管和蜂鸣 通断测量档位。 (3)如将红表笔连接到待测-二极管的正极,黑表笔连接到待测二极管的负极,则LCD.上的 读数为二极管正向压降的近似值。 将表笔连接到待测线路的两端,若被测线路两端之间的电阻大于700,认为电路断路;被测线路两端之间的电阻≤100,认为电路良.好导通,蜂鸣器连续声响;如被测两端之间的电阻在10~700之间,蜂鸣器可能响,也可能不响。同时LCD显示被测线路两端的电阻值。

放大电路的全频带增益特性分析报告

放大电路的全频带增益特性分析 摘要:本文运用模拟电子技术课堂上所学知识,以及通过查阅资料文献所获得的知识,对常用放大电路的中频增益、输入电阻、输出电阻、频率特性等主要性能进行分析和定量计算。运用放大电路的高频模型,通过对之流通路和交流通路的求解计算出放大电路的增益函数,并用Matlab画出了该放大电路的幅度相应和相位响应,在Multisim软件中进行了模拟。 关键字:放大电路;模拟 The Characteristics Analysis Of The Whole Band Gain Amplifier Circuit Abstract:In this paper, we used the knowledge by learning the analog electronic technology in the classroom, and looked for the information on literature. We analyzed the common-used of the IF amplifier-growing, input resistance, output resistance, frequency characteristics. By useing the high-frequency amplifying circuit model of the circulation road and the solution of the exchange pathway t,we calculated the amplifier-growing function, and used Matlab to draw the amplification circuit corresponding amplitude and phase response which were simulated in Multisim software. Key words: amplifier circuit;simulation

伏安特性曲线的测量实验报告

竭诚为您提供优质文档/双击可除伏安特性曲线的测量实验报告 篇一:电路元件伏安特性的测量(实验报告答案) 实验一电路元件伏安特性的测量 一、实验目的 1.学习测量电阻元件伏安特性的方法; 2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。 二、实验原理 在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。任何一个二端电阻元件的特性可用该元件上的端电压u与通过该元件的电流I之间的函数关系式I=f(u)来表示,即用I-u平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常

数,与元件两端的电压u和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。在图1-1中,u>0的部分为正向特性,u<0的部分为反向特性。 (a)线性电阻(b)白炽灯丝 绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压u作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(u),根据伏安特性曲线便可计算出电阻元件的阻值。 三、实验设备与器件 1.直流稳压电源1台 2.直流电压表1块 3.直流电流表1块 4.万用表1块 5.白炽灯泡1只 6.二极管1只 7.稳压二极管1只 8.电阻元件2只 四、实验内容 1.测定线性电阻的伏安特性按图1-2接线。调节直流稳压电源的输出电压u,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。 2 将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯

各元器件符号及作用

电子元器件基础知识(1)——电阻 导电体对电流的阻碍作用称为电阻,用符号R表示,单位为欧姆、千欧、兆欧,分别用Ω、KΩ、MΩ表示。一、电阻的型号命名方法: 国产电阻器的型号由四部分组成(不适用敏感电阻)第一部分:主称,用字母表示,表示产品的名字。如R表示电阻,W表示电位器。第二部分:材料,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。1-普通、2-普通、3-超高频、4-高阻、5-高温、6-精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。第四部分:序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等例如:R T 1 1 型普通碳膜电阻 电子元器件基础知识(2)——电容 电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。用C表示电容,电容单位有法拉(F)、微法拉(uF)、皮法拉(pF),1F=10^6uF=10^12pF 电容器的型号命名方法国产电容器的型号一般由四部分组成(不适用于压敏、可变、真空电容器)。依次分别代表名称、材料、分类和序号。第一部分:名称,用字母表示,电容器用C。第二部分:材料,用字母表示。第三部分:分类,一般用数字表示,个别用

字母表示。第四部分:序号,用数字表示。用字母表示产品的材料:A-钽电解、B-聚苯乙烯等非极性薄膜、C-高频陶瓷、D-铝电解、E-其它材料电解、G-合金电解、H-复合介质、I-玻璃釉、J-金属化纸、L-涤纶等极性有机薄膜、N-铌电解、O-玻璃膜、Q-漆膜、T-低频陶瓷、V-云母纸、Y-云母、Z-纸介 电子元器件基础知识(3)——电感线圈 电感线圈是由导线一圈*一圈地绕在绝缘管上,导线彼此互相绝缘,而绝缘管可以是空心的,也可以包含铁芯或磁粉芯,简称电感。用L表示,单位有亨利(H)、毫亨利 (mH)、微亨利(uH),1H=10^3mH=10^6uH。 电感的分类按电感形式分类:固定电感、可变电感。按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。按绕线结构分类:单层线圈、多层线圈、蜂房式线圈。 电感线圈的主要特性参数 1、电感量L 电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。 2、感抗XL 电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为XL=2πfL 3、品质因素Q 品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R 线圈的Q值愈高,回路的损耗愈小。线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。线圈的Q值通常为几十到几百。 4、分布电容线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。 电子元器件基础知识(4)——半导体器件 中国半导体器件型号命名方法半导体器件型号由五部分(场效应器件、半导体特殊器件、复合管、PIN型管、激光器件的型号命名只有第三、四、五部分)组成。五个部分意义如下:第一部分:用数字表示半导体器件有效电极数目。2-二极管、3-三极管第二部分:用汉语拼音字母表示半导体器件的材料和极性。表示二极管时:A-N型锗材料、B-P型锗材料、C-N型硅材料、D-P型硅材料。表示三极管时:A-PNP型锗材料、B-NPN型锗材料、C-PNP 型硅材料、D-NPN型硅材料。第三部分:用汉语拼音字母表示半导体器件的内型。P-普通管、V-微波管、W-稳压管、C-参量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U-光电器件、K-开关管、X-低频小功率管(F<3MHz,Pc<1W)、G-高频小功率管(f>3MHz,Pc<1W)、D-低频大功率管(f<3MHz,Pc>1W)、A-高频大功率管(f>3MHz,Pc>1W)、T-半导体晶闸管(可控整流器)、Y-体效应器件、B-雪崩管、J-阶跃恢复管、CS-场效应管、BT-半导体特殊器件、FH-复合管、PIN-PIN型管、JG-激光器件。第四部分:用数字表示序号第五部分:用汉语拼音字母表示规格号例如:3DG18表示NPN型硅材料高频三极管

相关主题
文本预览
相关文档 最新文档