当前位置:文档之家› 中国中铁CTE6250盾构机技术参数

中国中铁CTE6250盾构机技术参数

中国中铁CTE6250盾构机技术参数
中国中铁CTE6250盾构机技术参数

中国中铁CTE6250盾构机技术参数(11标段)

系统名称项目参数单位备注管片

内径φ5400 mm

外径φ6000 mm

厚度300 mm

长度1500 mm

最大重量 4.5 t

每环数量3+2+1 块

盾构

型号CTE6250 土压平衡盾构

驱动形式液驱

开挖直径φ6280 mm

总长75.5 m

主机总长7788 mm 不包括刀盘

总重约500 T

最大推进速度80 mm/min

最大推进力31650 KN

水平曲线半径250 m 铰接角度1.4°

满足最大纵向坡度±35 ‰

设计压力 4.5 Bar

工作压力 3 Bar

前体

外径φ6250 mm 不含硬化层

前体长度1740

钢结构重量42.7 T

材质Q345B

搅拌臂 4 个

中体

外径φ6240 mm

长度2795 mm

钢结构重量35.8 T

材质Q345B

超前地质钻探、加固

8 个上部180°范围

盾尾

外径φ6230 mm

长度3633 mm

钢结构重量20.3 T

材质Q690D

钢丝刷密封数量 3 排

3排密封刷设计压力 4.5 Bar

3排密封刷工作压力 3 Bar

注脂点数量2×6 路

注浆管路数量8 路

紧急气囊密封 1 道

铰接密封 1 道

铰接密封设计压力 4.5 Bar

铰接密封工作压力 3 Bar

人舱

主舱人数 3 个

预备舱人数 2 个

工作压力 3 bar

测试压力 4.5 bar

重量 5 T

推进油缸

规格φ200/170 mm

行程2150 mm

数量32 个四个含行程传感器

分组 4 组

最大工作压力32 Mpa

系统名称项目参数单位备注总推力31650 KN

铰接油缸

规格φ160/80 mm

行程150 mm

数量14 个

分组 4 组四个含行程传感器

最大工作压力20 Mpa

总拉力7340 KN

后配套拖车

设备桥 1 节

拖车数量 6 节

刀盘

开挖直径φ6280 mm

重量32 t (加面板、刀座重量)

旋转方向正/反

搅拌臂 4 个

材质Q345B

开口率45%

超挖刀最大伸出量85 mm 液压驱动,行程105mm

膨润土注入口 2 个

泡沫注入口 6 个

旋转接头

泡沫3/DN50 道

膨润土注入管道2/DN50 道

液压管道 4 道

刀盘驱动

马达数量8 个

减速机数量8 个

驱动功率630 KW

转速范围0~3.34 r/min

一档扭矩2620 KNm

二档扭矩4377 KNm

脱困扭矩5225 KNm

主轴承直径φ2610 mm

内密封数量 2 道

外密封数量 3 道设计压力4.5bar工作压力3bar 管片安装机

类型中心回转式

自由度 6 个

纵向油缸行程2000 mm

提升油缸行程1200 mm

旋转范围+/-200 °

摆动角+/-2 °

仰俯角+/-2.5 °

提升力120 KN

最大扭矩150 KNm

装配功率55 KW

螺旋输送机

类型周边驱动

驱动马达数量 3 组

装配功率160 KW

内径φ800 mm

外径Φ850 mm

节距630 mm

最大出渣粒径Φ303×L600 mm

速度0~22 rpm

最大扭矩120 KNm

输送能力321 m3/h

旋转方向正/反

前闸门数量 1 道

后闸门数量 2 道

泡沫口数量 6 个

系统名称项目参数单位备注膨润土口数量 3 个

预留保压泵接口有

土压传感器数量 2 个

重量16.97 T

长度11.34 米

管片输送小车

承载管片数 3

纵向输送行程1760 mm

管片吊机

提升重量 3.2×2 T

行走速度10 m/min

起吊速度4/1(快/慢)m/min

皮带机

驱动功率30 KW

输送速度 2.5 m/s

输送能力450 m3/h

皮带宽度800 mm

皮带机长度60 米左右

齿轮油系统

齿轮油泵能力18 l/min

齿轮油系统压力30 bar

主驱动注油量220 L

行星齿轮驱动注油量8×12 L

盾尾密封系统

盾尾油脂泵能力14 l/min

盾尾油脂泵压力360 bar

油脂桶规格200 L

油脂用量36 KG/环

HBW密封系统

HBW油脂泵能力 3.7 l/min

油脂泵压力400 bar

油脂桶规格200 L

油脂消耗10 KG/环

主驱动油脂系统

主驱动油脂泵能力 3.7 l/min

油脂泵压力400 bar

油脂桶规格200 L

油脂用量26 ml/min

同步注浆系统

注浆泵数量 2 个2个泵4个输出口

注浆孔数量4×2 个四用四备

注浆箱容积7 m3

盾尾注浆管径76×44×5 mm 内贴式椭圆式

膨润土注入系统

功率18.5 KW

能力20 m3/h 挤压泵

膨润土箱容积 4 m3

工业空气及保压系统

空压机数量 2 台

空压机功率2×37 KW

压力8 bar

能力2×6.6 m3/min

空气罐 1 m3

泡沫注入系统

泡沫水泵能力9 m3/h

泡沫泵能力5~300 L/h

储存箱 1 m3

工业供水系统

现场供水量30 m3/h

管路截面DN80 mm

进水温度<25 ℃

工作压力2~6 bar

系统名称项目参数单位备注通风系统

管路通径φ600 mm 主机段

储存箱数量 2 个

能力100 m

风管直径Φ1000

供配电系统

高压开关柜 1 套

初始电压10000 VAC

二级电压400 VAC

驱动电压24DC/230VAC VDC/VAC

照明230 VAC

应急照明24/230 VDC/VAC

阀组电压24 VDC

电机保护装置IP55

补偿单元Cos0.9

变压器功率1600 KVA

频率50 HZ

高压电缆截面3×50 mm2

液压油供给系统

刀盘驱动流量2×1088 L/min

液压油箱容积4500 L

导向系统

测量精度 2 秒

装机功率

刀盘驱动630 KW

注油泵37 KW

控制油泵 5.5 KW

液压油箱过滤泵11 KW

螺旋输送机160 KW

推进75 KW

注浆30 KW

辅助泵22 KW 管片安装机55 KW 齿轮油泵 4 KW 砂浆搅拌 5.5 KW 膨润土搅拌 5.5 KW 皮带机30 KW 泡沫泵0.55 KW 泡沫水泵11 KW 加水泵15 KW 内循环水泵 5.5 KW 膨润土泵18.5 KW 空压机1 37 KW 空压机2 37 KW 水管卷筒 3 KW 二次通风吊机 2.2 KW 总装机功率1200 KW

盾构机结构详解

盾构机技术讲座 一.盾构机结构(EPB总体结构图) 盾构是一个具备多种功能于一体的综合性隧洞开挖设备,它集和了盾构施工过程中的开挖、出土、支护、注浆、导向等全部的功能,目前,盾构机已成为地下交通工程及隧道建设施工的首选设备被广泛使用。其优点如下: 1. 不受地面交通、河道、航运、季节、气候等条件的影响。 2. 能够经济合理地保证隧道安全施工。 3. 盾构的掘进、出土、衬砌、拼装等可实行自动化、智能化和施工运输控制信息化。 4. 掘进速度较快,效率较高,施工劳动强度较低。 5. 地面环境不受盾构施工的干扰。 其缺点为: 1. 盾构机械造价较高。 2. 在饱和含水的松软地层中施工地表沉陷风险大。 3. 隧道曲线半径过小或埋深较浅时难度较大。 4. 设备的转移、运输、安装及场地布置等较复杂。 盾构作为一种保护人体和设备的护体,其外形(断面形状)随所建的工程要求不同有圆形、双圆形、三圆形、矩形、马蹄形、半圆形等。(如:人行道方形能最大限度的利用空间、过水洞马蹄形符合流体力学、公路隧道半圆形利用下玄跑车)。而因圆形断面受力好、圆形盾构设备制造相对简单及成本相对低廉,绝大部分盾构还是采用传统的圆形。 为适应各种不同类型土质及盾构机工作方式的不同,盾构机可分为三种类型、四种模式:

三种类型: (1)软土盾构机; (2)硬岩盾构机; (3)混合型盾构机。 四种模式: (4)开胸式; (5)半开胸式(半闭胸式、欠土压平衡式); (6)闭胸式(土压平衡式); (7)气压式。 软土盾构机适应于未固结成岩的软土、某些半固结成岩及全风化和强风化围岩。刀盘只安装刮刀,无需滚刀。 硬岩盾构机适应于硬岩且围岩层较致密完整,只安装滚刀,不需要刮刀。 混合盾构机适应于以上两种情况,适应更为复杂多变的复合地层。可同时安装滚刀和刮刀。 气压盾构是在加气压状态下的施工模式,即可用于泥水加压式盾构机,也可用于土压平衡式盾构机。

盾构主要参数的计算和确定

盾构主要参数的计算和确定 1、盾构外径: 盾构外径D=管片外径D S+2(盾尾间隙δ+盾尾壳体厚度t) 盾尾间隙δ--为保证管片安装和修复蛇行,以及其他因素的最小富余量,一般取25—40mm; 结合五标地质取多少? 2、刀盘开挖直径: 软土地层,一般大于前盾0—10mm,砂卵石地层或硬岩地层,一般大于前顿外径30mm,五标刀盘开挖直径如何确定的? 3、盾壳长度 盾壳长度L=盾构灵敏度ξx盾构外径D 小型盾构D≤3.5M,ξ=1.2—1.5;中型3.5M<D≤9M,ξ=0.8—1.2; 大型盾构D>9M;ξ=0.7—0.8; 4、盾构重量 泥水盾构重量=(45---65)D2,由于本线路存在线下溶土洞的可能,再掘进中能否通过此核算,盾构主机是否沉陷? 5、盾构推力 盾构总推力F e=安全储备系数AX盾构推进总阻力F d 安全储备系数A---一般取1.5---2.0。 盾构推进总阻力F d=盾壳与周边地层间阻力F1+刀盘面板推进阻力F2+管片与盾尾间摩擦力F3+ 切口环贯入地层阻力F4+转向阻力F5+牵引后配套拖车阻力F6 盾壳与周边地层间阻力F1计算中,静止土压力系数或土的粘聚力取盾体范围内的何点的? 刀盘面板推进阻力F2,对于泥水盾构或土压盾构土仓压力如何确定的? 管片与盾尾间摩擦力F3中,盾尾刷与管片的摩擦系数取偏大好吗?盾尾刷内的油脂压力如何定? 计算中土压力计算是按郎肯土压公式或库仑土压计算? 6、刀盘扭矩 刀盘设计扭矩T=刀盘切削扭矩T1+刀盘自重形成的轴承旋转反力矩T2+刀盘轴向推力形成的旋 转反力矩T3+主轴承密封装置摩擦力矩T4+刀盘前面摩擦扭矩T5+刀盘圆周摩擦反力矩T6+刀盘 背面摩擦力矩T7+刀盘开口槽的剪切力矩T8 刀盘切削扭矩T1中的切削土的抗压强度q u如何确定? 刀盘轴向推力形成的旋转反力矩T3 计算中土压力计算是按郎肯土压公式或库仑土压计算? , 刀盘圆周摩擦反力矩T6计算中,土压力计算是按郎肯土压公式或库仑土压计算? 刀盘背面摩擦力矩T7中土仓压力P W如何确定? 7、主驱动功率 主驱动工率储备系数一般为1.2---1.5,主驱动系统的效率η如何确定? 8、推进系统功率 推进系统功率W f=功率储备系数A W X最大推力FX最大推进速度VX推进系统功率ηW 功率储备系数A W一般取1.2---1.5, 最大推力F、最大推进速度V如何定? 推进系统功率ηW=推进泵的机械效率X推进泵的容积率X连轴器的效率 9、同步注浆能力 每环管片理论注浆量Q=0.25X(刀盘开挖直径D2—管片外径D S2)X管片长度L 推进一环的最短时间t=管片长度L/最大推进速度v 理论注浆能力q=每环管片理论注浆量Q/推进一环的最短时间t 额定注浆能力q p=地层的注浆系数λX理论注浆能力q/注浆泵效率η 地层的注浆系数λ因地层而变一般取1.5---1.8。

盾构掘进主要参数计算方式

目录 1、纵坡 (1) 2、土压平衡盾构施工土压力的设置方法 (1) 2.1深埋隧道土压计算 (3) 2.2浅埋隧道的土压计算 (3) 2.2.1主动土压力与被动土压力 (3) 2.2.2主动土压力与被动土压力计算: (4) 2.3地下水压力计算 (4) 2.4案例题 (5) 2.4.1施工实例1 (5) 2.4.2施工实例2 (7) 3、盾构推力计算 (9) 4、盾构的扭矩计算 (9) 1、纵坡 隧道纵坡:隧道底板两点间数值距离除以水平距离 如图所示:隧道纵坡=(200-100)/500=2‰ 注:规范要求长达隧道最小纵坡>=0.3%,最大纵坡=<3.0% 2、土压平衡盾构施工土压力的设置方法 根据上述对地层土压力、水压力的计算原理分析,笔者总结出在土压平衡盾构的施工过程中,土仓内的土压力设置方法为:

a、根据隧道所处的位置以及隧道的埋深情况,对隧道进行分类,判断出隧道是属于深埋隧道还是浅埋隧道(一般来说埋深在2倍洞径以下时,算作是浅埋段,2倍以上算深埋); b、根据判断的隧道类型初步计算出地层的竖向压力; c、根据隧道所处的地层以及隧道周边地地表环境状况的复杂程度,计算水平侧向力; d、根据隧道所处的地层以及施工状态,确定地层水压力; e、根据不同的施工环境、施工条件及施工经验,考虑0.010~0.020Mpa 的压力值作为调整值来修正施工土压力; f、根据确定的水平侧向力、地层的水压力以及施工土压力调整值得出初步的盾构施工土仓压力设定值为: σ初步设定=σ水平侧向力+σ水压力+σ调整 式中, σ初步设定-初步确定的盾构土仓土压力; σ水平侧向力-水平侧向力; σ水压力-地层水压力; σ调整--修正施工土压力。 g、根据经验值和半经验公式进一步对初步设定的土压进行验证比较,无误时应用施工之中; h、根据地表的沉降监测结果,对施工土压力进行及时调整,得出比较合理的施工土压力值。

国内外主要盾构机制造商一览

国内外主要盾构机制造商一览 2012年1月16日 12:31:33楼主股市直播室 操盘宝大赛盛装启航一码通24小时万三开户翻倍牛股涨停基因股本文属《建设机械技术与管理》独家向中国工程机械品牌网供稿,如需转载请注明来源和作者,违者必究! 国内: 上海隧道工程股份有限公司 是由上海城建集团控股的专门从事软土隧道施工的企业。隧道股份(600820,股吧)自1958年开始研制生产隧道施工装备以来,具有40余年的地下施工装备制造和大型成套设备安装的辉煌业绩和经验。与国际几大著名隧道装备企业有着广泛的合作和相互技术支持。2004年隧道股份研制成功中国第一台具有自主知识产权和国际先进水平的土压平衡式盾构机,并与国外联合制造出刀盘直径达15.43米的超大直径盾 构机。迄今为止,该公司通过合作制造和自主研制已累计生产了170多台隧道掘进机,承建了盾构法隧道550公里以上。 中铁隧道装备制造有限公司 原属于从事工程施工的中铁隧道集团有限公司,在使用掘进机进行隧道施工中积累了丰富经验,后独立成专业的以掘进机生产为主的装备制造公司。2009年底,中国中铁(601390,股吧)股份公司对内部盾构加工制造资源进行整合重组,以中铁隧道集团有限公司为依托,在郑州国家级经济技术开发区注册成立 了由中国中铁控股,中铁隧道集团、中铁科工集团参股的中铁隧道装备制造有限公司,成为中国中铁旗下 集研发制造、组装调试、营销租赁、售后服务为一体的隧道装备专业化制造公司。以盾构产业化为主线, 产品涉及盾构机及硬岩掘进机隧道模具及后配套产品、长大隧道施工运输设备等一系列隧道施工专用设备。 中国铁建重工集团有限公司公司 前身是中铁轨道系统集团有限公司,是中国铁建(601186,股吧)股份公司于2007年在长沙组建的集铁路轨道系统、城市轨道交通系列产品和重型施工装备研发、制造、施工、检测为一体的大型企业集团,集团下属的隧道装备公司具有年产刀盘直径12m以下土压平衡盾构机,泥水平衡盾构及硬岩掘进机等全端 面隧道掘进装备。 北方重工集团有限公司 由沈阳重型机械集团有限责任公司和沈阳矿山机械(集团)有限责任公司合并重组基础上组建的国有独资公司,自2005年开始介入盾构机制造领域其下属的盾构机分公司综合了维尔特和NFM公司的掘进机技术特点,可制造泥水平衡盾构机、土压平衡盾构机、复合式盾构机、敞开式硬岩掘进机、护盾式硬岩 掘进机、顶管机等隧道工程装备。 北京华隧通掘进装备有限公司 由秦皇岛天业通联(002459,股吧)重工股份有限公司于2008年出资设立,与日本日立造船株式会社、北京交通大学隧道中心和石家庄铁道大学机械工程分院合作,以日立造船的掘进机制造技术为依托, 从事隧道掘进装备及相关配套的科研、设计、产销、服务于一体的专业公司。该公司制造的目前国内地铁 最大的直径10.22m土压平衡盾构机已交付使用,用于北京14号线地铁试验段隧道施工。 中交天和机械设备制造有限公司 由中国交通建设股份有限公司的下属公司中交天津航道局有限公司和中和物产株式会社合资成立,2010年4月2日注册,公司位于江苏省常熟经济开发区高新技术产业园。 该公司专业从事盾构机、全断面硬岩掘进机的设计与制造,以及相关产品的维修、租赁、咨询和技术服务,可制造直径达16米的盾构机。 成都南车隧道装备有限公司

1盾构竞赛模拟考试试题A卷(中铁一局)

模拟考试试题(A卷) 姓名:总分: 一、判断题:(共10题,每题1分) 1.压力越高液压泵的容积效率也越高。() 2.差动联接的单出杆活塞液压缸,可使活塞实现快速运动。() 3.通过节流阀的流量与节流阀的通流面积成正比,与阀两端的压力差大小无关。() 4.拼装机抓举头的抓紧动作需要一直长按抓紧按钮。() 5.从各相首端引出的导线叫相线,俗称火线。() 6.严禁将运行中的电流互感器二次侧开路。() 7.三相电流不对称时,无法由一相电流推知其他两相电流。() 8.管片安装机抓牢管片后,通过调整大油缸、旋转马达、抓取头翻转等将其准确定位到最终位置。( ) 9.激光全站仪是同时测量角度(水平和垂直)和距离的测量仪器。( ) 10.刀盘脱困时,允许使用松开推进油缸的方式进行刀盘脱困。() 二、单项选择题:(共20题,每题1分) 1.导向系统是用来()盾构姿态,提供盾构相对于隧道设计轴线的详细偏差信息,便于用户及时纠正盾构的姿态。 A.监视 B. 引导 C.指示 D. 指挥 2.水平角是由激光全站仪照射到激光靶的()决定的。 A.入射角 B.上倾角 C.下倾角 D.折射角3.同步注浆在地层匀均和盾构姿态较好时,多个注浆孔应()注入。

A.不对称 B.顺序 C.均衡 D.单边 4.滚刀内金属浮动密封环需要配合以()润滑。 A.油脂 B.油浴 C.飞溅 D.压力 5.一般情况下,以II、Ⅲ级围岩为主的隧道较适合采用()施工。 A.双护盾TBM B.土压平衡盾构 C.顶管 D.泥水平衡盾构 6.盾构刀盘上滚刀数量的取决于以下哪种因素之一()。 A.隧道长度; B.岩石性质; C.刀盘扭矩; D.切刀尺寸; 7.盾构隧道防水应以()防水为重点。 A. 接缝 B.自防水为主,以接缝 C.自防水 D.接缝为主,以自防水 8.发泡剂产生的泡沫中()左右是空气。 A.3% B.50% C.90% D.100% 9.当铰接油缸处于()时,铰接油缸处于浮动位,此时盾尾能根据前盾和管片的位置自动调整姿态。 A.释放位B.拖拉位C.保持位D.收缩位 10.中铁系列盾构机,油箱上设置了()个液位传感器。 A.1 B.2 C.3 D.4 11.当泥水盾构机处于安装管片衬砌环时,泥浆循环的模式为()A旁通模式 B.反循环模式 C.隔离模式 D.长时间停机模式12.盾构掘进中的滚动偏差()时,盾构报警,提示操纵者必须切换刀盘旋转方向,进行反转纠偏 A.≥1.5o B.≤1.5o C.≥2o D.≤2o

国内盾构机情况调查报告

沈阳地铁一号线盾构机供应方案报告 一、编制目的 盾构法施工具有施工进度快、工程质量安全易于保证、施工技术 先进等优点,城市地铁施工中采用盾构法施工的比重越来越大,沈阳地 铁一号线一期工程中 12 个区间(约 11.953km)采用盾构法施工,其中 先开工段中的黄~洪区间采用盾构法施工。盾构机造价较高,有些施 工单位在国内其它城市地铁施工中已购置盾构机;同时沈阳重型厂已经 与德国盾构生产企业签订协议合作生产盾构,因此有必要从保证地铁工 程质量进度、合理利用现有盾构资源和拉动地方经济的角度出发,对地 铁一号线盾构机供应情况进行研究。 二、地铁一号线盾构机概况 根据地铁一号线总体设计工程筹划,沈阳地铁一号线采用8 台盾 构机施工,盾构机外径为 6.3m 左右,隧道外径 6.2m,内径 5.5m,管 片厚度350mm,与上海、南京、天津等城市相同。国内还有另外一 种外径尺寸,隧道外径 6m,内径 5.4m,管片厚度 300mm,北京、广州、深圳等城市采用这种形式。两种隧道结构形式的建筑限界都是 φ5200mm,均满足A/B型车辆的要求,考虑拼装及施工误差,断面裕 量值定为 150mm(或 100mm);管片厚度与结构受力及防水要求有关 为 350mm(或 300mm)。两种形式管片的浇注混凝土量差 1.06m3/延米,造价差为 400 元,全线造价差约 880 万元。盾构机外径相差 20cm,造价可能存在一定差别,同时对管片制作生产也有影响。建议在初步

设计前,由总工办组织总体设计单位、初步设计单位、盾构供应商、 施工商等单位进行研究,拿出决定性意见,以便进行盾构资源的摸底 及生产准备工作。 三、盾构机供应方式 国内盾构法施工盾构机供应有两种方式:一种是建设单位提供盾 构机,施工单位租赁设备(上海地铁);另一种是施工方自带盾构(其 它城市)。 1、建设单位提供盾构机租赁 建设单位与盾构制造商签订购买合同,负责盾构的选型、订货、 运输及维修保养。上海地铁 1 号线最早采用该种方式,主要原因是盾 构机作为地铁 1 号线外方融资采购的设备提供给建设单位。采用该种 方式,建设单位需要设置专门的管理机构,配备专业的技术人员和管 理人员。采用该种方式的优点之一是甲方采购盾构,对盾构机供应厂 商有选择权和控制权,有利于地方企业生产的盾构进入沈阳地铁;同时可以获得一定的经济效益。缺点是:盾构机管理、协调维修工作繁 杂,施工过程中盾构机出现问题时施工方与供应方可能相互推诿,甲方有一定的责任和风险;建设单位必须通过公开招标采购盾构,确保 地方企业盾构机中标在操作上有一定的风险和难度。除上海地铁外, 其它城市均未采取该种方式。因此,不建议采用该种方式。 盾构机的价格约为 450 万美元(德国),盾构租赁费用约 1 万元/m,维修费用约占设备总费用的 10%左右,现在尚未进行具体的承 包核算。

盾构机国内生产厂商介绍

盾构机国内生产厂商介绍 上海隧道工程股份有限公司机械厂 中国广州广重企业集团 首钢集团重型机械有限公司 武重集团公司 上海隧道设备有限公司 大连重工 上海振华港机集团 上海沪东造船厂 中国沈阳重型机械集团有限责任公司 秦皇岛华隧通 https://www.doczj.com/doc/8516953057.html, 盾构机国外生产厂商介绍: 德国海瑞克公司 美国罗宾斯公司 法国迈通公司 日本三菱重工 川崎重工 日立公司 据不完全统计,目前国外盾构机的主要制造厂有18家,集中在日本和欧美,如日本的三菱重工、川崎重工、小松制作所、日立造船、石川岛播磨重工,德国的海瑞克公司、维尔特公司,美国的罗宾斯公司,加拿大的罗法特公司等。各个厂家可以根据不同的地质条件和不同的工程对象,以及使用单位的不同要求,设计、生产出不同直径、不同类型、以及有特殊要求的盾构机,以满足用户的需要,其工艺和设备先进。 (一).日本三菱重工(MitsubishiHeavyIndustries,Ltd.) 日本三菱是一家具有100多年历史的企业集团,目前的经营范围除保持传统的造船业、汽车制造业和化工业外,还涉及金融领域,近些年来并涉足核能源、宇宙航天、生态环境和深海开发等尖端技术领域;其属下的直系企业有29家,三菱重工是其中的一家,为世界各地提供软、硬土盾构掘进设备的建设机械部是三菱重工旗下神户造船所的一个分支。 从1939年制造日本第一台手掘盾构机起,至2003年神户造船所就一共制造了1608台盾构机,其中包括土压平衡、泥水平衡、双圆、三圆、MMST等各种类型,数量和种类可谓世界第一,技术居国际之首。如开挖英法海峡交通隧道用的盾构机,其中就有两台是该公司制造的。曾向法国里昂地区提供直径为11m的土压平衡式盾构机,为上海延安东路第二条过江隧道工程生产泥水加压式盾构机,为东京湾海底隧道生产了直径14.14m的泥水加压式盾构机等。 在这1608台盾构中,日本三菱创造了多个第一。除第一台日本手掘盾构外,1970年三菱制造了日本最早的泥水盾构,直径7290mm;1986年制造了马蹄形机械挖掘盾构;1989年为英法海峡隧道提供了2台土压盾构;1991年制造了马蹄形的ECL盾构;1992年为法国里昂高速公路制造了直径为10.96m的土压盾构;1993年制造了迄今最大的双圆盾构;1994年为日本东京湾隧道制造了3台当时最大的泥水盾构;1995年制造了三圆盾构;1996年,为满足共同沟施工需要,制造了

大型泥水盾构现场施工中的泥水处理

精心整理大型泥水盾构施工中的 泥 水 分

第一章绪论 一、泥水加压式盾构及其泥水分离处理系统概述 盾构法施工已有170余年历史,随着科学水平的不断提高,盾构技术也得到不断发展和完善。至今,盾构已发展成为软土地层修建隧 施工提供了广阔的舞台。 泥水加压式盾构是在机械掘削式盾构的前部刀盘后侧设置隔板,它与刀盘之间形成压力室,将加压的泥水送入泥水压力室,当泥水压力室充满加压的泥水后,通过加压作用和压力保持机构,来谋求开挖面的稳定。盾构推进时由旋转刀盘切削下来的土砂经搅拌装置搅拌后

形成高浓度泥水,用流体输送方式送到地面。在地面调整槽中,将泥水调整到合适地层土质状态后,由泥水输送泵加压后,经管路送到开挖面泥水压力室,泥水在稳定开挖面的同时,将刀盘切削下来的土砂搅成浓泥浆,再由排泥泵经管路输送到地面。被送到地面的泥水,根据土砂颗粒直径,通过一次分离设备和二次分离设备将土砂分离并脱 在实际施工中,泥膜的形成是至关重要的。当泥水压力大于地下水压力时,泥水理论按达西定律渗入土壤,形成与土壤间隙成一定比例的悬浮颗粒,在“阻塞”和“架桥”效应的作用下,被捕获并积聚于土壤与泥水的接触表面,泥膜就此形成。随着时间的渐渐推移,泥膜的厚度不断增加,渗透抵抗力逐渐增强,当泥膜抵抗力远大于正面

土压时,产生泥水平衡效果。 2、泥水管理控制 (1)、进浆泥水指标 泥浆能否在渗入土壤时形成优质泥膜,能否稳定切口前方土体, 泥水的比重是一个主要控制指标。掘进中进泥比重不易过高或过低,前者将影响泥水的输送能力,后者将破坏开挖面的稳定。 泥水比重的范围应在1.15~1.30 g/cm3,下限为1.15 g/cm3,上限根据施工的特殊要求而定,在砂性土中施工、保护地面建筑物、盾构穿越浅覆层等,可达1.30 g/cm3。甚至可达1.35 g/cm3。

盾构机笔试题库

中铁装备盾构相关试题题库 (一)填空题 1.中铁装备盾构机电气控制系统的5个分布式IO站点分别位于盾构的、、、、、、等部位。 (TC5 TC3 TC2 TC1 DTL DTR ) 2. ET200M地址拨动开关拨动以进制数编码。( 二进制) 3. 中铁装备盾构机皮带机减速机电气刹车模块的电压等级是。(380V) 4. 中铁装备盾构机皮带机的控制盒渣车满将限制的运行。 (螺机旋转) 5.当前我们普遍采用的380VAC三相四线制供电,两相之间的电压是V,我们称作 电压,其相线与零线之间的电压是V。(380、线电压、220) 6.内循环水是个闭式系统,可以防止影响系统的运行。(结水垢) 7.系统中产生感性无功功率的元件主要是,补偿无功功率应在供电回路中并联。(电感、电容) 8.油箱油温传感器的电信号通常是。(4-20mA电流) 9. S7-400 PLC系统的主PLCCPU上部BF1灯亮红色是指。(BUS总线1故障) 10. S7-400 PLC系统的主PLCCPU下部的三位开关处的MRES是指对PLC进行操作。(清除程序) 11. 中铁装备盾构机的电气控制系统现场总线采用总线,PLC与上位机的通讯采用。(profibus、以太网) 12,PLC常用的编程语言是、、。(梯形图、功能块图、语句表等) 13.设备出现异常时操作台将发出蜂鸣提示音并在上位机的界面显示故障信息,操作司机按下按钮后蜂鸣提示音消除,在以后报警信息将消失,但是在中可以查到出现过的故障信息,方便检修人员进行检修。(报警页面、复位、故障消除、报警历史) 14.中铁装备盾构机操作台泵的单按钮启停控制中,绿灯快速闪烁表示系统处于状态,绿灯慢速闪烁表示泵处于,绿灯常亮表示正常运行。(故障启动过程中) 15.盾构机驱动电机常采用的调速方法是。主要是通过改变来改变电机的转速。(变频调速、供电频率) 16.中铁装备液驱盾构机变压器是式变压器,电驱盾构常采用变压器。(油浸式、干式) 17、主控制主要有、、、仿形刀、膨润土等部分的控制。(推进系统主驱动系统盾尾油脂密封) 18.中铁装备盾构机泡沫注入分、、三种模式。(手动、半自动及自动)

泥水盾构泥水系统技术

泥水盾构泥水系统技术 傅德明 上海申通地铁集团公司 2010.3 1 泥水盾构简介 ?1818年,英国的布鲁诺从蛀虫钻孔得到启示,提出盾构掘进隧道设想。 ? 1825--1843年,布鲁诺在伦敦泰吾士河下用盾构法修建458m长的矩形隧(11.4m× 6.8m)。 ? 1830年,英国的罗德发明“气压法”辅助解决隧道涌水。

1874年Greathead提出泥浆盾构专利 1896年,开始应用刀盘式盾构掘进机 不 ?20世纪60年代初,穿越不稳定和含水地层的隧道工程辅助技术有:降水法、气压 法、地层加固法和冻结法。 ?气压法最经济有效,由于安全和健康等原因,希望有一种能不干扰地面和使工人不 在气压下施工的隧道掘进机,欧洲国家提出“局部气压方法”,但这种对工作面不能提供不变的和有规则的支护。 ?英国隧道专家建议在隔舱板前用喷水“水力盾构”,但水不能支护开挖面,无法阻 止开挖面不停地流动。这种情况与充满水的挖槽相类拟,从而提出在开挖面用类同槽壁法的支护,这样就诞生了泥水加压盾构掘进机。 ?1967年,英国开发成功首台泥水加压平衡盾构。 ?1974年,日本开发成功首台土压平衡盾构。 ?1987--1991年,英国、法国采用11台盾构掘进深50km长的英法海峡隧道,创造单 台盾构连续掘进21km的记录。 ?1989--1996年,日本采用8台世界最大直径14.14m泥水加压盾构,掘进东京湾海 峡隧道,2条隧道各长9.4km。 英国体系泥水盾构

?1964年英国Mott, Hay和Anderson的John Bartlett 申请了泥水加压平 衡盾构掘进机原理专利(英国专利号1083322)。 ?1971年开挖直径4.1m、长140m的试验段。英国体系泥水加压平衡盾构掘 进机与同类德国体系相对照,其研制的特征是有长槽的鼓轮状的切削头、提取来自压力室的泥浆,有粗和细两套分离装置,以及以控制弃土出口压力(阀或泵)的方法保持开挖面的压力。当时,英国由于缺乏能适合促进这种技术的隧道工程,这种技术的发展受到了限制。 日本体系泥水盾构 ?日本工程师相信液体支护隧道开挖面的原理、他们称为“泥水加压平衡盾 构”(即泥水加压平衡盾构)。 ?1970年日本铁建公司在京叶线森崎运河下,羽田隧道工程中采用了直径 7.29m的泥水加压盾构施工,土质为冲积粉砂土层和洪积砂层,N值为2-50,施工 长度为865× 2条=1712延米,见图1。 ?直径7.29m泥水加压盾构掘进机,在隧道施工中获得了极大的成功,它是 当代时最大直径的泥水加压平衡盾构。 ?纵观日本在近30年的泥水盾构发展,自日本泥水盾构问世以来,泥水盾 构一直持续发展。

大型泥水盾构施工中的泥水处理

大型泥水盾构施工中的 泥 水 分 离 处 理 系 统

第一章绪论 一、泥水加压式盾构及其泥水分离处理系统概述 盾构法施工已有170余年历史,随着科学水平的不断提高,盾构技术也得到不断发展和完善。至今,盾构已发展成为软土地层修建隧道的一种专用施工机械,盾构施工法也已成为当今城市隧道和地铁工程中不可缺少的一种施工法。 为了满足城市隧道建设的地表沉降控制和加快施工速度,泥水加压式盾构逐渐发展并成熟,泥水加压式盾构用泥浆代替气压,用管道输送代替轨道出土,加快了掘进速度,改善了劳动条件和施工环境,能较好地稳定开挖面和防止地表隆陷,成为当今一种划时代的盾构新技术。 1996年,上海采用直径11.22m泥水加压式盾构,成功穿越7m 浅覆土河床和4.2m超浅覆土软土地层,完成延安东路南线水底公路隧道施工,标志着中国隧道施工技术已达到国际先进水平。 近来,上海市相继开始建设大连路和复兴东路越江隧道工程,并采用直径11.22m泥水加压式盾构施工,为该施工工艺在软土地基中施工提供了广阔的舞台。 泥水加压式盾构是在机械掘削式盾构的前部刀盘后侧设置隔板,它与刀盘之间形成压力室,将加压的泥水送入泥水压力室,当泥水压力室充满加压的泥水后,通过加压作用和压力保持机构,来谋求开挖面的稳定。盾构推进时由旋转刀盘切削下来的土砂经搅拌装置搅拌后

形成高浓度泥水,用流体输送方式送到地面。在地面调整槽中,将泥水调整到合适地层土质状态后,由泥水输送泵加压后,经管路送到开挖面泥水压力室,泥水在稳定开挖面的同时,将刀盘切削下来的土砂搅成浓泥浆,再由排泥泵经管路输送到地面。被送到地面的泥水,根据土砂颗粒直径,通过一次分离设备和二次分离设备将土砂分离并脱水后,排去分离后的水,经调整槽进行再次调整,使其成为优质泥水后再循环到开挖面。 二、泥水平衡机理及指标 1、泥水平衡机理 泥水平衡盾构是在切削刀盘与隔板之间形成的密封舱中,注入满足施工要求压力的泥浆,使其在开挖面形成泥膜,支承正面土体,并由安装在正面的大刀盘切削土体表层泥膜,由刀盘开口进入密封舱与泥水混合后,形成高密度泥浆,由排泥泵及管道输送至地面进行处理,整个过程通过建立在地面中央控制室内的泥水平衡自动控制系统统一管理。盾构掘进机设有操作步骤设定,各操作步骤间设有联锁装置,制约因误操作而引起事故,施工安全可靠。 在实际施工中,泥膜的形成是至关重要的。当泥水压力大于地下水压力时,泥水理论按达西定律渗入土壤,形成与土壤间隙成一定比例的悬浮颗粒,在“阻塞”和“架桥”效应的作用下,被捕获并积聚于土壤与泥水的接触表面,泥膜就此形成。随着时间的渐渐推移,泥膜的厚度不断增加,渗透抵抗力逐渐增强,当泥膜抵抗力远大于正面

海瑞克盾构机基本参数

海瑞克土压6.3m盾构基本参数 名称技术参数备注 管片设计 外径6米 内径5.4米 管片宽度1.5米 数量5+1 盾体 前体 6.25x6.25x2.9米86.5吨 中体 6.24x6.24x2.58米80吨 前盾数量1个 中盾数量1个 直径6.25米不计耐磨堆焊层 长度(前体和中体) 4.68米螺栓连接并带密封盾构类型土压平衡 300米 盾构最小水平转弯 半径 最大工作压力3BAR 土压传感器(数量) 5个 气闸连接法兰1个 1个 螺旋输送机连接法 兰 盾尾 6.23x6.23x3.61米30吨 盾尾数量1个 型式绞接 长度3.61米 密封3排钢丝刷 注浆口4个DN50,单管 推进油缸液压 数量30个10组双缸+10组单缸分组数量4组 推力34 210KN 最大300BAR 行程2米 工作压力300BAR 伸出速度80mm/min 所有油缸 绞接油缸 类型被动式 数量14个 行程150 mm 刀盘 6.28x6.25x2.6米65吨 数量1个 形式装配有滚刀式 直径6.28米

旋转方向左/右 刀具配置4把17寸中心双刃滚刀,32把17寸单刃滚刀,28把齿刀(250 mm 宽),8组边刮刀(1组两把)。 8个 刀盘上泡沫喷嘴数 量 中心回转体1个 刀盘驱动 数量1个 形式液压驱动 液压马达数量9个 额定转矩6000KNm 最大脱困扭矩7150KNm 转速0~4.5转/分 功率945KW 3x315KW 主轴承形式固定式 人闸 数量1个 形式双仓 直径1.6米 工作压力3BAR 测试压力4.5BAR 额定人数(容纳)3+2 主仓/副仓 管片安装器 管片安装器及行走 5.0x4.0x3.8米22吨 梁 数量1个 形式中心回转式 抓紧系统机械式 自由度6个 旋转角度+/—200度比例控制 管片宽度1.2/1.5米 纵向移动行程2米比例控制 控制装置无线、有线控制 螺旋输送机 形式双螺旋转、有轴式 1号螺旋输送机13.4x1.2x1.4米23吨 长度13.4米 直径800mm 功率160KW 最大扭矩198 KNm 拖困扭矩225 KNm 转速1~22转/分无级调速 285方/时100%充满时 最大出土量(理论 值)

盾构机操作及参数控制

盾构机操作及参数控制 目前,住总集团大多采用德国海瑞克盾构机、日本小松及日立盾构机,现就其小松盾构机操作情况及参数控制作如下总结: 1 开机前准备 1) 检查延伸水管、电缆连接是否正常; 2) 检查供电是否正常; 3) 检查循环水压力是否正常; 4) 检查滤清器是否正常; 5) 检查皮带输送机、皮带是否正常; 6) 检查空压机运行是否正常; 7) 检查油箱油位是否正常; 8) 检查脂系统油位是否正常; 9) 检查泡沫原液液位是否正常; 10)检查注浆系统是否已准备好并运行正常; 11)检查后配套轨道是否正常; 12)检查出碴系统是否已准备就绪; 13)检查盾构操作面板状态:开机前应使螺旋输送机前门应处于开启状态,螺旋输送机的螺杆应伸出,管片安装模式应无效,无其它报警指示; 14)检查测量导向系统是否工作正常; 若以上检查存在问题,首先处理或解决问题,然后再准备开机。 15)请示技术负责人并记录有关盾构掘进所需要的相关参数,如掘进模式,土仓保持压力,线路数据,注浆压力等; 16)请示设备机修负责人并记录有关盾构掘进的设备参数; 17)若需要则根据技术负责人和设备机修负责人的指令修改盾构参数; 2 开机 1)确认外循环水已供应,启动内循环水泵; 2)确认空压机冷却水阀门处于打开状态,启动空压机; 3)根据工程要求选择盾尾油脂密封的控制模式,即选择采用行程控制还是采用压力控制模式;

4)在“报警系统”界面,检查是否存在当前错误报警,若有,首先处理; 5)将面版的螺旋输送机转速调节旋扭、刀盘转速调节旋扭、推进油缸压力调节旋扭、盾构推进速度旋扭等调至最小位; 6)启动前后液压泵站冷却循环泵,并注意泵启动是否正常,包括其启动声音及振动情况等。以下每一个泵启动情况均需注意其启动情况; 7)依次启动润滑脂泵(EP2)、齿轮油泵、HBW 泵、内循环水泵; 8)依次启动推进泵及辅助泵; 9)选择手动或半自动或自动方式启动泡沫系统; 10)启动盾尾油脂密封泵,并选择自动位;至此,盾构的动力部分已启动完毕,下面根据不同的工序进一步进行说明。 3掘进 1)启动皮带输送机 2)启动刀盘 根据测量系统面版上显示的盾构目前旋转状态选择盾构旋向按钮,一般选择能够纠正盾构转向的旋转方向; 选择刀盘启动按扭,当启动绿色按钮常亮后。并慢慢右旋刀盘转速控制旋钮,使刀盘转速逐渐稳定在 2rpm 左右。严禁旋转旋钮过快,以免造成过大机械冲击,损机械设备。此时注意主驱动扭矩变化,若因扭矩过高而使刀盘启动停止,则先把电位器旋钮左旋至最小再重新启动; 3)启动螺旋输送机 慢慢开启螺旋输送机的后门; 启动螺旋输送机按钮,并逐渐增大螺旋输送机的转速; 4)按下推进按钮,并根据 ZED 屏幕上指示的盾构姿态调整四组油缸的压力至适当的值,并逐渐增大推进系统的整体推进速度; 5)至此盾构开始掘进; 4土仓压力调整 1)如果开挖地层自稳定性较好采用敞开式掘进,则不用调正压力,以较大开挖速度为原则; 2) 如果开挖地层有一定的自稳性而采用半敞开式掘进,则注意调节螺旋输送机的转速,使土仓内保持一定的渣土量,一般约保持 2/3左右的渣土。

盾构选型及参数计算方法

盾构选型及参数计算方法 1.1、序言 盾构是一种专门用于隧道工程的大型高科技综合施工设备,它具有一个可以移动的钢结构外壳(盾壳),盾构内装有开挖、排土、拼装和推进等机械装置,进行土层开挖、碴土排运、衬砌拼装和盾构推进等系列操作,使隧道结构施工一次完成。它具有开挖快、优质、安全、经济、有利于环境保护和降低劳动强度的优点,从松散软土、淤泥到硬岩都可应用,在相同条件下,其掘进速度为常规钻爆法的4~10倍。较长地下工程的工期对经济效益和生态环境等方面有着重大影响,而且隧道工程掘进工作面又常常受到很多限制,面对进度、安全、环保、效益等这些问题,使用盾构机无疑是最好的选择。些外,对修建穿越江、湖、海底和沼泽地域隧道,采用盾构法施工,也具有十分明显的技术和经济优势。 采用盾构法施工,盾构的选型及配置是隧道施工中关键环节之一,盾构选型应根据工程地质水文情况、工期、经济性、环境保护、安全等综合考虑。盾构的选型及配置是一种综合性技术,涉及地质、工程、机械、电气及控制等方面。 1.2盾构机选型主要原则 1.2.1盾构的选型依据 盾构选型主要应考虑以下几个因素: 1)工程地质、水文条件及施工场地大小。 2)业主招标文件中的要求。

3)管片设计尺寸与分块角度。 4)盾构的先进性、适应性与经济性。 5)盾构机厂家的信誉与业绩。 6)盾构机能否按期到达现场。 1.2.2 盾构的型式 1)敞开式型盾构 敞开式型盾构是指盾构内施工人员可以直接和开挖面土层接触,对开挖面工况进行观察,直接排除开挖面发生的故障。这种盾构适用于能自立和较稳定的土层施工,对不稳定的土层一般要辅以气压或降水,使土层保持稳定,以防止开挖面坍塌。有人工开挖盾构、半机械开挖盾构、机械开挖盾构。 2)部分敞开式型盾构 部分敞开式型盾构是在盾构切口环在正面安装挤压胸板或网格切削装置,支护开挖面土层,即形成挤压盾构或网格盾构,施工人员可以直接观察开挖面土层工况,开挖土体通过网格孔或挤压胸板闸门进入盾构。根据以往大量工程经验,通常都将挤压胸板和网格切削装置组合在一起安装在盾构上,形成网格挤压盾构。这种盾构适用于不能自立、流动性在的松软粘性土层、尤其是对隧道沿线地面变形无严格要求的工程。当盾构采用网格开挖时,应将安装在网格后面的挤压胸板部分或大部分拆除,利用网格孔对土层的摩擦力或粘结力对开挖面土层进行支护,当盾构向前推进时(一般是盾构穿越江湖、海底或沼泽地区),应将挤压胸板装上,盾构向前推进时,可将土体全部

盾构机参数

随着地下空间的开发,盾构技术已广泛地应用于地铁、隧道、市政管道等工程领域。在我国的各项施工中,盾构机的种类越来越多,其中土压平衡式盾构机在上海、南京、广州等地铁施工中有着较为出色的表现,笔者以日本小松公司Φ6340盾构机为例,结合施工中的一点经验与理解,对其控制原理和参数设置等做简要总结。 控制原理 土压平衡式盾构机的土压控制是PID自动调节控制,切削刀盘切下的弃土进入土仓,形成土压,土压超过预先设定值时,土仓门打开,部分弃土通过螺旋机排出土仓,从而保持土仓内土压平衡,土仓内的土压反作用于挖掘面,防止地层的坍塌。 土压的平衡控制是通过装在盾构机土仓隔壁上的土压计对掘进中的土压进行实时监视,土压计监测到的数值传送到PLC,PLC计算出测量值与设定值之间的差值E,通过PID 控制,自动调整螺旋机转速,使E值趋向于零,当E值大于零时,PLC发出指令,增加螺旋机转速,提高出土量直至土仓内土压重新达到新的平衡状态,反之当E值小于零时,PLC 会降低螺旋机转速,以减少偏差。以保持土仓内土压平衡,使盾构机正常掘进。 主要参数 抽样周期:PID 演算处理的时间间隔,周期越短,动作越连续,但增加了单位时间的处理次数,因此PID以外的控制变慢,不需要细微变动时,可延长周期。 过滤系数:用来除去输入模拟值上的高频成分,数值越大,则过滤效果越强,系统反应也就越迟钝。 比例常数P:为了提高系统灵敏度,使土压保持在一定范围,把计测值与设定值的差值E 乘以一个系数,所得结果再与目标值相比较,这个系数就是比例常数P,P 值越大,调控效果越好。 积分时间I:系统引入比例常数后,PLC调控螺旋机的输出操作量mv=P*E, 也就是偏差被放大了P倍,这样当系统产生偏差时,可能会使螺旋机转速突然增大或减小了许多,形成超调现象,于是又反过来调整,这就引起螺旋机转速忽大忽小,形成振荡。为了消除振荡,引入积分环节,使操作量mv 在积分时间内逐渐完成,即螺旋机转速平稳变化,直到消除偏差。积分时间越小,调控效果越好。 微分时间:根据偏差变化率de/dt 的大小,提前给出一个相应的调节动作,从而缩短了调节时间,可以克服因积分时间太长而使恢复滞后的缺点。 参数设定 参数设置分为两步,第一步是在设备组装完毕,无负荷的状态下进行的一次调试,第二步是在掘进开始,土层稳定后,根据土层状况和操作习惯进行的微调。 1、无负荷调试 (1)比例系数P,首先不执行 I和D,I调至数值上限,D设定为 0,这样系统只执行比例动作P,变动土压目标值,制造约0.01 - 0.03Mpa 的系统偏差,接下来逐渐增大 P 值,使螺旋机转速逐渐增大,当 P 值上升到一定值时,螺旋机的旋转速度会出现大幅度地反复升降,即系统形成振荡,我们把出现振荡时P 值的 85% - 90% 设定为系统的比例系数。 (2)积分时间I,比例系数确定后,调节积分时间I,变动土压目标值,制造一个系统偏差,观察螺旋机回转速度以怎样的速度变化,继续加一定的偏差时,系统向偏差减小的方向增加或减小操作量,操作量的变化程度随积分时间I的变化而变化,此时可以根据操作人员的操作习惯来确定积分时间,一般来说,I在数值上为P值的70% 左右。 (3)微分时间D,在盾构机PID 控制中,管理对象是土仓内的土压,如果掘进速度一定,则土压与切削土量减排土量之差的时间累积成正比,另一方面,系统的控制对象是螺旋机转速,而螺旋机转速同单位时间的排土量成正比,这样从系统输入来看,系统的输出是

盾构讲座二(泥水式盾构机)

泥水式盾构机 1 发展概况 泥水式盾构机是通过有一定压力的泥浆来支撑稳固开挖面;由旋转刀盘、悬臂刀头或水力射流等进行土体开挖;开挖下来的土料与泥水混合以泥水状态由泥浆泵进行输运。泥水式盾构机适用于各种松散地层,有无地下水均可。采用泥水式盾构机进行施工的隧洞工程都说明它是一种低沉降及安全的施工方法,在稳定的地层中其优点更加明显。 最初的泥水盾构要追溯到一百多年前的Greathead及Haag的专利。由于高透水性地层用压缩空气支撑隧洞开挖面非常困难,1874年,Greathead开发了用流体支撑开挖面的盾构,开挖出的土料以泥水流的方式排出。1896年Haag在柏林为第一台德国泥水式盾构申请了专利,该盾构以液体支撑开挖面,其开挖室是有压和密封的。1959年 E.C.Gardner成功地将以液体支撑开挖面应用于一台用于建造排污隧洞的直径为 3.35 m的盾构。1960年 Schneidereit 引进了用膨润土悬浮液来支撑开挖面,而H.Lorenz 的专利提出用加压的膨润土液来稳固开挖面。1967年第一台有切削刀盘并以水力出土、直径为3.1m的泥水盾构在日本开始使用。在德国,第一台以膨润土悬浮液支撑开挖面的盾构由Wayss & Freytag开发并投入使用。 泥水式盾构机的发展有三种历程,即日本历程、英国历程和德国历程。到目前则只有日本和德国两个主要的发展体系。日本的发展历程导致当今的泥水盾构,德国的发展历程导致水力盾构。以日本的泥水盾构为基础发展了土压平衡盾构,而德国的水力盾构导致很多不同的机型,如混合型盾构,悬臂刀头泥水盾构及水力喷射盾构等。德国和日本体系的主要区别是,德国式的在泥水舱中设置了气压舱,便于人工正面控制泥水压力,构造简单;日本式的泥水密封舱中全是泥水,要有一套自动控制泥 水平衡的装置。 1967年三菱公司制造了第一台为泥浆开挖面支护的试验盾构,直径为3.10m的样机取得经验后, 1970年建造了第一台大型泥水盾构,直径为7.20m,用于建设海峡下的Keiyo铁路线。自此以后,日本的很多制造商生产了此型盾构。与欧洲相比,泥水盾构在日本使用很多。在欧洲,英国的Markham,法国的NFM及FCB公司等采用日本许可证,也制造了泥水 盾构。 德国的发展历程起始于1972年,德国承包商Wayss及Freytag公司开发了水力盾构系统。1974年,其样机用于建设Hamburg港口下的Hamburg-Wilhelmsburg总管道,盾构外径为4.48m。当时还没有可靠的盾尾密封。这样一来整条隧道被加压。因为此型盾构是首次使用,很多修改事先未预料到。为了继续隧洞修建工程,采取了许多补救措施,解决了一些主要问题。第二次掘进着重解决了可靠的尾封,使得在最后的30m,采用了新的尾封后才达到隧洞内无压力的目的。当今水力盾构在欧洲市场占有很重要的位置,Herrenknecht,Howaldtswerke Deutsche Werft及Voest Alpine Bergtechnik等公司都是这类盾构最重要的制 造商。

盾构机司机操作流程及参数控制

盾构机操作流程及参数控制1开机前准备 1) 检查延伸水管、电缆连接是否正常; 2) 检查供电是否正常; 3) 检查循环水压力是否正常; 4) 检查滤清器是否正常; 5) 检查皮带输送机、皮带是否正常; 6) 检查空压机运行是否正常; 7) 检查油箱油位是否正常; 8) 检查脂系统油位是否正常; 9) 检查泡沫原液液位是否正常; 10)检查注浆系统是否已准备好并运行正常; 11)检查后配套轨道是否正常; 12)检查出碴系统是否已准备就绪; 13)检查盾构操作面板状态:开机前应使螺旋输送机前门应处于开启状态,螺旋输送机的螺杆应伸出,管片安装模式应无效,无其它报警指示; 14)检查ZED导向系统是否工作正常; 若以上检查存在问题,首先处理或解决问题,然后再准备开机。 15)请示土木工程师并记录有关盾构掘进所需要的相关参数,如掘进模式(敞开式、半敞开式或土压平衡式等),土仓保持压力,线路数据,注浆压力等; 16)请示机械工程师并记录有关盾构掘进的设备参数; 17)若需要则根据土木工程师和机械工程师的指令修改盾构参数; 2 开机 1)确认外循环水已供应,启动内循环水泵; 2)确认空压机冷却水阀门处于打开状态,启动空压机; 3)根据工程要求选择盾尾油脂密封的控制模式,即选择采用行程控制还是采用压力控制模式; 4)在“报警系统”界面,检查是否存在当前错误报警,若有,首先处理;

5)将面版的螺旋输送机转速调节旋扭、刀盘转速调节旋扭、推进油缸压力调节旋扭、盾构推进速度旋扭等调至最小位; 6)启动前后液压泵站冷却循环泵,并注意泵启动是否正常,包括其启动声音及振动情况等。以下每一个泵启动情况均需注意其启动情况; 7)依次启动润滑脂泵(EP2)、齿轮油泵、HBW 泵、内循环水泵; 8)依次启动推进泵及辅助泵; 9)选择手动或半自动或自动方式启动泡沫系统; 10)启动盾尾油脂密封泵,并选择自动位;至此,盾构的动力部分已启动完毕,下面根据不同的工序进一步进行说明。 3掘进 1)启动皮带输送机 2)启动刀盘 ?根据ZED 面版上显示的盾构目前旋转状态选择盾构旋向按钮,一般选择能够纠正盾构转向的旋转方向; ?选择刀盘启动按扭,当启动绿色按钮常亮后。并慢慢右旋刀盘转速控制旋钮,使刀盘转速逐渐稳定在2rpm 左右。严禁旋转旋钮过快,以免造成过大机械冲击,损机械设备。此时注意主驱动扭矩变化,若因扭矩过高而使刀盘启动停止,则先把电位器旋钮左旋至最小再重新启动; 3)启动螺旋输送机 ?慢慢开启螺旋输送机的后门; ?启动螺旋输送机按钮,并逐渐增大螺旋输送机的转速; 4)按下推进按钮,并根据ZED 屏幕上指示的盾构姿态调整四组油缸的压力至适当的值,并逐渐增大推进系统的整体推进速度; 5)至此盾构开始掘进; 4土仓压力调整 1)如果开挖地层自稳定性较好采用敞开式掘进,则不用调正压力,以较大开挖速度为原则;

相关主题
文本预览
相关文档 最新文档