当前位置:文档之家› 研究单摆的运动运动特性07150309

研究单摆的运动运动特性07150309

研究单摆的运动运动特性07150309
研究单摆的运动运动特性07150309

研究单摆的运动运动特性

物科院电子3班朱姜楠07150309

伽利略(1564-1642)首先证明,如果空气摩擦的影响可以忽略不计,则所有自由下落的物体都将以同一加速度下落,这个加速度就是重力加速度。重力加速度是一个重要的物理量,准确测定它,无论在理论上,还是在科研和生产等方面的偶有极其重大的意义。单摆实验是一个经典实验,通过对重力加速度的测量,学习使用实验数据的分析方法和误差来源分析及处理方法。

实验目的

1.研究单摆振动周期与摆长的关系。

2.测量当地的重力加速度,并进行数据处理和误差分析。

实验原理

单摆的运动在摆角很小时(小于5度)可以看成是简谐振动,振动周期T与摆锤重心到悬挂点的距离l以及实验处的重力加速度g有以下关系:

仪器

单摆装置(锥形球、细线)、米尺、多功能分秒仪、游标卡尺等。

实验内容

1.测量5种不同摆长

2.测量周期,学会使用多功能分秒仪

3.以摆长l为横坐标,振动周期T的平方为纵坐标作图并分析实验结果。

4.求出重力加速度g

实验数据及数据处理

1.单摆摆长与周期的关系实验数据

2.作摆长l与周期平方关系图,根据l-关系图分析l与的线性关系,分析其关系是否与

实验原理相符。

3.根据上述数据,计算当地的平均重力加速度值,并计算其不确定度。

思考题

1.用单摆测重力加速度必须满足的条件是什么?

2.如果单摆的摆角超过5°很多,分别取10°、15°测量其周期,并和摆角较小时进

行比较,结果如何,请解释。

(完整版)探究单摆的振动周期正式版.doc

第四节探究单摆的振动周期 从化中学李东贤 【教学目标】 一、知识与技能 1.知道什么是单摆;理解摆角很小时单摆的振动是简谐运动; 2.知道单摆做简谐运动时具有固定周期(频率); 3.知道单摆的周期跟什么因素有关,了解单摆的周期公式,并能用来进行有关的计算; 4.知道探究单摆的振动周期时采用的科学探究方法。 二、过程与方法 1. 通过单摆的教学,知道单摆是一种理想化的系统,学会用理想化的方法建立物理模型. 2.猜想单摆的固定周期跟那些因素有关,进一步认识到有根据的、合理的猜想与假设是物理学的 研究方法之一。 3.通过探究单摆的周期,使学生领悟用“控制变量”来研究物理问题的方法,学习设计 实验步骤,提高学生根据实验数据归纳物理规律的能力。 三、情感态度与价值观 1.在实验探究的过程中,培养兴趣和求知欲,体验战胜困难、解决物理问题时的喜悦; 2.养成实事求是、尊重自然规律的科学态度,知道采用科学方法解决问题,而不是乱猜、盲从。 【教学重点、难点】 重点: 1. 了解单摆的构成。 2.单摆的周期公式。 3.知道单摆的回复力的形成。 难点: 1.单摆振动的周期与什么有关。 2.单摆振动的回复力是由什么力提供的,单摆做简谐运动的条件。 【教学用具】 教师演示实验:多媒体投影仪、铁架台、沙子、单摆、秒表、米尺、磁铁 学生分组实验:游标卡尺,铁架台,铁夹,细线,秒表,米尺,磁铁,一组质量不同的带小 孔的金属小球

【教材分析和教学建议】 教学方法: 1.关于单摆的构成的教学——采用问题教学法. 电教法和讲授法进行 . 2.关于单摆周期的教学——采用猜想、实验验证、分析推理、归纳总结的方法进行. 3.关于单摆的振动 . 单摆做简谐振动的条件及单摆回复力的教学——采用分析归纳法、 电化教学法、讲授法、推理法进行 . 4. 关于单摆在摆角很小时做简谐运动的证明——采用数学公式推导法进行. 教材分析: 1.课标要求:通过观察与分析,理解谐运动的特征,能用公式和图像描述 谐 运动的特征 2.本节主要定性研究单摆作简谐运动的周期和那些因素有关,最后给出定量的公式。首先,教师 应当实际生活使用的各种各样的摆抽象出单摆,例如挂钟,秋千等通过对单摆的受力分析,使学生掌握单摆作谐运动的条件。通过观察和猜想,估计单摆的振动周期和那些因素有关,并且通过设计实验验证自己的猜想。主要分三步:⑴从实际的摆中抽象出单摆,⑵探究单摆运动周期,⑶研究单摆作谐运动的条件。 【教学过程】 一.创设情境,引入新课 在日常生活中,我们经常可以看到悬挂起来的物体在竖直平面内摆动,如摆钟、秋千,等等。生活中的这些摆动都属于振动。如果悬挂小球的细线的伸缩和质量可以忽略,线长又比球的直径大得多,这样的装置叫单摆. 为什么对单摆有上述限制和要求呢?①线的伸缩和质量可以忽略, 就使质量全部集中在摆 球上 .②线长比球的直径大得多,就可把摆球当作一个质点,只有质量无大小,悬线的长度 就是摆长。这样,单摆就抽象成一种物理模型,便于我们研究它们振动的情况。 二、进行科学探究 1.提出问题 弹簧振子做简谐运动时具有固有周期,做简谐运动的单摆是否也有固有周期呢? 2.猜想或假设 弹簧振子做简谐运动的固有周期取决于振子本身的质量和弹簧的劲度系数,与振幅等外 界条件无关。即固有周期仅仅取决于弹簧振子的组成系统。那么,做简谐运动的单摆的固有 周期又取决于哪些因素呢? 引导学生可从单摆的结构思考:单摆振动的周期可能与振幅、摆球质量、摆长、当地的 重力加速度及空气阻力有关,也可能与摆线的质地、小球的密度、体积有关

数学建模实验

数学建模课程实验报告 专题实验7 班级数财系1班学号2011040123 丛文 实验题目常微分方程数值解 实验目的 1.掌握用MATLAB求微分方程初值问题数值解的方法; 2.通过实例学习微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格库塔方法的基本思想。 实验容 (包括分 析过程、 方法、和 代码,结 果) 1. 用欧拉方法和龙格库塔方法求下列微分方程初值问题的数值 解,画出解的图形,对结果进行分析比较 解;M文件 function f=f(x,y) f=y+2*x; 程序; clc;clear; a=0;b=1; %求解区间 [x1,y_r]=ode45('f',[a b],1); %调用龙格库塔求解函数求解数值 解; %% 以下利用Euler方法求解 y(1)=1;N=100;h=(b-a)/N; x=a:h:b;

for i=1:N y(i+1)=y(i)+h*f(x(i),y(i)); end figure(1) plot(x1,y_r,'r*',x,y,'b+',x,3*exp(x)-2*x-2,'k-');%数值解与真解图 title('数值解与真解图'); legend('RK4','Euler','真解'); xlabel('x');ylabel('y'); figure(2)

plot(x1,abs(y_r-(3*exp(x1)-2*x1-2)),'k-');%龙格库塔方法的误差 title('龙格库塔方法的误差') xlabel('x');ylabel('Error'); figure(3) plot(x,abs(y-(3*exp(x)-2*x-2)),'r-')%Euler方法的误差 title('Euler方法的误差') xlabel('x');ylabel('Error');

单摆运动规律的研究培训资料

单摆运动规律的研究 摘要单摆问题是高中物理及大学普通物理实验教学中的一个基础问题。受各种因素的影响,其运动规律较为复杂。本文建立了理想模式下单摆的数学模型,现实情况下单摆的数学模型.等对单摆的运动进行了探究。 首先,本文从理想情况出发,由牛顿第二定律进行推理,建立了无阻尼小角度单摆运动模型,对单摆的运动进行了初步探究。 然后,本文又建立了无阻尼大角度单摆运动模型,进一步完善了理想模式下单摆的数学模型。 最后,本文从实际出发,考虑单摆运动中受到的阻力因素,以理想模式下单摆的数学模型为基础,建立了现实情况下单摆的运动模型,深度的对单摆运动进 行了探索。 关键词简谐运动角度阻尼运动单摆运动 目录 一、问题的描述 二、模型假设 三、模型建立及求解 1 理想模式下单摆的数学模型 1.1 小角度单摆运动模型 1.1.1 模型建立 1.1.2 模型求解 1.1.3 结果分析 1.2 大角度单摆运动模型 1.2.1 模型建立 1.2.2 模型求解 1.2.3 结果分析 2 现实模式下单摆的数学模型 2.1 小、大阻尼单摆运动模型 2.1.1 模型建立 2.1.2 模型求解 2.1.3 结果分析 四模型分析 问题的描述 根据平常接触到的摆钟、秋千等实物中,我们可以抽象出单摆的模型。细线一端固定在悬点,另一端系一个小球,如果细线的质量与小球相比可以忽略,球的直接与线的长度相比也可以忽略,这样的装置就叫做单摆.我们从理想情况出发进行分析,并逐渐完善从而推导出单摆实际运动规律。 二模型假设

1悬挂小球的细线伸缩和质量均忽略不记,线长比小球的直径大得多; 2. 装置严格水平; 3. 无驱动力。 三模型建立及求解 1理想模式下单摆的数学模型 mg 图1简单单摆模型 在t时刻,摆锤所受切向力ft(t)是重力mg在其运动圆弧切线方向上的分力,即f(t) =mg si n(t) 完全理想条件下,根据牛顿第二运动定律,切向加速度为: a(t) = g sin (t) 因此得到单摆的运动微分方程组: dv(f) ------- =gain ff (r) + —sin(9 = 0 (1)打I 1.1小角度单摆运动模型1.1.1模型建立 当摆角B很小时,sin B?,B故方程1可简化为: —+-^(9=0 (2) 护I 1.1.2模型求解 利用matlab软件在[0, 5o]分别作出方程(1)和方程(2)的解得图像

单摆运动的分析

单摆的运动规律分析 摘要:单摆的理想模型是,假设单摆由不可伸缩的轻绳与一质量为m 的小球组成,不考虑空气阻力。在此基础上还可以进一步考虑受阻力情况。 关键词:单摆 线性微分方程 非线性微分方程 正文: 单摆的理想模型是,假设单摆由不可伸缩的轻绳与一质量为m 的小球组成,不考虑空气阻力。在此基础上还可以进一步考虑受阻力情况。 单摆在摆动过程中要受到空气阻力的影响,且其在摆动的过程中可能会出现不在同一平面内的情况,若考虑这一系列问题,求解就会变得比较复杂了,首先把问题理想化,假设单摆由不可伸缩的轻绳与一质量为m 的小球组成,不考虑空气阻力。 Ⅰ.由刚体绕定轴转动的微分方程可知: θθsin 2 22 mgl dt d ml -=……⑴ 当θ很小时: 02 2=+θθl g dt d ……⑵ 令l g w =2 则原式化为02 22=+θθw dt d ……⑶ 做任意角度摆动时的情况: 0sin 2 2 2=+θθw dt d ……⑷ Ⅱ.受大小与速度成正比的阻力作用时: 0sin 2 22=+-θθθw dt d k dt d ……⑸ 做小角度摆动时可近似为: 0222=++θθ θw dt d k dt d ……⑹ 其中⑵、⑶、⑹式为线性微分方程,⑴、⑷、⑸式为非线性微分方程。 1)小角度震荡时将sin θ近似看作θ i.函数文件: function fc=f0(t,y) global g l fc=[y(2) -g/l*y(1)]' ii.绘图程序:

clear clc global g l g=9.8; l=1; w0=input('wm0?\n') [t,y]=ode45('f0',[0,100],[0,w0*pi]'); plot(t,y(:,1),'r') title('θ-t 图'); xlabel('时间/s'); ylabel('θ/rad'); grid iii.图像: 取wm0=0.5. 2)振幅增大后,θ将不满足近似条件。 i.函数文件: function fc=f1(t,y) global g l fc=[y(2) -g/l*sin(y(1))]' ii.绘图程序: clear clc global g l k

高浓度固液两相流的运动特性研究

高浓度固液两相流的运动特性研究 倪晋仁1,2,黄湘江1,2 (1.大学环境科学中心;2.水沙科学教育部重点实验室) 摘要:利用固体颗粒运动的动理论,通过改变颗粒浓度可以考察非粘性颗粒在水流中运动的典型微观和宏观运动特性。本文分别对微观的颗粒速度分布函数变化和由此衍生的诸如颗粒平均速度、颗粒脉动速度和单位体积颗粒数垂线分布等宏观变量的变化进行了系统比较。研究结果表明:动理论能够比传统理论获得更详细的微观和宏观信息,也更适合研究高浓度固液两相流运动特性,颗粒运动微观和宏观特性在颗粒浓度超过一定阈值后会发生本质的变化,但临界颗粒浓度值(阈值)在不同的计算和实验条件下会有一定的差别。 关键词:高浓度挟沙水流,微观,宏观,特性,运动学理论 基金项目:国家自然科学基金资助项目(49625101) 作者简介:倪晋仁(1963-),男,山阴人,教授,主要从事环境科学及泥沙方面的研究。 高浓度固液两相流在生产实践中经常遇到。河流中的泥沙含量高,可能导致 河道淤积、河床抬高和洪水频率增加[1]。高浓度固液两相流的流动和输运特性与 低浓度固液两相流有着很大的不同。高浓度挟沙水流经常表现出非牛顿流体的特 性[2],不同于低浓度时的牛顿流体。以往对于高浓度固液两相流的描述多基于宾 汉塑性体模型或拜格诺的膨胀体模型[3,4]。就含有粘性颗粒的高浓度固液两相流 而言,中国学者提出了许多关于屈服应力和宾汉粘性系数的经验表达式,这些表 达式都采用颗粒浓度和反映颗粒大小组分的变量。Chen[5]曾对这方面的研究工作 进行了全面的评述。就含有非粘性颗粒的高浓度固液两相流而言,以往的研究[6] 多从Bagnold[3]的颗粒离散应力概念出发。Chen[7]的粘塑体模型包含了以上两种 情况。最近,新的流变模型研究又有进展,并用于描述高浓度挟沙水流的复杂特 性,参见Chen[8]和Brufau[9]等。通常描述固液两相流的连续介质理论[10]能够合理 地描述流体和颗粒的宏观运动特性,但不能充分解释颗粒与颗粒的相互作用,更 不能描述颗粒运动的微观特性。采用基于Boltzmann方程的动理论能够很好地

探究单摆的物理原理教案

探究单摆的物理原理教案 【教学目标】 (一)知识与技能 1、知道什么是单摆,了解单摆的构成。 2、掌握单摆振动的特点,知道单摆回复力的成因,理解摆角很小时单摆的振动是简谐运动。 3、知道单摆的周期跟什么因素有关,了解单摆的周期公式,并能用来进行有关的计算。 4、知道用单摆可测定重力加速度。 (二)过程与方法 1、知道单摆是一种理想化的系统,学会用理想化的方法建立物理模型。 2、通过单摆做简谐运动条件的教学,体会用近似处理方法来解决物理问题。 3、通过研究单摆的周期,掌握用控制变量的方法来研究物理问题。 (三)情感、态度与价值观 1、单摆在小角度情况下做简谐运动,它既有简谐运动的共性,又有其特殊性,理解共性和个性的关系; 2、当单摆的摆角大小变化时,单摆的振动也将不同,理解量变和质变的变化规律。 3、培养抓住主要因素,忽略次要因素的辨证唯物主义思想。 【教学重点】 1、知道单摆回复力的来源及单摆满足简谐运动的条件; 2、通过定性分析、实验、数据分析得出单摆周期公式。 【教学难点】 1、单摆振动回复力的分析; 2、与单摆振动周期有关的因素。 【教学方法】 分析推理与归纳总结、数学公式推导法、实验验证、讲授法与多媒体教学相结合。

【教学用具】 单摆、秒表、米尺、条形磁铁、装有墨水的注射器(演示振动图象用)、CAI 课件。 【教学过程】 (第一课时)单摆的回复力 (一)引入新课 教师:1862年,18岁的伽利略离开神学院进入比萨大学学习医学,他的心中充满着奇妙的幻想和对自然科学的无穷疑问,一次他在比萨大学忘掉了向上帝祈祷,双眼注视着天花板上悬垂下来摇摆不定的挂灯,右手按着左手的脉搏,口中默默地数着数字,在一般人熟视无睹的现象中,他却第一个明白了挂灯每摆动一次的时间是相等的,于是制作了单摆的模型,潜心研究了单摆的运动规律,给人类奉献了最初的能准确计时的仪器。 在第一节中我们以弹簧振子为模型研究了简谐运动,日常生活中常见到摆钟、摆锤等的振动,这种振动有什么特点呢本节课我们来学习简谐运动的另一典型实例——单摆。 (二)进行新课 1.单摆 (1)什么是单摆 秋千和钟摆等摆动的物体最终都会停下来,是因为有空气阻力存在,我们能不能由秋千和钟摆摆动的共性,忽略空气阻力,抽象出一个简单的物理模型呢 (出示各种摆的模型,帮助学生正确认识什么是单摆) ①第一种摆的悬绳是橡皮筋,伸缩不可忽略,不是单摆; ②第二种摆的悬绳质量不可忽略,不是单摆; ③第三种摆的悬绳长度不是远大于球的直径,不是单摆; ④第四种摆的上端没有固定,也不是单摆; ⑤第五种摆是单摆。 定义:如果悬挂小球的细线的伸缩和质量可以忽略,线长又比球的直径大得多,这样的装置叫单摆。 绳绕在杆上

机构运动特性分析与四杆机构设计

模块六机构运动特性分析与四杆机构设计 【能力目标】具备平面机构运动特性和传力特性的分析能力及一般平面连杆机构的设计能力【课程内容】 1.机构的运动特性分析方法, 2.平面四杆机构的基本设计方法, 3.计算机辅助图解设计法。 【教学方法】观察机构,分析机构运动特性、传力特性及机构间运动的协调,观察运动副的结构。 【教学手段】课堂演示与现场教学相结合 【教学地点】多媒体教室、创新实训室 【教学重点】四杆机构的构成要素,基本特性分析 【教学难点】四杆机构的协调运动设计 【实践内容】图解法设计平面四杆机构 【教学课时】理论3课时实践2课时 【理论授课内容】 6.1 铰链四杆机构及其演化 一、铰链四杆机构的基本形式 1.基本概念: 铰链四杆机构:所有低副均为转动副的四杆机构。 机架:机构中的固定构件。 连杆:与机架相对的杆。 连架杆:与机架相连的杆。 曲柄:能作360°回转的连架杆。 摇杆:只能在小于360°范围内摆动 的连架杆 2.铰链四杆机构的基本形式: 曲柄摇杆机构:在两连架杆中,一个为曲柄,另一个为摇杆。 双曲柄机构:两连杆架均为曲柄的四杆机构。 双摇杆机构:两连杆架均为摇杆的四杆机构。 二、铰链四杆机构的演化

所有的四杆机构都是由四杆机构的基本形式演化来得。 1.扩大转动副,使转动副变成移动副 得到曲柄滑块机构 (1)e≠0时,为偏置曲柄滑块机构 (2)e=0时,为对心曲柄滑块机构 曲柄滑快机构演化:扩大运动副,可将转动副的尺寸扩大到超过曲柄长度,演化成偏心轮机构 2.取不同的构件为机架 1)铰链四杆机构的演化 a:曲柄摇杆机构b双曲柄机构 c双摇杆机构d曲柄摇杆机构 2)曲柄滑块机构的演化

带传动的受力分析及运动特性

带传动的受力分析及运动特性 newmaker 一、带传动的受力分析 带传动安装时,带必须张紧,即以一定的初拉力紧套在两个带轮上,这时传动带中的拉力相等,都为初拉力F0(见图7–8a )。 图7-8 带传动的受力情况 a)不工作时 b)工作时 当带传动工作时,由于带和带轮接触面上的摩擦力的作用,带绕入主动轮的一边被进一步拉紧,拉力由F0增大到F1,这一边称为紧边;另一边则被放松,拉力由F0降到F2,这一边称为松边(见图7–8b )。两边拉力之差称为有效拉力,以F 表示,即 F =F1–F2 (7–4) 有效拉力就是带传动所能传递的有效圆周力。它不是作用在某一固定点的集中力,而是带和带轮接触面上所产生的摩擦力的总和。带传动工作时,从动轮上工作阻力矩T¢2所产生的圆周阻力F¢为 F¢=2 T'2 /d2 正常工作时,有效拉力F 和圆周阻力F¢相等,在一定条件下,带和带轮接触面上所能产生的摩擦力有一极限值,即最大摩擦力(最大有效圆周力)Fmax ,当Fmax≥F¢时,带传动才能正常运转。如所需传递的圆周阻力超过这一极限值时,传动带将在带轮上打滑。 刚要开始打滑时,紧边拉力F1和松边拉力F2之间存在下列关系,即 F1=F2?e f?a (7–5) 式中 e –––自然对数的底(e≈2.718); f –––带和轮缘间的摩擦系数;

a–––传动带在带轮上的包角(rad)。 上式即为柔韧体摩擦的欧拉公式。 (7-5)式的推导: 下面以平型带为例研究带在主动轮上即将打滑时紧边拉力和松边拉力之间的关系。 假设带在工作中无弹性伸长,并忽略弯曲、离心力及带的质量的影响。 如图7–9所示,取一微段传动带dl,以dN表示带轮对该微段传动带的正压力。微段传动带一端的拉力为F,另一端的拉力为F+dF,摩擦力为f·dN,f为传动带与带轮间的摩擦系数 (对于V带,用当量摩擦系数fv,,f为带轮轮槽角)。则 因da很小,所以sin(da/2)?da/2,且略去二阶微量dF?sin(da/2),得 dN=F?da 又 取cos(da/2)?1,得f?dN=dF或dN=dF/f,于是可得 F?da=dF/f 或dF/F=f?da 两边积分

数学建模第四版答案

数学建模第四版答案 【篇一:数学建模课后答案】 t>第二章(1)(2012年12月21日) 1.学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍.学生们 要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分 较大者; (2). 1中的q值方法; (3).d’hondt方法:将a、b、c各宿舍的人数用正整数n=1,2,3,??相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中a、b、c行有横线的数分别为2,3,5,这就是3个宿舍 分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将 3种方法两次分配的结果列表比较. 解:先考虑n=10的分配方案, p1?235,p2?333,p3?432,方法一(按比例分配) ?p i?1 3 i ?1000. q1? p1n ?p i?1 3 ?2.35,q2? p2n i ?p i?1 3 ?3.33, q3? p3n i

?p i?1 3 ?4.32 i 分配结果为: n1?3, n2?3, n3?4 方法二(q值方法) 9个席位的分配结果(可用按比例分配)为: n1?2,n2?3, n3?4 第10个席位:计算q值为 235233324322 q1??9204.17, q2??9240.75, q3??9331.2 2?33?44?5 q3最大,第10个席位应给c.分配结果为 n1?2,n2?3,n3?5 方法三(d’hondt方法) 此方法的分配结果为:n1?2,n2?3,n3?5 此方法的道理是:记pi和ni为各宿舍的人数和席位(i=1,2,3代表a、b、c宿舍). pi 是ni 每席位代表的人数,取ni?1,2,?,从而得到的近. pip 中选较大者,可使对所有的i,i尽量接nini 再考虑n?15的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型. 解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本. 考虑t到t??t时间内录像带缠绕在右轮盘上的长度,可得 vdt?(r?wkn)2?kdn,两边积分,得 ? t vdt?2?k?(r?wkn)dn n 2?rk?wk22n2 2vv 第二章(2)(2008年10月9日)

单摆周期公式及影响单摆周期的因素研究

单摆周期公式及影响单摆周期的因素研究 摘要:结合理论知识,基础物理实验,构建线性数学模型。对单摆运动进行分析。其中,理论部分主要依据高等数学及数学物理方法的知识,对单摆运动周期公式进行论证;实验部分主要通过改变单摆摆线长度进行实验;观察、分析单摆运动规律。从而验证单摆周期公式。并对影响单摆周期的因素展开研究。最后总结出影响单摆周期的因素。 关键词:数学模型;单摆运动;周期公式 单摆运动问题是一个古老的问题,无论是中学物理还是大学物理,我们都在学习研究单摆。作为一个重要的理想物理模型,单摆的运动周期规律和实验研究在生产生活中意义重大。单摆问题是物理学中经典问题。从阅读物理学史并可知道,早在1583 年,十九岁的伽利略(1564—1642)在比萨教堂祈祷时注意到因被风吹而摆动的大灯,他利用自己的脉搏来测定大灯的摆动周期,发现了摆的等时性。但现在这个故事的真实性受到怀疑,因为比萨大教堂所保留的许多相关历史文献都表明该吊灯是在伽利略二十三岁那年才首次安装的。专家指出,伽利略是于1602 年注意到单摆运动的等时性,不过伽利略误认为在大摆动条件下等时性也成立,他说:“物体从直立圆环上任一点落到最低位置的时间相同。”随后吉多彼得做实验发现这个结论与实验不符,伽利略解释说可能是由于摩擦力。伽利略从实验中得出单摆周期与摆长的平方根成正比。他还指出周期与摆球质量无关。他说:“因此我取两个球,一个是铅的而另一个是软木的,前者比后者重100 多倍,用两根等长细线把它们悬挂起来、把每一个球从铅直位置拉到旁边,我在同一时刻放开它们,它们就沿着以这些等长线为半径的圆周下落,穿过铅垂位置,并且沿同一路径返回。”最早系统地研究单摆的是惠根斯(ChristiaanH uygens)。由于当时实验技术条件的落后,重力加速度在惠根斯之前是很难精确测出来的,所以惠更斯不可能从实验中总结出或猜出单摆周期公式的系数π2。事实上,反过来重力加速度是1659 年惠更斯根据单摆周期公式首次精确测出来的。他在巴黎用一个周惠更斯期为2s的单摆(即秒摆),测出摆长为 3.0565英尺,从而计算出2 /2.9s g=。惠更斯于1657 年取得了关于摆钟的专利权。惠更斯最伟大的著作《摆式时钟或用于时钟上的摆的运动的几何证明》于1673 年在巴黎问世。这本书共分5部分,第一与或第五部分讨论时钟,第二部分讨论质点在重力作用下的自由落体运动以及沿光滑平面或曲面所作的约束运动,并证明了在大摆动下约束在旋轮线上的物体等时降落的性质,第三部分建立渐屈线理论,第四部分解决了复摆问题。这是人类第一次系统地研究约束运动的论著。1659 年,在对单摆的研究中,他导出了摆动周期和沿着摆的长从静止开始的自由落体时间之间

行走机器人运动结构特性分析

第19卷第3期湖 北 工 学 院 学 报2004年6月 V ol.19N o.3 Journal of H ubei Polytechnic U niversity Jun.2004 [收稿日期]2004-03-01 [作者简介]段成龙(1980-),男,湖北武汉人,中国地质大学(武汉)硕士研究生,研究方向:机械设计及理论. [文章编号]1003-4684(2004)0620017202 行走机器人运动结构特性分析 段成龙,张 萌 (中国地质大学机械与电子工程学院,湖北武汉430074) [摘 要]介绍了行走机器人的发展、分类、结构和运动特性,并详细叙述了几种典型的机器人行走机构和特 点,最后介绍采用U G 设计软件对机器人结构设计的模拟仿真.[关键词]机器人;行走机构;仿真[中图分类号]TP24[文献标识码]:A 行走机器人是机器人学中的一个重要分支.关于行走机器人的研究涉及许多方面,首先,要考虑移动方式,可以是轮式的、履带式的和腿式的等.其次,必须考虑驱动器的控制,以使机器人达到期望的行为.第三,必须考虑导航或路径规划.因此,行走机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合系统. 1 行走机器人的结构设计技术发展现 状 机器人的机械结构形式的选型和设计,应该根据实际需要进行.在机器人机构方面,应当结合机器人在各个领域及各种场合的应用,开展丰富而富有创造性的工作.对于行走机器人,研究能适应地上、地下、水中、空中、宇宙等作业环境的各种移动机构. 当前,对足式步行机器人、履带式和特种机器人研究较多,但大多数仍处于实验阶段,而轮式移动机器人由于其控制简单,运动稳定和能源利用率高等特点,正在向实用化迅速发展,从阿波罗登月计划中的月球车到美国最近推出的NASA 行星漫游计划中的六轮采样车,从西方各国正在加紧研制的战场巡逻机器人、侦察车到新近研制的管道清洗检测机器人,都有力地显示出行走机器人正在以其使用价值和广阔的应用前景而成为智能机器人发展的方向之一. 2 几种行走机器人行走机构特点 2.1 轮式行走机器人 轮式行走机器人是机器人中应用最多的一种机 器人,滚轮由电机直接驱动,它一般是将具有独立驱动装置、换向装置和制动装置的滚轮安装在由电机驱动的腿结构的末端,这些机构和装置在增强了行走机器人可操作性能的同时,也增加了机器人的重量,一定程度上限制了其机动性能.图1所示机器人是一种特殊的轮式机器人从动轮式机器人 . 从动轮式机器人作为特殊的轮式机器人,其滚轮是作为从动轮,滚轮上无任何附加主动力,通过水平连杆、垂直连杆和滚轮的协调动作,利用滚轮受到的法向摩擦力远大于切向力的特点,可以使系统受到的摩擦力合力指向前方,产生机器人驱动力,驱动机器人运动.从动轮式机器人可实现多种运动姿态,其功能相当于万向轮式行走机器人,具有较大的灵活性[1]. 该机器人是由四个装有滚轮的机械腿和机器人本体构成.每个腿有水平连杆和垂直连杆构成,四个腿协调运动.每个机械腿分别有两个直流控制电机驱动.第一个电机控制水平连杆的前后摆动,另一个电机控制垂直连杆内外摆动.根据运动形式,确定四个腿的水平连杆的初始摆角,通过四个腿上的水平连杆和垂直连杆的协调动作,可以调节机器人所受合力的大小和方向,使机器人按要求的路径滑行.

单摆运动的数学建模

单摆在不同摆角下运动的数学模型 报告人:曾云霖 专业学号:微电子92 09053057 关键词:单摆、简谐运动、空气阻力,摆角大小 摘要: 单摆是生活中常见的模型,也是常用的简单模型。物理学中所讨论的单摆是一种理想化的模型,也称数学摆。它由一根不可伸缩的细线(质量不计),一端固定,另一端悬挂一质量为M的小球(视为质点)而构成的振动系统。 对于理想单摆,我们总是尽可能的简化它的一般分析,认为它只受到重力和拉力的作用。因为拉力与小球的运动总是相互垂直的,对小球的运动没什么影响 但生活中的单摆往往是非理想的,非理想单摆还考虑到绳的重力、空气阻力等,且单摆的运动还与单摆的摆角有关,研究单摆在不同摆角下的运动是有现实和理论意义的 模型建立: 考虑在摆角很小的范围内(小于5度),sinθ≈θ

此时受力如图所示: 由牛顿第二定律可知 sin mg m θα=- l αβ= l βω= d d t θ ω= 220mg ml t θθ?+=? 化简可得 220g t l θθ?+=? 这是一个二阶常系数的奇次线性微分方程,设定初值条件: ()00,(0)a θω== 利用高等数学知识可以解得: ()1sin 2cos t c t c t θ=+ 代入初值条件: ()cos t a t θω= g l ω= 结论:理想单摆在小摆角下(小于5度)的运动是简谐运动 周期

22l T g π πω== 问题扩展: 实际生活中的单摆是非理想的,总要收到其它力的作用,如绳的重力,空气阻力等 现在我们忽略绳的重力,考虑在空气阻力环境下单摆的运动。 查阅知识可知:空气粘滞阻力与小球速度成正比,即f kv = 所以单摆的受力方程变换为 sin mg kv m θα+=- d v l l dt θ ω== 化简可得: 220d k d g dt m dt l θθθ++= 可令 2,k g n m l ω==? 222^20d d n dt dt θθωθ++= 当220n ω<时 sin cos a t b t θωω=+ 当220n ω=时 ()t a bt e ωθ=+ 当220n ω>时 12 t t ae be ωωθ=+

关于实际弹簧振子运动特性的研究(精)

关于实际弹簧振子运动特性的研究摘要:本文分析和研究了实际弹簧振子的运动特性,即在考虑弹簧振子自身的质量和在运动过程中遇到摩擦阻力等情况下,对其振动的性质、周期、振幅等特性的影响,并得出了定量的表达式,同时文中对弹簧振子运动时所具有的能量也作了比较全面的论述。这将为物理课程中该问题的教学提供了良好的参考作用。 关键词:弹簧;质量;摩擦力;系统能量等。 0 引言 在一般的物理书籍中,当述及到弹簧振子的特性时,为了讨论问题的方便,往往都是忽略了弹簧振子的质量和物体在运动时所受到的摩擦阻力的,但在实际问题中却往往不是这样,下面我们将对上述两个因素对弹簧振子运动特性的影响作系统的分析和研究,同时对平时较为少见的实际弹簧振子运动时所具有的能量问题也作了全面的论述。 1 实际弹簧振子的运动特性 在一般教学和研究中涉及弹簧振子时,通常都是指轻弹簧[1],即在这种理想条件下抽象出弹性集中于弹簧,质量集中于振子,没有运动阻力的理想弹簧振子模型。分析它的动力学特点,易知弹簧振子系统在运动中只受到回复力F=-kx的作用,简谐振动的固有周期公式T=2πm 。如果弹簧振子受到的摩擦力或弹簧质量不能忽略,那么这两种因素k 对弹簧振子的振动[2]到底会有什么影响呢?下面我们分别加以讨论。 1.1摩擦力对弹簧振子振动的影响 为简化该问题的讨论,我们不考虑弹簧质量对系统振动的影响,即忽略弹簧质量。设弹簧的倔强系数为k,振子与杆的滑动摩擦系数为μ,静摩擦系数为μ',弹簧振子的质量为m,x轴方向如图 弹簧振子在运动过程中所受摩擦力大小f=μmg,其方向与振子运动方向相反。如果我们用符号SignA表示某任意值A的正负号,则f=-μmg(Sign这样,当dx)dtdxdx>0时,f=-μmg;当<0时,f=μmg; dtdt dxdxd2x当≠O时,弹簧振子的运动方程为:-kx-μmg(Sign)=m dtdtdt2

理学院学学期数学建模训练题

理学院03-04学年第二学期 数学建模训练题 1、 鱼群的适度捕捞问题 鱼群是一种可再生资源,若目前鱼群的总数为x 公斤,经过一年的成长与繁殖,第二年鱼群的总数变为y 公斤。反映x 与y 之间相互关系的曲线称为再生产线,记为)(x f y =。 现设鱼群的再生产曲线为)1(N x rx y - =,)1(>r 。为使鱼群的数量维持稳定,在捕鱼时必须注意适度捕捞。问鱼群的数量控制在多大时,才能使我们获得最大的持续捕获量? 2、搬柜进屋问题 老张临搬家前,站在自己大衣柜旁发愁.担心这大衣柜般不进新居,站在一旁的小李马上拿了一把尺子出去了,不一会儿,小李对老张说:“从量得电梯前楼道和单元前楼道宽度,绝对没问题”。请建立此问题的数学模型,并给出计算实例。 3、客机的租、买问题 某航空公司为了发展新航线的搬运业务,需要增加5架波音747客机。如果购进一架客机需要一次支付5000万美元现金,客机的使用寿命为15年。如果租用一架客机,每年需要支付600万美元的租金,租金以均匀货币流的方式支付,若银行的年利率为12%,请问购买客机与租用客机哪种方案为佳?如果银行的年利率为6%呢? 4、绕斜轴旋转而成的立体体积的计算问题 在高等数学中,平面图形绕x 轴或y 轴旋转所成立体的体积如何计算早已解决。但对平面图形绕任意直线b kx y +=)0(≠k 旋转所成立体的体积如何计算却没有讨论。这是一个较复杂的问题,对于该问题,按通常的想法应该是:先平移、旋转坐标轴,求出曲线在新坐标下的方程,在绕新轴旋转去求体积,但这样做十分困难。请用微元法推导出一个普遍适用的公式。 5、学习曲线

方形粒子沉降运动特性的研究

收稿日期!!""#$$$7&!!!!!!浙江大学学报"工学版#网址!’’’&()*+,-./&0(*&12*&3,"1,4基金项目!国家自然科学基金资助项目#$"M 6!$"M $& 作者简介!邵雪明#$76!%$&男&浙江富阳人&副教授&从事多相流的研究&9:;-<.!;13/X ;!0( *&12*&3,第#7卷第#期!"">年#月 浙!江!大!学!学!报"工学版# ?)*+,-.)@A B 1(<-,4C , 方形粒子沉降运动特性的研究 邵雪明!张征宇 #浙江大学力学系&浙江杭州#$""!6 $摘!要!为了对方形粒子在二维垂直通道中的沉降运动特性进行研究&应用了拉格朗日乘子"虚拟区域方法对不同初始取向角’不同长宽比情况下方形粒子的沉降运动进行了直接数值模拟&结果表明&在所模拟的雷诺数下&方形粒子在二维通道中自由沉降的平衡位置为通道的中心线& 粒子在沉降的初始阶段存在横向漂移&粒子的初始取向角和长宽比对其沉降过程有较大影响&初始取向角和长宽比增大&则粒子的横向漂移以及取向角’侧向漂移速度和转动角速度的振荡幅度都增大(同时随着长宽比的增大&粒子的沉降速度相应减小&关键词!方形粒子(沉降(拉格朗日乘子"虚拟区域方法 中图分类号!K #>7!!!!!!!!文献标识码!N !!!!!!!!文章编号!$""%76#I #!"">$"#M >#"M =*/*.215’(/*%4)*(#.#4’(’F 2*1#.(3 $+.20.2#41+*F ^N K I *1:;<,4&A ^N H PA B 1,4:E *#J #@&)*.#3*(+5#09&3-06&89#:-&34;3-<#)6-*$&=&34 >9(7#$""!6&?9-3&$6-/#2.1#!R B 1/1==.<,4T 1B -D <)+/)@-+13=-,4*.-+S -+=<3.1’<=B 2<@@1+1,=<,<=<-.)+<1,=-=<),-,4 .1/-,2.1,4=B :’<2=B +-=<)/’1+1/<;*.-=12T E */<,42*采用三维涡丝和 Z -4+-,4 1颗粒轨道模型等方法对柱状粒子在射流场中的运动进行了模拟& 本文拟采用拉格朗日乘子"虚拟区域#2

可逆摆运动特性的研究

可逆摆运动特性的研究 刘勇(安庆师范学院物理与电气工程学院 安徽 安庆 246011) 指导老师:张 杰 摘要:本文根据可逆摆的物理图象和运动学方程,建立了可逆摆的目标函数和控制数学模型。通过对目标函数控制物理机理的研究,寻找目标函数的极值,然后利用MATLAB 的Simulink 进行了可逆摆的运动学仿真。在仿真过程中我们应用全维状态观测设计控制器实现了状态反馈,在此基础上用状态反馈控制配置系统极点,能够在最短的时间内寻找到系统的平衡位置。仿真结果表明,该方法可使系统稳定工作并具有良好的动态性能,并能较好地解释可逆摆实验中一系列物理现象。这为我们提供了一种利用状态反馈进行控制系统优化的手段。 关键词:可逆摆,状态反馈,MATLAB ,自动控制,仿真 1.引言 北京大学赵凯华教授指出[1]:“物理学家对事物是最好穷本极源的,他们在研究的过程中不段地思考,凡事总喜欢问个‘为什么’。理论物理学家不能仅仅埋首于公式的推演,应该询问其物理实质,从中构想出鲜明的无论图象来;实验物理学家不应满足于现象和数据的记录,或某种先进的指标,而要追究其中的物理机理”。 可逆摆问题在控制理论的研究中是一个很典型的范例[2-3]。本文根据可逆摆运动学方程,建立可逆摆目标函数的物理图象,分析(L-x )图象的形成机理,研究可逆摆上的大锤对目标函数控制的物理机理,从而较好地解释了可逆摆实验中一系列物理现象。 2.可逆摆原理及运动方程 2.1可逆摆的振动周期 在大学实验教材中,可逆摆是一种可倒过来摆动的物理摆[4],实验原理如图1,它是均匀钢体C 上装有2个均匀且平整的钢盘A 和B ,杆C 穿过钢盘,且穿过盘心。O 1,O 2为杆C 的两刀口,当可逆摆正挂做摆角很小的摆动时,它做简谐振动,其周期为 Mga I T 1 12π = (1) 式中I 1为摆在此时的转动惯量,M 为摆的总质量,a 为刀口O 1到质心O 的 距离。为了消去难于测量I 1与a ,需保持整个摆的结构不变而仅将摆倒过来绕O 2(称作倒摆)摆动则其周期为 Mgb I T 2 22π = (2) 式中I 2为摆此时的转动惯量,b 为刀口O 2到摆质心O 的距离,两者也难于侧准,为了消去I 1,I 2,a ,b ,再用平行轴定理 2 01Ma I I += ( 3 ) 2 02Mb I I += (4) 则由(1)、(2)、(3)、(4)可得 图1可逆摆

链传动

第七章 链传动 §7-1 链传动的特点和应用 1.组成:链传动由装在平行轴上的主动链轮、从动链轮和绕在链轮上的链条组成。工 作时,靠链条链节与链轮轮齿的啮合带动从动轮回转并传递运动和动力。 2.特点:1)由于链传动属于带有中间挠性件的啮合传动,所以可获得准确的平均传动 比; 2)与带传动相比,链传动预紧力小,所以链传动轴压力小,而传递的功率较大,效率较高,链传动还可以在高温、低速、油污等情况下工作; 3)与齿轮传动相比,两轴中心距较大,制造与安装精度要求较低,成本低廉。 4)链传动运转时不能保持恒定的瞬时传动比和瞬时链速,所以传动平稳性较差,工作时有噪音且链速不宜过高。 3.应用:适用于中心距较大,要求平均传动比准确的场合。传动链传递的功率一般在 100kW 以下,最大传动比8max i ,链速不超过15m/s 。本章主要讨论滚子链。 §7-2 传动链的结构特点 一.滚子链 滚子链是由滚子1、套筒2、销轴3、内链板4和外链板5组成。内链板和套筒之间、外链板与销轴之间分别用过盈联接固联。滚子与套筒之间、套筒与销轴之间均为间隙配合。当内、外链板相对挠曲时,套筒可绕销轴自由转动。滚子活套在套筒上,工作时,滚子沿链轮齿廓滚动,减轻了齿廓的磨损。链的磨损主要发生在销轴与套筒的接触面上。因此,内、外链板间应留少许间隙,以便润滑油渗入销轴和套筒的摩擦面间。内、外链板制成8字形,是为了使链的各剖面具有相近的抗拉强度,也可减轻链的质量和运动时的惯性力。 传动链使用时首尾相连成环形,当链节数为偶数时,接头处可用内、外链板搭接,插入开口销或弹簧夹锁住。若链节为奇数,需采用一个过渡链节才能首尾相连,链条受拉时,过渡链节将受附加弯矩,所以应尽量采用偶数链节的链条。 滚子链与链轮啮合的基本参数是节距p 、滚子外径d 1和内链节内宽b 1。其中,节距是滚子链的主要参数。节距增大时,链条中各零件的尺寸也要相应增大,可传递的功率也随之增大。但当链轮齿数一定时,节距越大,链轮直径D 也越大,为使D 不致过大,当载荷较大时,可用小节距的双排链或多排链。多排链的承载能力与排数成正比,列数越多,承载能力越高。但由于制造、安装误差,很难使各排的载荷均匀,列数越多,不均匀性越严重,故排数不宜过多,一般不超过四列。 考虑到我国链条生产的历史和现状,以及国际上几乎所有国家的链节距均用英制单位,我国链条标准GB1243.1-83中规定节距用英制折算成米制的单位。链号与相应的国际标准链号一致,链号数乘以25.4/16mm 即为节距值。后缀A 或B 分别表示A 或B 系列。A 系列用于重载、重要、较高速的传动,B 系列用于一般的传动中。 滚子链标记:链号—排数*链节数 标准编号

相关主题
文本预览
相关文档 最新文档