当前位置:文档之家› 爆炸水雾运动特性研究

爆炸水雾运动特性研究

爆炸水雾运动特性研究
爆炸水雾运动特性研究

爆炸水雾运动特性研究

胡涛刁伟崔正辉吴晓杨吕鑫武汉大学水利水电学院

【摘要】总结目前对于爆炸水雾运动特征的研究成果,分析水雾雾化机理和雾化过程,通过试验数据分析不同比药量下爆轰液体抛撒半径、速度、高度、时间的变化特点,得到比药量对爆炸水雾特性的影响机制,并对水雾除尘工艺中对于不同水雾雾化特性的要求对比药量进行调整提出一些合理的建议。

【关键词】爆炸水雾雾化运动特性

一、引言爆炸水雾除尘是解决水水利水电工程岩体爆破粉尘的一种新方法。丁珏等用v形槽内装的水进行爆炸抛撒,形成一定体积的水雾,用以来抑制火焰和激波的传播。陆守香建立了液滴变形与破碎的模型。

提出了初始雾化时间概念。杨林等提出了一种基于爆炸推进原理的爆震雾化射流发生装置,对其雾化原理及雾化特性进行了分析。认为冲击波作用于水,水在高速气流作用下加速、变形、破碎、雾化。

二、水雾雾化机理和抛撒过程分析液体速度高时,液体分裂为一群细滴,即所谓液体雾化。充分雾化方式是射流在喷嘴处完全破碎为许多很小的液滴,此时射流一般是扇形或锥形的液雾。

因此控制射流速度是调整水雾雾化形状的关键技术。爆炸作用下水雾的抛撤是一个十分复杂的过程,一般认为水雾抛撒过程分为近场阶段、中场阶段和远场阶段。近场阶段是以第一次加速和第一次减速为特征,持续时间4ms至6ms左右,在装药起爆1ms~2ms

2爆炸与炸药的基本理论

16年济宁市爆破工程技术人员(复训): 教学培训计划 (2016-12-13) 一、教学内容 1、爆炸与炸药的爆炸理论(二章) 2、爆破器材(三章) 3、起爆技术(四章) 4、岩土爆破理论(六章) 5、露天爆破(七章) 6、爆破安全技术和环境保护(十四章) 7、相关法律法规 1天 8、爆破安全管理和相关规定(十五章) 1天 9、复习小结 0.5天 10、考试(笔试:填空、选择、问答、计算设计题) 0.5天 二、使用教材 《爆破设计与施工》中国爆协汪旭光主编、2015版(15章、782页121.9万字) 三、教学时间:5天(40学时) 具体教学课程安排见《课程表》 四、任课教师: 尹成祥、毕延华等 五、教学目的 1、提高爆破基础理论知识和爆破设计施工技能;

2、提高爆破工程行业管理水平和法律法规意识; 3、解决爆破施工作业疑难问题,确保爆破工程施工效果和施工安全; 4、复训学习情况存档、备案,为办理个人爆破作业证件许可、审核提供依据;亦为爆破作业证件升级打基础。 六、教学要求 1、珍惜这次爆破技术人员复训学习机会 95年全国第一次举办爆破技术人员作业证: 2、严格遵守培训班各项规章制度; 3、严格遵守课堂教学纪律,按时到课; 4、认真听课,做好笔记。 编制:尹成祥 2016-12-1

第二章爆炸与炸药的基本理论 (教材10p) 第一节基本概念 一、爆炸及其分类 (一)爆炸 物质或物体在外界作用下,瞬间发生物理或化学变化,并在极短时间内放出大量能量的的现象。 如:锅炉爆炸、热水瓶爆炸、轮胎爆炸、炸药爆炸、鞭炮爆炸等。 (二)爆炸的分类 1、物理爆炸 爆炸后物质的物理状态发生变化,其内部分子结构不发生变化。 如车胎、水瓶、压力罐、雷电等 2、化学爆炸 爆炸后不但物质的物理形状发生变化,其内部分子结构也发生变化,并生成其它物质。 炸药爆炸属于化学爆炸。 3、核爆炸 由核炸药的原子核发生烈变或聚变的连锁反应,并在瞬间放出巨大能量的现象称为核爆炸。如u235,u238、氚、氘的爆炸等。 二、炸药及其爆炸特征(3个基本条件)

磁滞特性

實驗11 磁滯現象 目的:觀察鐵磁性物質因磁場強度變化而產生的磁滯曲線。 原理: (a)導磁率(μ)及磁域 導磁率(permeability)是以描述材料被磁化之難易程度,亦即導通磁力線之能力。材料之化學成分、合金成分、熱處理及冷作狀況與溫度等因素均會影響導磁率大小。一般導磁率表示為 μo:4π×10-7 H/m,真空導磁率 μr:相對導磁率= ( 材料所產生之磁化程度) ÷( 真空所產生之磁化程度) μ= μ0-μr 對相同材料而言,導磁率並非一個定常數,其與外加磁場強度( H )及磁通密度( B )之比例有關,即B :磁通密度;Tesla = wb / m2 H :磁場強度;A / m 導磁率,μ: B = μ0( 1 + χm) H = μH ( 如圖1 ) μr = 1 +χm 圖1 導磁係數(μ)依磁通密度(B)變化的情形 (b)材料磁化特性 (1) 反磁性材料 若材料在強磁場內,其電子群磁矩改變甚微,且感應磁場方向與外加磁場相反,而生斥力者,稱為反磁性材料;例如水、石英、鉍、汞等。 反磁性:if μr ≦ 1 ;χm<0 ,︱χm︱<< 1 (2) 順磁性材料 若材料在強磁場內,其電子群自旋運動所產生之磁矩會趨向外加磁場方向排列,但此效應甚小,造成磁場方向之磁化程度不大,而表現出順磁特性,例如鋁、氧等。 順磁性:if μr ≧ 1 ;χm>0 ,︱χm︱<< 1

(3) 鐵磁性材料 含有大量磁田,容易被磁化。在未被磁化時,磁田之磁矩方向分佈雜亂,其總合磁矩幾乎為零,但外加強磁場時,磁田之磁矩沿極化方向整齊排列,因而形成高磁性。例如鐵鈷、鎳。 鐵磁性:if μr >> 1 (c)磁化曲線 在磁區內的磁矩排列成同一方向,形成自生磁化,各磁區的自生磁化合成後可從零變化到自生磁化之值,也就是飽和磁化之值。雖然,鐵磁性物質的磁區內有自生磁化,但是,當鐵磁性物質處在去磁狀態(Demagnetized)時,材料整體的淨磁化為零。假如外加磁場於鐵磁性物質,表現出來的磁化量變化如圖2: 圖2 鐵磁性物質的磁化曲線 (d)磁滯曲線 (1)圖2為典型強磁性材質的BH曲線,未經磁化之強磁性材質在磁場強度(H) 增加時,磁通密度(B)之變化情形,如圖3由o點至a點之曲線。 (2)如圖3,當磁場強度(H)減少時,曲線由a點移動至b點,而未順著原本 之o點至a點之曲線回來,此乃大部分磁性材質均具頑磁性(Retentivity)。 (3)當磁場強度(H)為0時,在磁性材質中由於磁性(或剩性)會產生相對應 之磁通密度Br的值,稱之為“殘餘磁通密度(Residual Flux Density)”,因有殘餘磁通密度,才有永久磁鐵的產生。 (4)若欲消除殘餘之磁通(即使B=0),則必須供應反向之電流通過線圈,此 時產生之反向磁場強度,使磁通密度B=0(曲線由b點至c點之部分),而在c點這個磁力──Hc可用來強迫磁通密度(B),使其減少至0,稱之為“矯頑磁力(coercive Force)”,可用來測量磁性材質之矯頑性。(5)當反向磁場強度繼續增強,則又再度發生飽和狀態(曲線由c點至d點之部 分); (6)接下來將磁場強度(H)反過來,使之回到零(曲線由d點至e點之部分), 則強磁性材質內之磁通密度(B)會減少至e點,

(完整版)第六章爆破基础知识

第六章爆破基础知识 第一节爆破原理 一、炸药及爆炸的一般特征 1、炸药及其主要特征 炸药是在外界能量作用下,自身进行高速的化学反应,同时产生大量的高温高压气体和热量。炸药的主要特征是:(1)具有相对稳定性和化学爆炸性。 (2)在微小的体积中蕴藏有大量能量。 (3)能够依靠自身的氧化实现爆炸反应。 2、炸药爆炸及其三要素 (1)反应过程中能放出大量的热。放出大量的热是化学爆炸进行所必须具备的首要条件。 (2)炸药反应速度快。反应速度快是是形成爆炸的必须条件,也是爆炸反应的特点之一。 (3)能生成大量的气体立物。炸药爆炸后生成大量的气体,如二氧化碳、氧气和水蒸气,还产生一些有毒气体如一氧化碳和氮的氧化物。这些气体在膨胀过程中,能对周围介质发生破坏,把炸药的能量转换为机械能。

总之,炸药爆炸必须同时具备三个要素,三者又是相互相系的。所以,高温、高压高速是炸药爆炸的重要特点。 二、炸药爆轰理论基础知识 (一)炸药的起爆和感度 1、炸药的起爆 炸药在未受外界能量作用时,处于相对稳定状态。利用炸药进行爆破作业时,必须由外界给予足够的能量,使炸药的局部活化,失去平衡,发生爆炸反应,使炸药局部失去相对稳定状态到开始发生爆炸反应的过程称为起爆。 井下爆破工程常用的起爆能有爆炸能和热能。 2、炸药的感度 炸药材料在在外界能量作用下,引起炸药爆炸的难易程度称为感应度。炸药的感应的必须适中,以6号和8号雷管能够起爆为宜。 (二)炸药的殉爆 炸药(主爆药)爆轰时引起与相隔一定距离的另一炸药(受爆药)爆轰的现象称为殉爆。 主爆药与受爆药之间发生殉爆的概率为100%的最大距离,称为殉爆距离。对一定量的炸药来说,殉爆距离越大,表明爆感度越

高浓度固液两相流的运动特性研究

高浓度固液两相流的运动特性研究 倪晋仁1,2,黄湘江1,2 (1.大学环境科学中心;2.水沙科学教育部重点实验室) 摘要:利用固体颗粒运动的动理论,通过改变颗粒浓度可以考察非粘性颗粒在水流中运动的典型微观和宏观运动特性。本文分别对微观的颗粒速度分布函数变化和由此衍生的诸如颗粒平均速度、颗粒脉动速度和单位体积颗粒数垂线分布等宏观变量的变化进行了系统比较。研究结果表明:动理论能够比传统理论获得更详细的微观和宏观信息,也更适合研究高浓度固液两相流运动特性,颗粒运动微观和宏观特性在颗粒浓度超过一定阈值后会发生本质的变化,但临界颗粒浓度值(阈值)在不同的计算和实验条件下会有一定的差别。 关键词:高浓度挟沙水流,微观,宏观,特性,运动学理论 基金项目:国家自然科学基金资助项目(49625101) 作者简介:倪晋仁(1963-),男,山阴人,教授,主要从事环境科学及泥沙方面的研究。 高浓度固液两相流在生产实践中经常遇到。河流中的泥沙含量高,可能导致 河道淤积、河床抬高和洪水频率增加[1]。高浓度固液两相流的流动和输运特性与 低浓度固液两相流有着很大的不同。高浓度挟沙水流经常表现出非牛顿流体的特 性[2],不同于低浓度时的牛顿流体。以往对于高浓度固液两相流的描述多基于宾 汉塑性体模型或拜格诺的膨胀体模型[3,4]。就含有粘性颗粒的高浓度固液两相流 而言,中国学者提出了许多关于屈服应力和宾汉粘性系数的经验表达式,这些表 达式都采用颗粒浓度和反映颗粒大小组分的变量。Chen[5]曾对这方面的研究工作 进行了全面的评述。就含有非粘性颗粒的高浓度固液两相流而言,以往的研究[6] 多从Bagnold[3]的颗粒离散应力概念出发。Chen[7]的粘塑体模型包含了以上两种 情况。最近,新的流变模型研究又有进展,并用于描述高浓度挟沙水流的复杂特 性,参见Chen[8]和Brufau[9]等。通常描述固液两相流的连续介质理论[10]能够合理 地描述流体和颗粒的宏观运动特性,但不能充分解释颗粒与颗粒的相互作用,更 不能描述颗粒运动的微观特性。采用基于Boltzmann方程的动理论能够很好地

机构运动特性分析与四杆机构设计

模块六机构运动特性分析与四杆机构设计 【能力目标】具备平面机构运动特性和传力特性的分析能力及一般平面连杆机构的设计能力【课程内容】 1.机构的运动特性分析方法, 2.平面四杆机构的基本设计方法, 3.计算机辅助图解设计法。 【教学方法】观察机构,分析机构运动特性、传力特性及机构间运动的协调,观察运动副的结构。 【教学手段】课堂演示与现场教学相结合 【教学地点】多媒体教室、创新实训室 【教学重点】四杆机构的构成要素,基本特性分析 【教学难点】四杆机构的协调运动设计 【实践内容】图解法设计平面四杆机构 【教学课时】理论3课时实践2课时 【理论授课内容】 6.1 铰链四杆机构及其演化 一、铰链四杆机构的基本形式 1.基本概念: 铰链四杆机构:所有低副均为转动副的四杆机构。 机架:机构中的固定构件。 连杆:与机架相对的杆。 连架杆:与机架相连的杆。 曲柄:能作360°回转的连架杆。 摇杆:只能在小于360°范围内摆动 的连架杆 2.铰链四杆机构的基本形式: 曲柄摇杆机构:在两连架杆中,一个为曲柄,另一个为摇杆。 双曲柄机构:两连杆架均为曲柄的四杆机构。 双摇杆机构:两连杆架均为摇杆的四杆机构。 二、铰链四杆机构的演化

所有的四杆机构都是由四杆机构的基本形式演化来得。 1.扩大转动副,使转动副变成移动副 得到曲柄滑块机构 (1)e≠0时,为偏置曲柄滑块机构 (2)e=0时,为对心曲柄滑块机构 曲柄滑快机构演化:扩大运动副,可将转动副的尺寸扩大到超过曲柄长度,演化成偏心轮机构 2.取不同的构件为机架 1)铰链四杆机构的演化 a:曲柄摇杆机构b双曲柄机构 c双摇杆机构d曲柄摇杆机构 2)曲柄滑块机构的演化

带传动的受力分析及运动特性

带传动的受力分析及运动特性 newmaker 一、带传动的受力分析 带传动安装时,带必须张紧,即以一定的初拉力紧套在两个带轮上,这时传动带中的拉力相等,都为初拉力F0(见图7–8a )。 图7-8 带传动的受力情况 a)不工作时 b)工作时 当带传动工作时,由于带和带轮接触面上的摩擦力的作用,带绕入主动轮的一边被进一步拉紧,拉力由F0增大到F1,这一边称为紧边;另一边则被放松,拉力由F0降到F2,这一边称为松边(见图7–8b )。两边拉力之差称为有效拉力,以F 表示,即 F =F1–F2 (7–4) 有效拉力就是带传动所能传递的有效圆周力。它不是作用在某一固定点的集中力,而是带和带轮接触面上所产生的摩擦力的总和。带传动工作时,从动轮上工作阻力矩T¢2所产生的圆周阻力F¢为 F¢=2 T'2 /d2 正常工作时,有效拉力F 和圆周阻力F¢相等,在一定条件下,带和带轮接触面上所能产生的摩擦力有一极限值,即最大摩擦力(最大有效圆周力)Fmax ,当Fmax≥F¢时,带传动才能正常运转。如所需传递的圆周阻力超过这一极限值时,传动带将在带轮上打滑。 刚要开始打滑时,紧边拉力F1和松边拉力F2之间存在下列关系,即 F1=F2?e f?a (7–5) 式中 e –––自然对数的底(e≈2.718); f –––带和轮缘间的摩擦系数;

a–––传动带在带轮上的包角(rad)。 上式即为柔韧体摩擦的欧拉公式。 (7-5)式的推导: 下面以平型带为例研究带在主动轮上即将打滑时紧边拉力和松边拉力之间的关系。 假设带在工作中无弹性伸长,并忽略弯曲、离心力及带的质量的影响。 如图7–9所示,取一微段传动带dl,以dN表示带轮对该微段传动带的正压力。微段传动带一端的拉力为F,另一端的拉力为F+dF,摩擦力为f·dN,f为传动带与带轮间的摩擦系数 (对于V带,用当量摩擦系数fv,,f为带轮轮槽角)。则 因da很小,所以sin(da/2)?da/2,且略去二阶微量dF?sin(da/2),得 dN=F?da 又 取cos(da/2)?1,得f?dN=dF或dN=dF/f,于是可得 F?da=dF/f 或dF/F=f?da 两边积分

电磁波界面反射特性理解 + 仿真分析

电磁波界面反射特性理解 + 仿真分析 要求 一束 5W 的线偏振光以φ= 45 度方位角振动,垂直入射到玻璃 - 空气表面, 该光束波长 0.6 m ,玻璃介质折射率 1.54 @0.6 m ,当入射角 从 0-70 度变化时, 通过给定条件,分别完成如下要求: 1 建立反射光强 ()?θ,,n I 的数学模型; 2 画出该光束反射光的光强曲线()θ-I ; 3 分析该反射光束的偏振方向或者偏振态变化,画出偏振方向变化曲线()θφ-和偏振光束相位变化曲线()θφ-。 (注:光束从光密到光疏的界面,在入射角θ从 0-70 度变化中,包括了临界角c θ) 1.反射光的光强曲线()θ-I 数学模型: 将这三种光波的电矢量振动方向都分解成两个分量,一个垂直于入射面,称为垂直分量s ;另一个平行于入射面,称为平行分量p ,这两个分量互相垂直。而任何偏振光都可以分解为互相垂直的两个分量,可以得出反射光强公式: 212212'21'11'1**,/,/,p p s s p p p s s s p s A r A r I A I A A r A A r I I I +=∴===+=

菲涅尔公式有:()()()() 21212121tan tan ,sin sin θθθθθθθθ+--=+--=p s r r ;因为偏振光以φ= 45 度方位角振动,所以2/11I A A p s ==,折射定律有2211sin sin θθn n =,由此可以求出反射光的光强曲线()θ-I 。 仿真: 分析:入射角从0°增加,刚开始大部分入射光发生折射,少数入射光发生反射,所以光强值很小,随着入射角的增加,在接近临界角时大部分光发生反射,少部分光发生折射,此时反射光强快速增加,当入射角大于临界角后发生全反射,反射光强与入射光强相等。 2.偏振方向变化曲线()θφ- 数学模型: 反射光有'1'1tan p s A A =φ ,其中φ为偏振方向,因为 p p p s s s A A r A A r 1'11'1/,/==,且p s A A 11=,可得p s r r /tan =φ。可以得到偏振方向变化曲线()θφ-。

τ-P域内各种波的运动学特点

§2.5 τ-P 域内各种波的运动学特点 前面在t-x 域内研究了各种波的运动学特点,下面在τ-P 域内研究。 P ——时距曲线的瞬时斜率(也叫射线参数)。 τ——时距曲线在时间轴上的截距。 则t=τ+px 或τ=t-px 1. 一个水平界面反射波的τ-P 方程: 一个水平界面反射波的时距曲线为: 2241h x V t += (6.2-24) 2 222222212411241V P hPV P h x V Px t V P hPV x h x x V dx dt p --+=-=-=+== τ 把x 的表达式代入上式整理,得 )1(22202V P t -=τ 或1) /1(22 202 =+V P t τ 椭圆 2. 直达波、面波、折射波在τ-P 域的特点

① 因面波、直达波、折射波时距曲线的斜率为常数,所以P=常数。 ② 直达波、面波都从震源出发,时距曲线在时间轴上的截距τ=0。因此,直达波、 面波均缩为一“点”并位于P 轴上。 ③ 直达波与反射波时距曲线在无限远处相切,即在该处斜率相等。故在P 轴上,反射 波与直达波是同一个“点” ④ 面波时距曲线的斜率比直达波的大(直达波面波直达波 面波斜率,斜率P P V V ??),所以 其“点”在P 轴上位于椭园以外。 ⑤ 折射波时距曲线与同一界面的反射波时距曲线二者相切,P 值与临界角有关。 3. 反射波、折射波、直达波、面波在τ-P 域的分布图 τ P70 图6.2-28 τ-P 域内各种波的分布图 4. τ-P 变换的用途——压制干扰波。 在t-x 域内各种时距曲线相互交叉干涉。 在τ-P 域内互相分离。在τ-P 域内消去折射波、面波、直达波的“点”,再反变换到t-x 域,就只剩下反射波的时距曲线了。即τ-P 滤波。

导磁材料与磁导特性

3.1.2 导磁材料与磁导特性 各种电机都是通过磁感应作用而实现能量转换的,磁场是它的媒介。因此,电机中必须具有引导磁通的磁路。为了在一定的励磁电流下产生较强的磁场,电机和变压器的磁路都采用导磁性能良好的铁磁材料制成。试验表明,所有非铁磁材料的导磁系数都接近于真空的导磁系数。而铁磁材料的导磁系数远远大于真空的导磁系数。因此,在同样的电流下,铁心线圈的磁通比空心线圈的磁通大得多。 铁磁材料之所以具有高导磁性能,在于其内部存在着强烈磁化了的自发磁化单元,称为磁畴。在正常情况下,磁畴是杂乱无章的排列着,因而对外不显示磁性。但在外磁场的作用下,磁畴沿着外磁场的方向作出有规则的排列,从而形成了一个附加磁场迭加在外磁场上。由于铁磁材料的每个磁畴原来都是强烈磁化了的,具有较强的磁场。因此,它们所产生的附加磁场的强度,要比非铁磁物质在统一外磁场下所产生的磁场强得多。所以铁磁物质得导磁系数比非铁磁物质的大得多。 在非铁磁材料中,磁感应强度(即磁通密度)B与磁场强度H成正比,即,它们之间呈线性关系。铁磁材B与H之间是一种非线性关系,即B=f(H)是一条曲线,称为磁化曲线,如图0-6所示。在磁化的开始阶段(0a段),由于外磁场较强,随着H的增加、B迅速增加。在bc段,外磁场进一步加强时,磁畴大都已转到与外磁场一致的方向,这时它们所产生的附加磁场已接近最大值,即使H再增大,B的增加也很有限。这种现象称为磁饱和现象,也叫做磁饱和。 铁磁材料的磁化曲线可通过试验测绘,在测试时,H由零上升到某个最大值时,B值是沿磁化曲线0a上升(见图0-7)。当H由下降到零时,B不是沿a0

下降,而是沿着另一条ab线变化。当H由零变化到,即进行反向磁化时,B沿着曲线bcd变化。当H由回升到时,B沿着曲线defa变化。这样将铁磁材料磁化一个循环时,得到一个闭合回线abcdefa,称为铁磁材料的磁滞回线。 从图0-7可以看出,磁化曲线的上升段与下降段不重合。下降时,B的变化滞后于H的变化,当H下降为零时,B不为零,而是下降到某一数值,这种现象称为磁滞,称为剩余磁感应强度。由于存在磁滞现象,所以铁磁材料的磁化过程是不可逆的。在某一H下的B值,取决于该H值之前的磁化状态。磁滞现象的产生,是由于铁磁材料中的磁畴,在外磁场作用下进行排列时,彼此之间产生“摩擦”。由于这种“摩擦”的存在,当外磁场停止作用后,磁畴与外磁场方向一致的排列,被部分的保留下来,从而形成了磁滞现象和剩磁。 同一铁磁材料在不同的值下,有不同的磁滞回线。所以用不同的值可测绘出许多不同的磁滞回线。把这些磁滞回线的顶点连接起来而得到的磁化曲线,称为铁磁材料的基本磁化曲线,也称为平均磁化曲线。工程上所谓的磁化曲线就是指平均磁化曲线。 铁磁材料在交变磁场的作用下而反复磁化时,磁畴之间不断的发生摩擦,必然消耗一定的能量,产生损耗。这种损耗称为磁滞损耗。试验表明,在交变磁化时,铁磁材料的磁滞损耗与磁通的交变频率f成正比,与磁通密度的幅值的次方成正比,即: 对于常用的硅钢片,当时,。由于硅钢片的磁滞回线的面积比较小,所以电机和变压器的铁心都采用硅钢片。

铁磁物质磁化特性曲线的测定 - 武汉大学物理实验教学中心

实验3 -13 铁磁物质磁化特性曲线的测定 铁磁物质的磁化曲线,是指给予它的不同的磁化场H 与相应而生的随磁化场而改变的磁感应强度B 之间的关系曲线,即B -H 曲线。 影响铁磁物质的磁化曲线的因素很多。材料的杂质含量、晶体结构、加工方式、外界温度、内部的应力以及磁化历史等都会对磁化特性产生影响。由于影响磁化特性的因素很多,因此B -H 的关系就特别复杂。直至今天,人们还未从理论上定量描述、确定磁化曲线的分析表达式。于是人们就用实验的方法来测定其磁化曲线。 【实验目的】 1.了解铁磁物质的基本磁化特性。 2.掌握铁磁物质磁化特性曲线的测量方法。 【仪器用具】 1.冲击电流计。 2.标准互感器:0.05H ,额定电流0。15A 。 3.螺绕环。 4.多量程的直流安培计:0.1/0.3…15/30A 。 5.滑线电阻器。 6.转盘电阻箱:0.1~9999.9Ω. 7.晶体管稳压电源:0~30V,0~5A. 8.单相调压变压据。 9.交流安培计。 【实验原理】 1.H 、B 的测量原理 如图3-13-1所示,T 为一铁环,其横截面的半径为r .环的半径为R ,且有2πR =L >>r 。在铁环上均匀、紧密地绕满N 1匝线圈,这就构成一个为铁心所充满的螺绕环。如果线圈通过电流I ,则铁心中的磁场强度可根据安培环路定律得出: I L N H 1 (3-13-1) 铁心中的磁感应强度B 可用冲击法测量。为获取磁通量的变化量以测量B ,特在磁环 上绕了N 2匝副线圈。 2.起始磁化曲线 铁磁质从没有被磁化的状态(即H =0时。铁磁质的B =0)开始,从零单调地增大磁场H ,求出相对应的B ,这样测绘出来的曲线称为起始磁化曲线,如图 3-13-2所示。由图可见,铁磁

机械臂运动学

机械臂运动学基础 1、机械臂的运动学模型 机械臂运动学研究的是机械臂运动,而不考虑产生运动的力。运动学研究机械臂的位置,速度和加速度。机械臂的运动学的研究涉及到的几何和基于时间的内容,特别是各个关节彼此之间的关系以及随时间变化规律。 典型的机械臂由一些串行连接的关节和连杆组成。每个关节具有一个自由度,平移或旋转。对于具有n个关节的机械臂,关节的编号从1到n,有n +1个连杆,编号从0到n。连杆0是机械臂的基础,一般是固定的,连杆n上带有末端执行器。关节i连接连杆i和连杆i-1。一个连杆可以被视为一个刚体,确定与它相邻的两个关节的坐标轴之间的相对位置。一个连杆可以用两个参数描述,连杆长度和连杆扭转,这两个量定义了与它相关的两个坐标轴在空间的相对位置。而第一连杆和最后一个连杆的参数没有意义,一般选择为0。一个关节用两个参数描述,一是连杆的偏移,是指从一个连杆到下一个连杆沿的关节轴线的距离。二是关节角度,指一个关节相对于下一个关节轴的旋转角度。 为了便于描述的每一个关节的位置,我们在每一个关节设置一个坐标系,对于一个关节链,Denavit和Hartenberg提出了一种用矩阵表示各个关节之间关系的系统方法。对于转动关节i,规定它的转动平行于坐标轴z i-1,坐标轴x i-1对准从z i-1到z i的法线方向,如果z i-1与z i相交,则x i-1取z i?1×z i的方向。连杆,关节参数概括如下: ●连杆长度a i沿着x i轴从z i-1和z i轴之间的距离; ●连杆扭转αi从z i-1轴到zi轴相对x i-1轴夹角; ●连杆偏移d i从坐标系i-1的原点沿着z i-1轴到x i轴的距离; ●关节角度θi x i-1轴和x i轴之间关于z i-1轴的夹角。

第一章 炸药基础知识

民爆公司安全培训讲义 第一章炸药基础知识 第一节炸药的本质 1.炸药的定义:凡是能发生化学爆炸的物质都称作炸药。从这个意义上讲,起爆药、猛炸药、火药、烟火剂都属于炸药的范畴。 2.分类: 1)按作用分 a. b. c. b.混合炸药又称爆炸混合物。它本身是一种混合物,是由两种以上化学性质不同的组份组成的混合物。混合炸药有气态、液态和固态几种形式,种类繁多,不一一介绍。 3)按应用领域分常分为军用炸药和民用炸药。军用炸药是指应用于军事目的的炸药;民用炸药是指应用于民用目的的炸药。民用炸药在我国又称为工业炸药。 3.炸药的本质 炸药的本质是组成炸药的物质,其本身既含有氧化剂,又含有可燃剂。在未被激发的状态时是一种亚稳性含能物质,在受激发后表现出强自行活化性质和自供养

性质。(所以,炸药起火燃烧不能用沙土覆盖、干粉灭火器,而要用水来扑救的原因所在。) 4.炸药的燃烧 炸药在许多条件下(遇明火、受潮、静电、摩擦等)都可以产生燃烧现象,它与一般物质的燃烧有着本质的区别:一般物质的燃烧,外界必须要供给氧气或其他助燃气体,决定燃烧速度的主要因素之一是供氧情况;而炸药的燃烧则是一种可以自行传播的剧烈的化学反应,由于炸药的自身含有氧,因而不需要外界供给助燃气 转变为爆燃或爆轰。 第二节民用爆炸物品的基本特征 1.工业雷管 ④按其主装炸药的净装药量分为:6号雷管(不少于0.4g)和8号雷管(不少于 0.6g)两种。 1)工业电雷管:是指由电能作业而发生爆炸变化的一种雷管,它广泛应用于各种爆破作业。按作业时间分为:瞬发电雷管和延期电雷管。 瞬发电雷管指在瞬间发生作用的电雷管,产品包括:普通瞬发电雷管、专用瞬发电雷管和煤矿许用瞬发电雷管。 延期电雷管:指起到延时作用的电雷管。延期电雷管按作用时间分为毫秒延期、1/4秒延期、半秒延期和秒延期等。产品包括:普通延期电雷管、专用延期电雷管和

(完整版)植物反射波谱特征

健康的绿色植被的光谱反射特征 地面植物具有明显的光谱反射特征,不同于土壤、水体和其他的典型地物,植被对电磁波的响应是由其化学特征和形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。 在可见光波段内,各种色素是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。健康的绿色植被,其光谱反射曲线几乎总是呈现“峰和谷”的图形,可见光谱内的谷是由植物叶子内的色素引起的。 例如叶绿素强烈吸收波谱段中心约0.45um和0.67um(常称这个谱带为叶绿素吸收带)的能量。植物叶子强烈吸收蓝区和红区的能量,而强烈反射绿区能量,因此肉眼觉得健康的植被呈绿色。除此之外,叶红素和叶黄素在0.45um(蓝色)附近有一个吸收带,但是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。 如果植物受到某种形式的抑制而中断了正常的生长发育,它会减少甚至停止叶绿素的产生。这将导致叶绿素的蓝区和红区吸收带减弱,常使红波段反射率增强,以至于我们可以看到植物变黄(绿色和红色合成)。 从可见光区到大约0.7um的近红外光谱区,可看到健康植被的反射率急剧上升。在0.7-1.3um区间,植物的反射率主要来自植物叶子内部结构。 健康绿色植物在0.7-1.3um间,的光谱特征的反射率高达(45%-50%),透过率高达(45%-50%),吸收率低至(<5%)。植物叶子一般可反射入射能量的40%-50%,其余能量大部分透射过去,因为在这一光谱区植物叶子对入射能量的吸收最少(一般少于5%)。 在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。在可见光波段与近红外波段之间,即大约0.76um附近,反射率急剧上升,形成“红边”现象,这是植物曲线的最为明显的特征,是研究的重点光谱区域。 许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。同时,与单片叶子相比,多片叶子能够在光谱的近红外波段产生更高的反射率(高达85%),这是因为附加反射率的原因,因为辐射能量透过最上层的叶子后,将被第二层的叶子反射,结果在形式上增强了第一层叶子的反射能量。

行走机器人运动结构特性分析

第19卷第3期湖 北 工 学 院 学 报2004年6月 V ol.19N o.3 Journal of H ubei Polytechnic U niversity Jun.2004 [收稿日期]2004-03-01 [作者简介]段成龙(1980-),男,湖北武汉人,中国地质大学(武汉)硕士研究生,研究方向:机械设计及理论. [文章编号]1003-4684(2004)0620017202 行走机器人运动结构特性分析 段成龙,张 萌 (中国地质大学机械与电子工程学院,湖北武汉430074) [摘 要]介绍了行走机器人的发展、分类、结构和运动特性,并详细叙述了几种典型的机器人行走机构和特 点,最后介绍采用U G 设计软件对机器人结构设计的模拟仿真.[关键词]机器人;行走机构;仿真[中图分类号]TP24[文献标识码]:A 行走机器人是机器人学中的一个重要分支.关于行走机器人的研究涉及许多方面,首先,要考虑移动方式,可以是轮式的、履带式的和腿式的等.其次,必须考虑驱动器的控制,以使机器人达到期望的行为.第三,必须考虑导航或路径规划.因此,行走机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合系统. 1 行走机器人的结构设计技术发展现 状 机器人的机械结构形式的选型和设计,应该根据实际需要进行.在机器人机构方面,应当结合机器人在各个领域及各种场合的应用,开展丰富而富有创造性的工作.对于行走机器人,研究能适应地上、地下、水中、空中、宇宙等作业环境的各种移动机构. 当前,对足式步行机器人、履带式和特种机器人研究较多,但大多数仍处于实验阶段,而轮式移动机器人由于其控制简单,运动稳定和能源利用率高等特点,正在向实用化迅速发展,从阿波罗登月计划中的月球车到美国最近推出的NASA 行星漫游计划中的六轮采样车,从西方各国正在加紧研制的战场巡逻机器人、侦察车到新近研制的管道清洗检测机器人,都有力地显示出行走机器人正在以其使用价值和广阔的应用前景而成为智能机器人发展的方向之一. 2 几种行走机器人行走机构特点 2.1 轮式行走机器人 轮式行走机器人是机器人中应用最多的一种机 器人,滚轮由电机直接驱动,它一般是将具有独立驱动装置、换向装置和制动装置的滚轮安装在由电机驱动的腿结构的末端,这些机构和装置在增强了行走机器人可操作性能的同时,也增加了机器人的重量,一定程度上限制了其机动性能.图1所示机器人是一种特殊的轮式机器人从动轮式机器人 . 从动轮式机器人作为特殊的轮式机器人,其滚轮是作为从动轮,滚轮上无任何附加主动力,通过水平连杆、垂直连杆和滚轮的协调动作,利用滚轮受到的法向摩擦力远大于切向力的特点,可以使系统受到的摩擦力合力指向前方,产生机器人驱动力,驱动机器人运动.从动轮式机器人可实现多种运动姿态,其功能相当于万向轮式行走机器人,具有较大的灵活性[1]. 该机器人是由四个装有滚轮的机械腿和机器人本体构成.每个腿有水平连杆和垂直连杆构成,四个腿协调运动.每个机械腿分别有两个直流控制电机驱动.第一个电机控制水平连杆的前后摆动,另一个电机控制垂直连杆内外摆动.根据运动形式,确定四个腿的水平连杆的初始摆角,通过四个腿上的水平连杆和垂直连杆的协调动作,可以调节机器人所受合力的大小和方向,使机器人按要求的路径滑行.

阐述炸药爆炸的基本特征

一、阐述炸药爆炸的基本特征 1、反应的放热性 炸药爆炸就是将蕴藏地大量化学能以热能形式迅速释放出来的过程,放出大量热量是形成爆炸的必要条件,吸收反应或放热不足都不能形成爆炸。 2、生成气体产物 炸药爆炸放出的能量必须借助气体介质才能转化为机械功,因此,生成气体产物是炸药做功不可缺少的条件。 3、反应的快速性 炸药爆炸反应式由冲击波所激起的,因此,其反应速度和爆炸速度都很高,爆炸速度可达到每秒书千米,在反应区内炸药变成爆炸气体产物的时间值需要几十微秒。 二、拒爆的处理 拒爆的处理方法有以下几种,a、因联线不良、错联、漏联,要重新联线放炮。经检查确认起爆线路完好时,方可重新起爆。b、因其他原因造成的拒爆,则因在距拒爆至少0.3m处重钻和拒爆眼平行的新炮眼,重新装药放炮。c、禁止将炮眼残底继续打眼加深,严禁用镐刨,或从炮眼中取出原放置的引药或从引药中拉出雷管。d、处理拒爆的炮眼爆破后。因详细检查并收集未未爆炸的爆破材料予以销毁。 三、炸药爆炸可能引起瓦斯爆炸的因素 1、空气冲击波 由爆轰激起的冲击波虽然具有很高的压力和温度,但由于作用时间非常短,不会将瓦斯加热到爆发温度,但是冲击波经反复叠加,或瓦斯经过预热,则仍有引起瓦斯爆炸的危险。 2、炽热固体颗粒 炽热固体颗粒是一些爆炸不完全的炸药颗粒或金属粉末,他们在空气飞散是可能氧化燃烧,本身冷却却又慢,对瓦斯加热时间长,所以危险性极大。 4、炸药生成的高温气体 炸药生成的气体温度高,作用时间长,是引起瓦斯爆炸最危险的因素,特别是含有游离氧,氧化氮等气体时,由于具有强氧化作用,易使瓦斯爆炸,含有游离氧、一氧化碳等气体时,它们接触空气时,可能要燃烧成二次火焰,也可能引起瓦斯爆炸。

有源频率选择表面反射特性的分析

- 1 - 有源频率选择表面反射特性的分析 寇松江 东南大学毫米波国家重点实验室,南京 (210096) E-mail :kousongjiang@https://www.doczj.com/doc/2011083266.html, 摘 要:本文使用CST 仿真分析软件,采用电抗加载的方法研究了有源频率选择表面的反射特性,分析了工作于X 频段的方环缝隙型、四腿环缝型、Y 形环缝型三种透波型FSS 结构,给出了其谐振特性与所加载电抗的变化关系。有源FSS 中的有源器件可等效为某种形式的电抗,通过电抗加载的分析,可为有源FSS 的分析与设计提供理论依据。 关键词:有源频率选择表面,电抗加载,反射系数 中图分类号:TN011 1.引言 频率选择表面(FSS )是军事隐身技术的重要组成部分,在军事领域有着非常重要的作用。使用无源FSS 构成的装备,一旦成型,其谐振频率、工作带宽等电磁特性均无法改变,不能灵活地适应外部电磁环境的变化。使用有源FSS ,就可以克服这些缺陷。有源FSS 是指在FSS 中加入PIN 管或变容二极管等有源器件构成的FSS 结构,通过调节有源器件偏置电压或偏置电流,可改变FSS 的谐振特性[1]。从等效电路角度看,有源器件可等效为电抗,而电抗加载可以改变FSS 的谐振特性[2] [3],因此,通过对FSS 进行电抗加载的分析,可以为有源FSS 的分析提供依据 [4]。 本文使用CST 仿真分析软件,利用电抗加载的方法研究有源FSS 。首先对文献中记载的算例进行了仿真分析,并与文献结果进行比对,证明了此种分析方法的可行性;然后分析了工作于X 频段的方环缝隙型、四腿环缝型、Y 形环缝型三种有源FSS 的谐振特性,给出了反射系数与所加载电抗的变化关系,为有源FSS 的分析提供依据。 2.仿真结果与文献的对比(圆环缝隙型有源FSS 的分析) 图1 圆环缝隙型FSS 单元结构 图2 仿真结果与文献的对比 A.E.Martynyuk 等学者对圆环缝隙单元组成的FSS 进行了电抗加载的分析[5],圆环缝隙型FSS 单元结构如图1,该单元被印刷在厚0.102mm 的介质板上,介质板的介电常数为r ε=2.4,圆环外径r 1=4.03mm,内径r 2=3.5mm,阵列周期D x =11.43mm,D y =10.13mm, 电抗加载

关于实际弹簧振子运动特性的研究(精)

关于实际弹簧振子运动特性的研究摘要:本文分析和研究了实际弹簧振子的运动特性,即在考虑弹簧振子自身的质量和在运动过程中遇到摩擦阻力等情况下,对其振动的性质、周期、振幅等特性的影响,并得出了定量的表达式,同时文中对弹簧振子运动时所具有的能量也作了比较全面的论述。这将为物理课程中该问题的教学提供了良好的参考作用。 关键词:弹簧;质量;摩擦力;系统能量等。 0 引言 在一般的物理书籍中,当述及到弹簧振子的特性时,为了讨论问题的方便,往往都是忽略了弹簧振子的质量和物体在运动时所受到的摩擦阻力的,但在实际问题中却往往不是这样,下面我们将对上述两个因素对弹簧振子运动特性的影响作系统的分析和研究,同时对平时较为少见的实际弹簧振子运动时所具有的能量问题也作了全面的论述。 1 实际弹簧振子的运动特性 在一般教学和研究中涉及弹簧振子时,通常都是指轻弹簧[1],即在这种理想条件下抽象出弹性集中于弹簧,质量集中于振子,没有运动阻力的理想弹簧振子模型。分析它的动力学特点,易知弹簧振子系统在运动中只受到回复力F=-kx的作用,简谐振动的固有周期公式T=2πm 。如果弹簧振子受到的摩擦力或弹簧质量不能忽略,那么这两种因素k 对弹簧振子的振动[2]到底会有什么影响呢?下面我们分别加以讨论。 1.1摩擦力对弹簧振子振动的影响 为简化该问题的讨论,我们不考虑弹簧质量对系统振动的影响,即忽略弹簧质量。设弹簧的倔强系数为k,振子与杆的滑动摩擦系数为μ,静摩擦系数为μ',弹簧振子的质量为m,x轴方向如图 弹簧振子在运动过程中所受摩擦力大小f=μmg,其方向与振子运动方向相反。如果我们用符号SignA表示某任意值A的正负号,则f=-μmg(Sign这样,当dx)dtdxdx>0时,f=-μmg;当<0时,f=μmg; dtdt dxdxd2x当≠O时,弹簧振子的运动方程为:-kx-μmg(Sign)=m dtdtdt2

爆破工程期末必考题复习过程

1.岩石爆破破坏原因的理论学说和破坏过程。理论1“爆生气体膨胀作用理论:炸药爆炸引起岩石破坏,主要是高温高压气体产物对岩石膨胀做功的结果;2 爆炸应力波反射拉伸作用理论:岩石的破坏主要是由于岩石中爆炸应力波在自 由面反射后形成反射拉伸波的作用,岩石中的拉应力大于其抗拉强度二产生的,岩石是被拉断的;3爆生气体和应力波综合作用理论:实际爆破中,爆生气体 膨胀和爆炸应力波都对岩石破坏起作用,不能绝对分开,而应该是两种作用综 合的结果,因而加强了岩石破碎效果,比如冲击波对岩石的破碎,作用时间短,而爆生气体的作用时间长,爆生气体膨胀促进了裂隙的发展,同样,反射拉伸 波也同样加强了径向裂隙的扩展。过程1.炮孔周围岩石的压碎作用2.景象裂隙作用3.卸载引起的岩石内部环状裂隙作用 4.反射拉伸引起的“片落”和引起径向裂隙的延伸 5.爆炸气体扩展应力波所产生的裂隙. 2. 巷道掘进爆破中炮眼形式:掏槽眼:用于爆出新自由面,为辅助眼/周边眼爆破创造有利条件,直接影响循环进尺,掘进效果;周边眼:控制爆破后的巷道 断面形状、大小和轮廓,使之符合设计要求;(顶眼、底眼、周边眼)辅助眼:破碎岩石的主要炮眼,利用掏槽眼爆破后创造的平行于炮眼的自由面,爆破条 件大大改善;3.中深孔爆破设计的基本内容:确定台阶高度,网孔参数,装药结构,装填长度,起爆方法,起爆顺序,炸药的单位消耗量 4炸药爆炸与燃烧区别燃烧与爆炸传播速度截然不同,燃烧几毫米到几百米每秒,亚音速,爆炸通常几千米每秒1.从传播连续进行的机理来看,燃烧的能量 通过热传导,辐射和气体产物的扩散传到下一层炸药,激起未反应炸药产生化 学反应,是燃烧连续进行,爆炸,能量以压缩波的形式提供给前沿冲击波,维 持前沿冲击波的强度,然后前沿冲击波冲击压缩激起下一层炸药进行化学反应,是爆轰连续进行;2从反应产物的压力来看,燃烧产物压力很低,对外界显示 不出力的作用,爆炸产物有强烈的力效应3从反应产物质点运动方向,燃烧产 物质点运动方向与燃烧传播的方向相反,二爆炸产物质点运动方向与爆炸传播 方向相同;4从炸药本身条件,燃烧随装药密度的增加,燃烧速度下降,而爆 轰速度随密度增加而增加;5从外界条件,燃烧易受外界压力和初温影响,爆 炸基本不受外界条件影响; 5氧平衡:指炸药中所含的氧用以完全氧化其所含的可燃元素后氧的剩余情况 的衡量指标。负氧平衡、正氧平衡、零氧平衡氧平衡意义:正氧平衡:炸药未能充分利用其中的含氧量,且剩余的氧和游离氮化合时,将生成具有强烈毒性,并对瓦斯与煤尘爆炸起催化作用的氮氧化物,并吸收热量;负氧平衡:炸药因 氧量欠缺,未能充分利用可燃元素,放热量不充分,并且产生可燃性CO等有 毒气体;零氧平衡:炸药因氧和可燃性元素都得到充分利用,故在理想反应条 件下,能放出最大热量,而且不会生成有毒气体 6殉爆是指在炸药(主发装药)爆轰产生的冲击波作用下,使得与之相隔一定距离炸药(被发装药)发生爆轰的现象。殉爆距离的因素:药量,药径,与药径成正比,装药密度,与密度成正比装药外壳和连线,有管子,则距离增大,介质,空气,水,沙土,金属,距离减小,与聚能穴位置和有无均有关。殉爆工程意义:a. 生产/贮存/运输过程中必须防止炸药发生殉爆;确定炸药生产工作间或库房的安全距离;b. 工程爆破中提高炸药起爆和传爆的可靠性;c. 在爆破工程中 需保证同一炮眼/药室内的炸药完全殉爆,以防止产生半爆,降低爆破效率。殉爆距离的测定:a 铺平沙地-半圆形凹槽(Φ35mm,l>=600mm圆木棒)b 被测药卷置于槽内-主装药捏头端插入8#雷管(2/3)c 从装药捏头端-主装药聚能穴对应 d 两药卷纵轴在同一水平线上 e 引爆主装药后,根据从装药位置有无残药/深坑, f 判断是否殉爆,找出三次平行试验都能殉爆的最大距离,既殉爆距离。 7爆轰波概念:在炸药中传播的后面紧跟一个化学反应区的冲击波(爆轰过程)。爆轰波特征:(1) 爆轰波只存在于炸药的爆轰过程中,爆轰波的传播随着炸药 爆轰结束而中止。(2) 爆轰波总伴随一个化学反应区,它是爆轰波得以稳定传播的基本保证。爆轰波阵面宽度:0-2区间,约0.1 cm ~1.0 cm(3) 爆轰波具有稳定性,即波阵面上的参数及其宽度不随时间而变化,直至爆轰终了。

可逆摆运动特性的研究

可逆摆运动特性的研究 刘勇(安庆师范学院物理与电气工程学院 安徽 安庆 246011) 指导老师:张 杰 摘要:本文根据可逆摆的物理图象和运动学方程,建立了可逆摆的目标函数和控制数学模型。通过对目标函数控制物理机理的研究,寻找目标函数的极值,然后利用MATLAB 的Simulink 进行了可逆摆的运动学仿真。在仿真过程中我们应用全维状态观测设计控制器实现了状态反馈,在此基础上用状态反馈控制配置系统极点,能够在最短的时间内寻找到系统的平衡位置。仿真结果表明,该方法可使系统稳定工作并具有良好的动态性能,并能较好地解释可逆摆实验中一系列物理现象。这为我们提供了一种利用状态反馈进行控制系统优化的手段。 关键词:可逆摆,状态反馈,MATLAB ,自动控制,仿真 1.引言 北京大学赵凯华教授指出[1]:“物理学家对事物是最好穷本极源的,他们在研究的过程中不段地思考,凡事总喜欢问个‘为什么’。理论物理学家不能仅仅埋首于公式的推演,应该询问其物理实质,从中构想出鲜明的无论图象来;实验物理学家不应满足于现象和数据的记录,或某种先进的指标,而要追究其中的物理机理”。 可逆摆问题在控制理论的研究中是一个很典型的范例[2-3]。本文根据可逆摆运动学方程,建立可逆摆目标函数的物理图象,分析(L-x )图象的形成机理,研究可逆摆上的大锤对目标函数控制的物理机理,从而较好地解释了可逆摆实验中一系列物理现象。 2.可逆摆原理及运动方程 2.1可逆摆的振动周期 在大学实验教材中,可逆摆是一种可倒过来摆动的物理摆[4],实验原理如图1,它是均匀钢体C 上装有2个均匀且平整的钢盘A 和B ,杆C 穿过钢盘,且穿过盘心。O 1,O 2为杆C 的两刀口,当可逆摆正挂做摆角很小的摆动时,它做简谐振动,其周期为 Mga I T 1 12π = (1) 式中I 1为摆在此时的转动惯量,M 为摆的总质量,a 为刀口O 1到质心O 的 距离。为了消去难于测量I 1与a ,需保持整个摆的结构不变而仅将摆倒过来绕O 2(称作倒摆)摆动则其周期为 Mgb I T 2 22π = (2) 式中I 2为摆此时的转动惯量,b 为刀口O 2到摆质心O 的距离,两者也难于侧准,为了消去I 1,I 2,a ,b ,再用平行轴定理 2 01Ma I I += ( 3 ) 2 02Mb I I += (4) 则由(1)、(2)、(3)、(4)可得 图1可逆摆

相关主题
文本预览
相关文档 最新文档