当前位置:文档之家› 线性代数第五章第四节

线性代数第五章第四节

线性代数第五章第四节

线性代数第五章第四节

线性代数第五章(答案)

第五章 相似矩阵及二次型 一、 是非题(正确打√,错误打×) 1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. ( √ ) 2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. ( √ ) 3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. ( √ ) 4.若A 和B 都是正交阵,则AB 也是正交阵. ( √ ) 5.若A 是正交阵, Ax y =,则x y =. ( √ ) 6.若112???=n n n n x x A ,则2是n n A ?的一个特征值. ( × ) 7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. ( × ) 8.n 阶矩阵A 在复数范围内有n 个不同的特征值. ( × ) 9. 矩阵A 有零特征值的充要条件是0=A . ( √ ) 10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式). ( √ ) 11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. ( × ) 12. T A 与A 的特征值相同. ( √ ) 13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. ( × )

14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B 有相同的特征值. ( √ ) 15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. ( √ ) 16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. ( √ ) 17.实对称矩阵A 的非零特征值的个数等于它的秩. ( √ ) 18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. ( √ ) 19.实对称阵A 与对角阵Λ相似Λ=-AP P 1,这里P 必须是正交阵 。 ( × ) 20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. ( √ ) 21.任一实对称矩阵合同于一对角矩阵。 ( √ ) 22.二次型 Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为 标准型. ( × ) 23.任给二次型 Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化 为规范型。 ( × )

线性代数第五章 课后习题及解答

第五章课后习题及解答 1. 求下列矩阵的特征值和特征向量: (1) ;1332??? ? ??-- 解:,0731332 2=--=--=-λλλλλA I 2 373,237321-=+=λλ ,00133637123712137 1??? ? ??→→???? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,001336371237123712??? ? ??→→???? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 111211 3--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ???? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ???? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

线性代数练习册第五章题目及答案(本)复习进程

第五章 相似矩阵与二次型 §5-1 方阵的特征值与特征向量 一、填空题 1.已知四阶方阵A 的特征值为0,1,1,2,则||A E λ-= 2(1)(2)λλλ-- 2.设0是矩阵??? ? ? ??=a 01020101A 的特征值,则=a 1 3.已知三阶方阵A 的特征值为1,-1,2,则2 32B A A =-的特征值为 1,5,8 ;||A = -2 ;A 的对角元之和为 2 . 4.若0是方阵A 的特征值,则A 不可逆。 5. A 是n 阶方阵,||A d =,则*AA 的特征值是,,,d d d ???(共n 个) 二、选择题 1.设1λ,2λ为n 阶矩阵A 的特征值,1ξ,2ξ分别是A 的属于特征值1λ,2λ的特征向量,则( D ) (A )当1λ=2λ时,1ξ,2ξ必成比例 (B )当1λ=2λ时,1ξ,2ξ必不成比例 (C )当1λ≠2λ时,1ξ,2ξ必成比例 (D )当1λ≠2λ时,1ξ,2ξ必不成比例 2.设a=2是可逆矩阵A 的一个特征值,则1 A -有一个特征值等于 ( C ) A 、2; B 、-2; C 、 12; D 、-1 2 ; 3.零为方阵A 的特征值是A 不可逆的( B ) A 、充分条件; B 、充要条件; C 、必要条件; D 、无关条件;

三、求下列矩阵的特征值和特征向量 1.1221A ?? = ??? 解:A 的特征多项式为12(3)(1)2 1A E λλλλλ --==-+- 故A 的特征值为123,1λλ==-. 当13λ=时,解方程()30A E x -=. 由221132200r A E --???? -= ? ?-???? : 得基础解系111p ?? = ??? ,故1(0)kp k ≠是13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ???? += ? ????? : 得基础解系211p -?? = ??? ,故2(0)kP k ≠是21λ=-的全部特征向量. 2.100020012B ?? ?= ? ??? 解:B 的特征多项式为 2100020(1)(2)0 1 2B E λ λλλλλ --= -=--- 故B 的特征值为1231,2λλλ===. 当11λ=时,解方程()0B E x -=. 由000010010001011000r B E ???? ? ? -= ? ? ? ????? :

线性代数第五章答案

第五章 相似矩阵及二次型 1. 试用施密特法把下列向量组正交化: (1)??? ? ??=931421111) , ,(321a a a ; 解 根据施密特正交化方法, ??? ? ??==11111a b , ??? ? ?? -=-=101] ,[],[1112122b b b a b a b , ? ?? ? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . (2)??? ? ? ??---=011101110111) , ,(321a a a . 解 根据施密特正交化方法, ??? ? ? ??-==110111a b , ? ???? ??-=-=123131],[],[1112122b b b a b a b , ? ??? ? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .

2. 下列矩阵是不是正交阵: (1)?????? ? ??-- -1 21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵. (2)???? ?? ? ??---- --979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵. 3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为 H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为 H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵. 4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T , (AB )T (AB )=B T A T AB =B -1A -1AB =E ,

线性代数第五章作业参考答案(唐明)

第五章作业参考答案 5-2试证:()()()1231,1,0,2,1,3,3,1,2T T T ααα=-== 是3R 的一组基,并求向量()()125,0,7,9,8,13T T v v ==--- 在这组基之下的坐标。 证明:要证123,,ααα 线性无关,即证满足方程1122330k k k ααα++= 的123,,k k k 只能均是0.联立方程得 1231232 32300320k k k k k k k k ++=?? -++=??+=? 计算此方程系数的行列式123 1116003 2 -=-≠ 故该方程只有零解,即1230k k k ===,因此,123,,ααα 是3R 的一组基 设1v 在这组基下的坐标为()123,,x x x ,2v 在这组基下的坐标为()123,,y y y ,由已知得 ()()1111232 212323 3,,,,,x y v x v y x y αααααα???? ? ? == ? ? ? ? ???? 代入易解得112233233,312x y x y x y ???????? ? ? ? ?==- ? ? ? ? ? ? ? ?--????????即为1v ,2v 在这组基下的坐标。 5-5设()()()1,2,1,1,2,3,1,1,1,1,2,2T T T αβγ=-=-=--- ,求: (1 ),,,αβαγ 及,,αβγ 的范数;(2)与,,αβγ 都正交的所有向量。 解(1 ),1223111(1)6αβ=?+?-?+?-= ()()(),112112 121 αγ=?-+?--?-+?= α= = β== γ= = (2)设与,,αβγ 都正交的向量为()1234,,,T x x x x x =,则 123412341234,20 ,230,220x x x x x x x x x x x x x x x αβγ?=+-+=??=++-=??=---+=?? 解得1 43243334 4 5533x x x x x x x x x x =-?? =-+?? =??=? 令340,1x x ==得()()1234,,,5,3,0,1x x x x =- 令341,0x x ==得()()1234,,,5,3,1,0x x x x =-

线性代数第五章习题

第五章 相似矩阵及二次型 一、判断题 1.线性无关的向量组必是正交向量组.( ) 2.正交矩阵的列向量组和行向量组都是单位正交向量组.( ) 3.正交矩阵一定是可逆矩阵.( ) 4.若n 阶矩阵A 与B 相似,则A 与B 不一定等价.( ) 5.若n 阶矩阵A 有n 不同的特征值,则A 相似于对角矩阵.( ) 6.实对称矩阵一定可以相似对角化.( ) 7. 相似矩阵的行列式必相同.( ) 8.若n 阶矩阵A 和B 相似,则它们一定有相同的特征值.( ) 9.n 阶实对称矩阵A 的属于两个不同特征值的两个特征向量一定正交.( ) 10. 若A 是正定矩阵,则A 的特征值全为正.( ) 二、单项选择题 1. 设,则001010100A ?????=????? A 的特征值是( ). (A) -1,1,1 (B) 0,1,1 (C) -1,1,2 (D) 1,1,2 2. 若12,x x 分别是方阵A 的两个不同的特征值对应的特征向量,则也是1122k x k x +A 的特征向量的充分条件是( ). (A) (B) (C) 120k k ==且00120k k ≠≠且120k k = (D) 1200k k ≠=且 3. 若n 阶方阵,A B 的特征值相同,则( ). (A) A B = (B) ||||A B = (C) A 与B 相似 (D) A 与B 合同 4. 设A 为n 阶可逆矩阵, λ是A 的特征值,则的特征根之一是( ). *A (A) (B) (C) 1||n A λ?1|A λ?|||A λ (D) ||n A λ5. 矩阵A 的属于不同特征值的特征向量( ). (A)线性相关 (B)线性无关 (C)两两相交 (D)其和仍是特征向量 6. ||||A B =是阶矩阵n A 与B 相似的( ). (A)充要条件 (B)充分而非必要条件

线性代数知识点总结(第5章)

线性代数知识点总结(第5章) (一)矩阵的特征值与特征向量 1、特征值、特征向量的定义: 设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量。 2、特征多项式、特征方程的定义: |λE-A|称为矩阵A的特征多项式(λ的n次多项式)。 |λE-A |=0称为矩阵A的特征方程(λ的n次方程)。 注:特征方程可以写为|A-λE|=0 3、重要结论: (1)若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量 (2)A的各行元素和为k,则(1,1,…,1)T为特征值为k的特征向量。 (3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。 △4、总结:特征值与特征向量的求法 (1)A为抽象的:由定义或性质凑 (2)A为数字的:由特征方程法求解 5、特征方程法: (1)解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn 注:n次方程必须有n个根(可有多重根,写作λ1=λ2=…=λs=实数,不能省略) (2)解齐次方程(λi E-A)=0,得属于特征值λi的线性无关的特征向量,即其基础解系(共n-r(λi E-A)个解) 6、性质: (1)不同特征值的特征向量线性无关 (2)k重特征值最多k个线性无关的特征向量 1≤n-r(λi E-A)≤k i (3)设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σa ii (4)当r(A)=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σa ii=αTβ=βTα,λ2=…=λn=0

(5)设α是矩阵A属于特征值λ的特征向量,则 (二)相似矩阵 7、相似矩阵的定义: 设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B 8、相似矩阵的性质 (1)若A与B相似,则f(A)与f(B)相似 (2)若A与B相似,B与C相似,则A与C相似 (3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和) 【推广】 (4)若A与B相似,则AB与BA相似,A T与B T相似,A-1与B-1相似,A*与B*也相似 (三)矩阵的相似对角化 9、相似对角化定义: 如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ=,称A可相似对角化。 注:Aαi=λiαi(αi≠0,由于P可逆),故P的每一列均为矩阵A的特征值λi的特征向量10、相似对角化的充要条件 (1)A有n个线性无关的特征向量 (2)A的k重特征值有k个线性无关的特征向量 11、相似对角化的充分条件: (1)A有n个不同的特征值(不同特征值的特征向量线性无关) (2)A为实对称矩阵

线性代数第五章习题答案

思考题5-1 1. 1123123100,000=?+?+?=?+?+?a a a a 0a a a . 2.不一定。例如,对于123101,,012?????? ===???????????? a a a ,它们中的任两个都线性无关,但 是123,,a a a 是线性相关的。 3. 不一定。也可能是2a 能由13,a a 线性表示,还可能是3a 能由12,a a 线性表示。 4. 不一定。例如,对于12121100,;,0012-???????? ====???????????????? a a b b 。12,a a 和12,b b 这两个 向量组都线性相关,但1122,++a b a b 却是线性无关的。 5. 向量组121,,,,n n +a a a a 线性无关。根据定理5-4用反证法可以证明这一结论。 习题5-1 1.提示:用行列式做。 (1)线性无关。 (2)线性相关。. 2. 0k ≠且1k ≠。 3.证:1212,,,1,,,,n n ==∴e e e E e e e 线性无关。 设[]12,,,,T n b b b =b 则1122.n n b b b =+++b e e e 4. 证法1:因为A 可逆,所以方程组=Ax b 有解。根据定理5-1,向量b 能由A 的列向量组12,,,n a a a 线性表示,所以向量组12,,,,n a a a b 线性相关. 证法2:通过秩或根据m n >时m 个n 元向量一定线性相关也可马上证明。 5. .证: (1)因为A 的列向量组线性相关,所以齐次线性方程组=Ax 0有非零解,设≠u 0是它的非零解,则.=Au 0 由=B PA ,得.=Bu 0可见=Bx 0有非零解,所以B 的列向量组线性相关。 (2)若P 可逆,则1-=A P B 。由(1)的结论可知,B 的列向量组线性相关时,A 的列向量组也线性相关,所以A 和B 的列向量组具有相同的线性相关性。 注:该题也可根据性质5-6和性质5-3来证明。 6. 证:由A 可逆知,A 的列向量组线性无关。根据定理5-6,增加两行后得到的矩阵B 的列向量组也线性无关.

线性代数第四章第五章部分标准答1

线性代数第四章第五章部分标准答案 第四章 3.(3)否 数乘要求满足αα=?1,但是根据定义:???? ? ??≠????? ??=????? ???2320002321 (6)否 6011W ∈????? ??-,6011W ∈???? ? ??,但是6002011011W ?????? ??=????? ??+????? ??- 10.证明:(),,,,2121R k k L x ∈?∈?αα使得2211αα?+?=k k x ,若01≠k ,则由 0332211=?+?+?αααk k k 及副条件知: 03≠?k ,使332211ααα?-=?+?=k k k x 故:()32,ααL x ∈,若01=k ,则()32222211,αααααL k k k x ∈?=?+?= 那么,()()3221,,ααααL L ? 同理可证:()()2132,,ααααL L ? 则()()2132,,ααααL L = 18.证明:()βαβαβ α++=+,2 ()()()βββααα,,2,+?+= βαβα222++≤ =()2βα+= 那么:βαβα+≤+ 22.证明:()R k k k L x m m ∈?∈?,,,,,,,2121 ααα 使得m m k k k x ααα+++= 2211 ()()m m k k k x αααββ+++= 2211,,

()()()m m k k k αβαβαβ,,,2211+++= 0= 34.证明:(1)只要证明W 非空且对于加法和数乘运算封闭 显然W ∈0,则W 非空 又W y x ∈?,,有()()0,,==γγy x 则()()()0,,,=+=+γγγy x y x 所以W y x ∈+,即W 对于加法运算封闭 仿此易证W 对于数乘运算封闭。 则W 是V 的子空间。 第五章 2.设λ是A 的任一特征值,则0≠?α,有 λαα=A , 则αλλαααλα22=?===A A A 即:() 02=-αλλ 只有0=λ或1=λ. 3. 设λ是A 的任一特征值,则0≠?α,有 λαα=A , 则αλλααk k k A A O ==?=?=- 1 只有0=λ 5.由于λ是对称A 的特征值,α是A 对应于λ的特征向量,那么我们有: λαα=A ,λαα=T A 设αβT P = ()λβαλαβ===?--T T T T T P P AP P AP P 1 6.证明:反证。若α是A 的特征向量,则λ?使得: λαα=A 则:()21212211αλαλαααλαλb a b a A a a +=+=+ 由于0,0≠≠b a ,1α ,2α线性无关,则 21λλλ==,这与21λλ≠矛盾。 10.由于A 可逆,则()BA A AB A =??-1,则BA AB ~ 27.证明: ()()() ()E A E A E A E A T T 3333++=++

居于马线性代数第五章答案

第五章 特征值和特征向量 矩阵的对角化答案 1.求下列矩阵的特征值和特征向量: (1) 2331-?? ?-?? (2) 311201112-?? ? ? ?-?? (3) 200111113?? ? ? ?-?? (4) 1234012300120001?? ? ? ? ??? (5) 452221111-?? ?-- ? ?--?? (6) 220212020-?? ?-- ? ?-?? 【解析】(1) 令2331A -??= ?-?? ,则矩阵A 的特征方程为 故A 的特征值为123322λλ+= =。 当132 λ+=时,由1()0I A x λ-=,即 得其基础解系为(16,1T x =-,因此,11k x (1k 为非零任意常数)是A 的对应 于132 λ=的全部特征向量。 当2λ=时,由2()0I A x λ-=,即 得其基础解系为(26,1T x =,因此,22k x (2k 为非零任意常数)是A 的对应于2λ=的全部特征向量。 (2) 令3112 01112A -?? ?= ? ?-?? ,则矩阵A 的特征方程为 故A 的特征值为121,2λλ==(二重特征值)。 当11λ=时,由1()0I A x λ-=,即 得其基础解系为()10,1,1T x =,因此,11k x (1k 为非零任意常数)是A 的对应于11λ=的全部

特征向量。 当22λ=时,由2()0I A x λ-=,即 得其基础解系为()21,1,0T x =,因此,22k x (2k 为非零任意常数)是A 的对应于22λ=的全部特征向量。 (3) 令200111113A ?? ?= ? ?-?? ,则矩阵A 的特征方程为 故A 的特征值为2λ=(三重特征值)。 当2λ=时,由()0I A x λ-=,即 得其基础解系为()()121,1,0,0,1,1T T x x ==,因此,A 的对应于2λ=的全部特征向量为1122k x k x +(其中12,k k 为不全为零的任意常数)。 (4) 令1234012300120001A ?? ? ?= ? ??? ,则矩阵A 的特征方程为 故A 的特征值为1λ=(四重特征值)。 当1λ=时,由()0I A x λ-=,即 得其基础解系为()1,0,0,0T x =,因此,kx (k 为非零任意常数)是A 的对应于1λ=的全部特征向量。 (5) 令45222 1111A -?? ?=-- ? ?--?? ,则矩阵A 的特征方程为 故A 的特征值为1λ=(三重特征值)。 当1λ=时,由()0I A x λ-=,即 得其基础解系为()1,1,1T x =-,因此,kx (k 为非零任意常数)是A 的对应于1λ=的全部特征向量。 (6) 令2202 12020A -?? ?=-- ? ?-?? ,则矩阵A 的特征方程为 按沙路法(课本P2),得 故A 的特征值为1231,4,2λλλ===-。

线性代数课后习题解答第五章习题详解

第五章 相似矩阵及二次型 1.试用施密特法把下列向量组正交化: (1) ? ?? ? ? ??=931421111),,(321a a a ; (2) ????? ? ? ?---=01 1101110111),,(321a a a 解 (1) 根据施密特正交化方法: 令????? ??==11111a b , [][]??? ?? ??-=-=101,,1112122b b b a b a b , [][][][]???? ? ??-=--=12131,,,,22 2321113133b b b a b b b b a b a b , 故正交化后得: ? ????? ?? ? ? --=311132013111),,(321b b b . (2) 根据施密特正交化方法: 令?????? ??-==110111a b ; [][]?????? ??-=-=123131,,1112122b b b a b a b , [][][][]???? ? ? ??-=--=433151,,,,22232111313 3b b b a b b b b a b a b 故正交化后得 ???? ? ?? ???? ? ? ---=5431153321531051311),,(321b b b 2.下列矩阵是不是正交矩阵?并说明理由: (1) ??? ??? ?? ?? ---121312112131211; (2) ?? ?????? ??------97949 4949198949891. 解 (1) 第一个行向量非单位向量,故不是正交阵. (2) 该方阵每一个行向量均是单位向量,且两两正交,故为正交阵. 3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为 H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T ,

05同济大学线性代数课后答案 第五章

第五章相似矩阵及二次型 1.试用施密特法把下列向量组正交化: (1);??? ?????=931421111) , ,(321a a a 解根据施密特正交化方法, ,??? ?????==11111a b ,??? ??????=?=101],[],[1112122b b b a b a b .??? ??????=??=12131],[],[],[],[222321113133b b b a b b b b a b a b (2).???? ?????????=011101110111) , ,(321a a a 解根据施密特正交化方法, ,???? ???????==110111a b ,???? ???????=?=123131],[],[1112122b b b a b a b .???????????=??=433151],[],[],[],[222321113133b b b a b b b b a b a b

2.下列矩阵是不是正交阵: (1);?????? ???????????121312112131211解此矩阵的第一个行向量非单位向量,故不是正交阵.(2).?????? ??????????????979494949198949891解该方阵每一个行向量均是单位向量,且两两正交,故为正交阵. 3.设x 为n 维列向量,x T x =1,令H =E ?2xx T ,证明H 是对称的正交阵. 证明因为 H T =(E ?2xx T )T =E ?2(xx T )T =E ?2(xx T )T =E ?2(x T )T x T =E ?2xx T , 所以H 是对称矩阵. 因为 H T H =HH =(E ?2xx T )(E ?2xx T ) =E ?2xx T ?2xx T +(2xx T )(2xx T ) =E ?4xx T +4x (x T x )x T =E ?4xx T +4xx T

线性代数第五习题答案详解

第五章 n 维向量空间 习题一 1. 解:a-b = a+(-b) = (1,1,0)T +(0,-1,-1)T = (1,0,-1)T 3a+2b-c = 3a+2b+(-c) = (3,3,0)T +(0,2,2)T +(-3,-4,0)T = (0,1,2)T 2. 解: 3(a 1-a)+2(a 2+a) = 5(a 3+a) 3a 1+2a 2+(-3+2)a = 5a 3+5a 3a 1+2a 2+(-a) = 5a 3+5a 3a 1+2a 2+(-a)+a+(-5)a 3 = 5a 3+5a+a+(-5)a 3 3a 1+2a 2+(-5)a 3 = 6a 61[3a 1+2a 2+(-5)a 3] = 61?6a 21a 1+31a 2+(-6 5 )a 3 = a 将a 1=(2,5,1,3)T ,a 2=(10,1,5,10)T ,a 3=(4,1,-1,1)T 代入a = 21a 1+31a 2+(-6 5 )a 3 中可得: a=(1,2,3,4)T . 3. (1) V 1是向量空间.由(0,0,…,0)∈V 1知V 1非空.设a=(x 1,x 2,…,x n )∈V 1,b=(y 1,y 2,…,y n )∈V 1, 则有x 1+x 2+…+x n =0,y 1+y 2+…+y n =0.因为 (x 1+y 1)+(x 2+y 2)+…+(x n +y n )= (x 1+x 2+…+x n )+( y 1+y 2+…+y n )=0 所以a+b=( x 1+y 1,x 2+y 2,…,x n +y n )∈V 1.对于k ∈R ,有 kx 1+kx 2+…+kx n =k(x 1+x 2+…+x n )=0 所以ka=( kx 1,kx 2,…,kx n ) ∈V 1.因此V 1是向量空间. (2) V 2不是向量空间.因为取a=(1, x 2,…,x n )∈V 2 ,b=(1, y 2,…,y n )∈V 2,但a+b=(2, x 2+y 2,…, x n +y n )?V 2.因此V 2不是向量空间. 习 题 二 1. 求向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式: (1) 解:设向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式为: b=k 1a 1+k 2a 2+k 3a 3+k 4a 4 其中, k 1,k 2,k 3,k 4为待定常数.则将b=(0,2,0,-1)T ,a 1=(1,1,1,1)T ,a 2=(1,1,1,0)T , a 3=(1,1,0,0)T ,a 4=(1,0,0,0)T 向量 b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式中可得: (0,2,0,-1)T =k 1(1,1,1,1)T +k 2(1,1,1,0)T +k 3(1,1,0,0)T +k 4(1,0,0,0)T

线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素及另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 2322 21 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

线性代数第五章答案

第五章 相似矩阵及二次型 1 试用施密特法把下列向量组正交化 (1)??? ? ??=931421111) , ,(321a a a 解 根据施密特正交化方法 ??? ? ??==11111a b ??? ? ?? -=-=101] ,[],[1112122b b b a b a b ? ?? ? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b (2)??? ? ? ??---=011101110111) , ,(321a a a 解 根据施密特正交化方法 ???? ? ??-==110111a b ? ???? ??-=-=123131],[],[1112122b b b a b a b ? ??? ? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b 2 下列矩阵是不是正交阵:

(1)?????? ? ??-- -1 21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵 (2)???? ?? ? ??---- --979494949198949891 解 该方阵每一个行向量均是单位向量 且两两正交 故为正交阵 3 设x 为n 维列向量 x T x 1 令HE 2xx T 证明H 是对称的正交阵 证明 因为 H T (E 2xx T )T E 2(xx T )T E 2(xx T )T E 2(x T )T x T E 2xx T 所以H 是对称矩阵 因为 H T HHH (E 2xx T )(E 2xx T ) E 2xx T 2xx T (2xx T )(2xx T ) E 4xx T 4x (x T x )x T E 4xx T 4xx T E 所以H 是正交矩阵 4 设A 与B 都是n 阶正交阵 证明AB 也是正交阵 证明 因为A B 是n 阶正交阵 故A 1A T B 1B T (AB )T (AB )B T A T ABB 1A 1ABE 故AB 也是正交阵 5 求下列矩阵的特征值和特征向量:

线性代数习题集带答案(供参考)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题 1. n 2阶排列)12(13)2(24-n n 的逆序数是 .

线性代数第五章答案

第五章 相似矩阵及二次型 1 试用施密特法把下列向量组正交化 (1)?? ?? ??=931421111) , ,(321a a a 解 根据施密特正交化方法 ??? ? ??==11111a b ?? ? ? ?? -=-=101] ,[],[1112122b b b a b a b ? ? ? ? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b (2)??? ? ? ??---=011101110111) , ,(321a a a 解 根据施密特正交化方法 ??? ? ? ??-==110111a b ? ? ?? ? ??-=-=123131],[],[1112122b b b a b a b ? ? ?? ? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b 2 下列矩阵是不是正交阵:

(1)?????? ? ??-- -1 21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵 (2)???? ?? ? ??---- --979494949198949891 解 该方阵每一个行向量均是单位向量 且两两正交 故为正交阵 3 设x 为n 维列向量 x T x 1 令H E 2xx T 证明H 是对称的正交阵 证明 因为 H T (E 2xx T ) T E 2(xx T )T E 2(xx T )T E 2(x T )T x T E 2xx T 所以H 是对称矩阵 因为 H T H HH (E 2xx T )(E 2xx T ) E 2xx T 2xx T (2xx T )(2xx T ) E 4xx T 4x (x T x )x T E 4xx T 4xx T E 所以H 是正交矩阵 4 设A 与B 都是n 阶正交阵 证明AB 也是正交阵 证明 因为A B 是n 阶正交阵 故A 1 A T B 1 B T (AB )T (AB )B T A T AB B 1A 1AB E 故AB 也是正交阵 5 求下列矩阵的特征值和特征向量:

线性代数 第五章

第五章 特征值与二次型 §1 向量的内积 在空间几何中,内积描述了向量的度量性质,如长度、夹角等。由内积的定义:cos ?=x y y x θ,可得 cos()= y ,?= +x y x x y x 且在直角坐标系中123123112233()()=x ,x ,x y ,y ,y x y x y x y .?++ 将上述三维向量的内积概念自然地推广到n 维向量上,就有如下定义。 定义1 设有n 维向量 12n x x x ??????=??????x ,12n y y y ??????=?????? y , 称[]1122n n x y x y x y ,=++ +x y 为x 与y 的内积. 内积是向量的一种运算,用矩阵形式可表为[],'=x y x y 。 例1 计算[],x y ,其中x,y 如下: (1) x =(0,1,5,-2),y =(-2,0,-1,3); (2) x =(-2,1,0,3),y =(3,-6,8,4)。 解 (1) [x,y ]=0·(-2)+1·0+5·(-1)+(-2)·3=-11; (2) [x ,y ]=(-2)·3+1·(-6)+0·8+3·4=0。 若x、y、z为n 维实向量,λ为实数,则下列性质从内积的定义可立刻推得。 (i ) [x,y ]=[y,x ], (ii )[λx,y ]=λ[x ,y ], (iii)[x+y ,z ]=[x,z ]+[y ,z ]. 同三维向量空间一样,可用内积定义n 维向量的长度和夹角. 定义2 称 = =x x 的长度(或范数),当‖x ‖=1 时称x 为单位向量. 从向量长度的定义可立刻推得以下基本性质: (i)非负性: 当x ≠0时,‖x ‖>0,当x =0时‖x ‖=0。

线性代数第五章 课后习题及解答

第五章课后习题及解答 1。 求下列矩阵的特征值和特征向量: (1) ;1332? ?? ? ??-- 解:,0731 3 3 2 2=--=--= -λλλλλA I 2 37 3,237321-=+= λλ ,00 13 36 37 123712 137 1??? ? ??→→??? ? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,00 13 36 37 12371237 12??? ? ??→→??? ? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 11 121 13--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ??? ? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ??? ? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

相关主题
文本预览
相关文档 最新文档