当前位置:文档之家› 操作系统编程进程或作业先来先服务、高优先权、按时间片轮转调度算法

操作系统编程进程或作业先来先服务、高优先权、按时间片轮转调度算法

操作系统编程进程或作业先来先服务、高优先权、按时间片轮转调度算法
操作系统编程进程或作业先来先服务、高优先权、按时间片轮转调度算法

湖南农业大学科学技术师范学院学生实验报告

流程图:

(先来先服务流程图)

(高优先权流程图)

(按时间片轮转调度)

程序说明及实现:

1)先来先服务调度算法:

高响应比优先实现进程调度.(用C语言实现),

2) 优先级调度程序:

该程序由主程序、构造队列子程序、打印子程序、运行子程序构成。

3) 时间片轮转法程序:

在此程序中由于程序比较小,未进行分模块设计。直接采用单一模块。

1先来先服务

#i nclude

float t,d; /*定义两个全局变量*/

struct /*定义一个结构体数组,包括进程的信息*/

{

int id;

float ArriveTime;

float RequestTime;

随机进程调度算法

《操作系统原理》实验报告 实验名称:Linux随机进程调度算法实现 班级: 学号: 姓名: 日期: 2012/12/31

一、实验名称 Linux随机进程调度算法实现 二、所属课程名称 《操作系统原理》 三、实验原理 linux 0.11内核目录linux/kernel中的sched.c函数是内核中进程调度管理的程序,其中schedule()函数负责选择系统中下一个要运行的进程。 schedule()函数首先对所有任务(进程)进行检测,唤醒任何一个已经得到信号的进程。具体方法是任务数组中的每个进程,检查其报警定时值alarm。如果进程的alarm时间已经过期(alarm

NR_TASKS:系统能容纳的最大进程数(64个); task[]:任务(进程)数组; 更改代码如下:(linux 0.11内核目录下linux/kernel/sched.c 源文件的scheduling()函数while(1)循环)while (1) { //定义c用来判断系统中是否可运行的任务(进程)存在; c=-1; //c初值设为-1,默认不存在可运行进程; next = 0;//next记录下一个即将运行的进程; i=jiffies % NR_TASKS+1; //i的值是随机产生的; p=&task[i];//p指向在task表中下标为i的进程; while (--i) { //遍历task[]; if(!*--p)continue; //如果task[i]不包含进程,跳过; //如果task[i]包含进程且该进程处于就绪状态,记录 //该任务(进程)序号,跳出无限循环while(1),转向 //switch_to()函数执行该任务(进程); if ((*p)->state == TASK_RUNNING) { next = i; c=i; break; } } if (c) break;//如果没有任何任务(进程)要执行,则跳出, //转向switch_to(),执行0号进程(idle)。 }

短作业优先调度算法

青岛理工大学 操作系统课程设计报告 院(系):计算机工程学院 专业:计算机科学与技术专业 学生姓名: 班级:__学号: 题目:短作业优先调度算法的进程调度程序_ 起迄日期:________ 设计地点: 指导教师: 2011—2012年度第 1 学期 完成日期: 2012 年 1 月日

一、课程设计目的 进行操作系统课程设计主要是在学习操作系统课程的基础上,在完成操作系统各部分实验的基础上,对操作系统的整体进行一个模拟,通过实践加深对各个部分的管理功能的认识,还能进一步分析各个部分之间的联系,最后达到对完整系统的理解。同时,可以提高运用操作系统知识解决实际问题的能力;锻炼实际的编程能力、开发软件的能力;还能提高调查研究、查阅技术文献、资料以及编写软件设计文档的能力。 二、课程设计内容与要求 设计目的:在多道程序和多任务系统中,系统内同时处于就绪状态的进程可能有若干个,且进程之间也存在着同步与互斥的关系,要求采用指定的调度策略,使系统中的进程有条不紊地工作,通过观察诸进程的运行过程,以巩固和加深处理机调度的概念。 2、设计要求(多道、单处理机): 1)每一个进程有一个PCB,其内容可以根据具体情况设定。 2)可以在界面设定的互斥资源(包括两种:输入设备与输出设备)的数目 3)进程数、进入内存时间、要求服务时间可以在界面上进行设定 4)进程之间存在一定的同步与互斥关系,可以通过界面进行设定,其表示方法如下: 进程的服务时间由三段组成:I2C10O5(表示进程的服务时间由2个时间片的输入,10个时间片的计算,5个时间片的输出) 进程间的同步关系用一个段表示:W2,表示该进程先要等待P2进程执行结束后才可以运行 因此,进程间的同步与互斥关系、服务时间可以统一用四段表示为:I2C10O5W2 5)可以在运行中显示各进程的状态:就绪、阻塞、执行 6)采用可视化界面,可在进程调度过程中随时暂停调度,查看当前进程的状态以及相 应的阻塞队列 7)具有一定的数据容错性 三、系统分析与设计 1、系统分析 本系统主要是采用短作业优先算法进程的进程调度过程。短作业优先调度算法,是指对短作业或短进程优先调度的算法。他们可以分别用于作业调度和进程调度,短作业优先的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将他们调入内存运行。而短进程优先调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给他,,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机时再度重新调度。本程序采用了非抢占式短作业优先调度。而非抢占式这种方式,一旦把处理机分配给某进程后,便让该进程一直执行,直至该进程完成或发生某事件而被阻塞时,才再把处理机分配给其它进程,决不允许某进程抢占已经分配出去的处理机。这种调度方式的优点是实现简单,系统开销小,适用于大多数的批处理系统环境。但它难以满足紧急任务的要求——立即执行,因而可能造成难以预料的后果。因此,在要求比较严格的实时系统中,不宜采用这种调度方式本系统的主要是在满足要求多道单处理机的情况下进行短作业的优先调度。 本系统在测试时输入了五个进程,按实验要求如I2C10O5(表示进程的服务时间由2个时间片的输入,10个时间片的计算,5个时间片的输出,5个时间片的计算组成)的方式输入,各进程的信息如下:(0 0 1 1 1 )(1 2 1 2 2 )(2 4 1 1 1 )

时间片轮转调度算法资料

《操作系统》课程实验报告实验名称:时间片轮转调度算法 班级:**************** 学号:************* 姓名:************** 指导老师:*************** 成绩:

一、实验目的: 1、测试数据可以随即输入或从文件中读入。 2、必须要考虑到进程的到达时间 3、最终能够计算每一个进程的周转时间的带权周转时间。 4、时间片大小可以不为1,但至少实现时间片大小为1的RR调度。 二、实验内容: 模拟实现时间片轮转调度算法,具体如下: 设置进程体:进程名,进程的到达时间,服务时间,,进程状态(W——等待,R ——运行,F——完成),进程间的链接指针 进程初始化:由用户输入进程名、服务时间进行初始化,同时,初始化进程的状态为W。 显示函数:在进程调度前、调度中和调度后进行显示。 排序函数:对就绪状态的进程按照进入就绪队列的时间排序,新到达的进行应优先于刚刚执行过的进程进入就绪队列的队尾。 调度函数:每次从就绪队列队首调度优一个进程执行,状态变化。并在执行一个时间片后化,服务时间变化,状态变化。当服务时间为0时,状态 变为F。 删除函数:撤销状态为F的进行。 三、实验代码 #include #include #include typedefstruct PCB2 { char name[10];//进程名 int runtime;//要求运行时间 intfrist;//定义优先数 char zhuangtai; //定义状态,R为就绪,F为完成 }; structshijian {//定义时间片的结构体 char name; //定义进程名 intdaodatime;// 到达时间 intfuwutime; //服务时间 intshengyutime;//剩余时间 char *state;//所处状态 structshijian *next; }; structshijian *time() { inta,i;

进程调度算法实验报告

操作系统实验报告(二) 实验题目:进程调度算法 实验环境:C++ 实验目的:编程模拟实现几种常见的进程调度算法,通过对几组进程分别使用不同的调度算法,计算进程的平均周转时间和平均带权周转时间,比较 各种算法的性能优劣。 实验内容:编程实现如下算法: 1.先来先服务算法; 2.短进程优先算法; 3.时间片轮转调度算法。 设计分析: 程序流程图: 1.先来先服务算法 开始 初始化PCB,输入进程信息 各进程按先来先到的顺序进入就绪队列 结束 就绪队列? 运行 运行进程所需CPU时间 取消该进程 2.短进程优先算法

3.时间片轮转调度算法 实验代码: 1.先来先服务算法 #include #define n 20 typedef struct { int id; //进程名

int atime; //进程到达时间 int runtime; //进程运行时间 }fcs; void main() { int amount,i,j,diao,huan; fcs f[n]; cout<<"请输入进程个数:"<>amount; for(i=0;i>f[i].id; cin>>f[i].atime; cin>>f[i].runtime; } for(i=0;if[j+1].atime) {diao=f[j].atime; f[j].atime=f[j+1].atime; f[j+1].atime=diao; huan=f[j].id; f[j].id=f[j+1].id; f[j+1].id=huan; } } } for(i=0;i #define n 5 #define num 5 #define max 65535 typedef struct pro { int PRO_ID; int arrive_time;

处理器调度(设计一个按时间片轮转法实现处理器调度的程序)

实验一处理器调度 一、实验容 选择一个调度算法,实现处理器调度。 二、实验目的 在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。当就绪进程个数大于处理器数时,就必须依照某种策略来决定哪些进程优先占用处理器。本实习模拟在单处理器情况下的处理器调度,帮助学生加深了解处理器调度的工作。 三、实验题目 设计一个按时间片轮转法实现处理器调度的程序。 [提示]: (1)假定系统有五个进程,每一个进程用一个进程控制块PCB来代表。进程控制块的 格式为: 其中,Q1,Q2,Q3,Q4,Q5。 指针——进程按顺序排成循环队列,用指针指出下一个进程的进程控制块的首地址最后一个进程的指针指出第一个进程的进程控制块首地址。 要求运行时间——假设进程需要运行的单位时间数。 已运行时间——假设进程已经运行的单位时间数,初始值为“0”。 状态——有两种状态,“就绪”和“结束”,初始状态都为“就绪”,用“R”表示。 当一个进程运行结束后,它的状态为“结束”,用“E”表示。 (2) 每次运行所设计的处理器调度程序前,为每个进程任意确定它的“要求运行时间”。 (3) 把五个进程按顺序排成循环队列,用指针指出队列连接情况。另用一标志单元记录轮到运行的进程。例如,当前轮到P2执行,则有: 标志单元 K1 K2 K 3 K4 K5

(4)处理器调度总是选择标志单元指示的进程运行。由于本实习是模拟处理器调度的 功能,所以,对被选中的进程并不实际的启动运行,而是执行: 已运行时间+1 来模拟进程的一次运行,表示进程已经运行过一个单位的时间。 请同学注意:在实际的系统中,当一个进程被选中运行时,必须置上该进程可以运行的时间片值,以及恢复进程的现场,让它占有处理器运行,直到出现等待事件或运行满一个时间片。在这时省去了这些工作,仅用“已运行时间+1”来表示进程已 经运行满一个时间片。 (5)进程运行一次后,应把该进程的进程控制块中的指针值送到标志单元,以指示下一 个轮到运行的进程。同时,应判断该进程的要求运行时间与已运行时间,若该进程的要求运行时间 已运行时间,则表示它尚未执行结束,应待到下一轮时再运行。若该进程的要求运行时间=已运行时间,则表示它已经执行结束,应指导它的状态修改成“结束”(E)且退出队列。此时,应把该进程的进程控制块中的指针值送到前 面一个进程的指针位置。 (6)若“就绪”状态的进程队列不为空,则重复上面的(4)和(5)的步骤,直到所有 的进程都成为“结束”状态。 (7)在所设计的程序中应有显示或打印语句,能显示或打印每次选中进程的进程名以及 运行一次后进程队列的变化。 (8)为五个进程任意确定一组“要求运行时间”,启动所设计的处理器调度程序,显示 或打印逐次被选中的进程名以及进程控制块的动态变化过程。 四. 所用数据结构及符号说明 typedef struct PNode//PCB { struct PNode *next; //定义指向下一个节点的指针 char name[10]; //定义进程名,并分配空间 int All_time; //定义总运行时间 int Runed_Time; //定义已运行时间 char state; //定义进程状态Ready/End } *Proc; //指向该PCB的指针 int ProcNum; //总进程数

进程模拟调度算法课程设计

一.课程概述 1.1.设计构想 程序能够完成以下操作:创建进程:先输入进程的数目,再一次输入每个进程的进程名、运行总时间和优先级,先到达的先输入;进程调度:进程创建完成后就选择进程调度算法,并单步执行,每次执行的结果都从屏幕上输出来。 1.2.需求分析 在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目,要使这多个进程能够并发地执行,这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。分配处理机的任务是由处理机调度程序完成的。由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统必(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机调度便成为操作系统设计的中心问题之一。本次实验在VC++6.0环境下实现先来先服务调度算法,短作业优先调度算法,高优先权调度算法,时间片轮转调度算法和多级反馈队列调度算法。 1.3.理论依据 为了描述和管制进程的运行,系统为每个进程定义了一个数据结构——进程控制块PCB(Process Control Block),PCB中记录了操作系统所需的、用于描述进程的当前情况以及控制进程运行的全部信息,系统总是通过PCB对进程进行控制,亦即,系统是根据进程的PCB 而不是任何别的什么而感知进程的存在的,PCB是进程存在的惟一标志。本次课程设计用结构体Process代替PCB的功能。 1.4.课程任务 一、用C语言(或C++)编程实现操作模拟操作系统进程调度子系统的基本功能;运用多 种算法实现对进程的模拟调度。 二、通过编写程序实现进程或作业先来先服务、高优先权、按时间片轮转、短作业优先、多 级反馈队列调度算法,使学生进一步掌握进程调度的概念和算法,加深对处理机分配的理解。 三、实现用户界面的开发

先来先服务和短作业优先调度算法

《操作系统》实验一实验报告 【实验题目】:先来先服务FCFS和短作业优先SJF进程调度算法【实验目的】 通过这次实验,加深对进程概念的理解,进一步掌握进程状态的转变、进程调度的策略及对系统性能的评价方法。 【实验内容】 问题描述: 设计程序模拟进程的先来先服务FCFS和短作业优先SJF调度过程。假设有n个进程分别在T1, …,T n时刻到达系统,它们需要的服务时间分别为S1, … ,S n。分别采用先来先服务FCFS和短作业优先SJF 进程调度算法进行调度,计算每个进程的完成时间,周转时间和带权周转时间,并且统计n个进程的平均周转时间和平均带权周转时间。 程序要求如下: 1)进程个数n;每个进程的到达时间T1, …,T n和服务时间S1, … ,S n;选择算法1-FCFS,2-SJF。 2)要求采用先来先服务FCFS和短作业优先SJF分别调度进程运行,计算每个进程的周转时间,带权周转时间,并且计算所有进程的平均周转时间,带权平均周转时间; 3)输出:要求模拟整个调度过程,输出每个时刻的进程运行状态,如“时刻3:进程B开始运行”等等; 4)输出:要求输出计算出来的每个进程的周转时间,带权周转时间,

所有进程的平均周转时间,带权平均周转时间。【实验过程】 #include using namespace std; #define MaxNum 100 int ArrivalTime[MaxNum]; double ServiceTime[MaxNum]; double FinishTime[MaxNum]; double WholeTime[MaxNum]; double A VEWholeTime[MaxNum]; double A VEWeightWholeTime[MaxNum]; double WeightWholeTime[MaxNum]; double AverageWT_FCFS,AverageWT_SJF; double AverageWWT_FCFS,AverageWWT_SJF; double AllTime,WeightAllTime; double a[MaxNum]; int b[MaxNum]; int c[MaxNum]; int d[MaxNum]; void FCFS(); void SJF();

时间片轮转算法

一、实验目的 (1)在单处理器情况下按时间片轮转算法实现处理器调度,输出运行动态变化过程。 (2)通过算法的实现加深了解处理器调度的工作。 二、实验内容 输入实现处理器调度的几个进程信息,任意确定一组“要求运行时间”,启动所设计的处理器调度程序,显示逐次被选中进程的进程名以及进程控制块的动态变化过程。 三、实验步骤 1、任务分析: 时间片轮转的主要思想就是按顺序为每一个进程一次只分配一个时间片的时间。算法要完成的功能就是将各个进程按照时间片轮转运行的动态过程显示出来。时间片轮转算法的主要实现过程是首先为每一个进程创建一个进程控制块,定义数据结构,说明进程控制块所包含的内容,有进程名、进程所需运行时间、已运行时间和进程的状态以及指针的信息。实现的过程即运用指针指向某一个进程,判断当前的进程是否是就绪状态“r”,如果是,则为该进程分配一个时间片,同时,已运行时间加一且要求运行的时间减一,如此循环执行,当某一个进程的所需要运行的时间减少至0时,则将该进程的状态设置为“e”。然后,将指针指向下一个未运行完成的进程,重复判断,直至所有的进程都运行结束。 2、概要设计: (1)所用数据结构及符号说明 typedef struct PCB{ char name[10]; //进程名 struct PCB *next; //循环链指针 int need_time; //要求运行时间 int worked_time; //已运行时间,初始为0 char condition; //进程状态,只有“就绪”和“结束”两种状态 int flag; //进程结束标志,用于输出 }PCB; PCB *front,*rear; //循环链队列的头指针和尾指针 int N; //N为进程数 (2)主程序的流程图:

短作业优先算法

短作业(进程)优先调度算法 1.短作业(进程)优先调度算法SJ(P)F,是指对短作业或 短进程优先调度的算法。它们可以分别用于作业调度和进程调度。短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。而短进程(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机再重新调度。SJ(P)F 调度算法能有效地降低作业(进程)的平均等待时间,提高系统吞吐量。该算法对长作业不利,完全未考虑作业的紧迫程度。 2.流程图 3.代码

#include<> #include<> #include<> struct sjf{ char name[10]; float arrivetime; float servicetime; float starttime; float finishtime; float zztime; float dqzztime; }; sjf a[100]; void input(sjf *p,int N) { int i; printf("intput the process's name & arrivetime & servicetime:\nfor exmple: a 0 100\n"); for(i=0;i<=N-1;i++) { printf("input the %dth process's information:\n",i+1); scanf("%s%f%f",&p[i].name,&p[i].arrivetime,&p[i].servicetim e);

时间片轮转调度算法

#include #include #include #include /*进程控制块数据结构*/ typedef struct node { char name[10];/*进程名*/ int prio; /*进程优先级*/ int round; /*循环轮转法进程每次轮转的时间片*/ int cputime; /*进程累计消耗的CUP时间*/ int needtime; /*进程到完成还需要的CUP时间*/ int count; /*循环轮转法一个时间片内进程运行时间*/ char state; /*进程的状态:'R':运行,'W':等待,'F':结束*/ struct node *next;/*指向下一个进程的链指针*/ }PCB; PCB *finish,*ready,*tail,*run;/*指向三个队列的队首的指针, finish为完成队列头指针, ready为就绪队列头指针, tail为就绪队列的队尾指针, run为当前运行进程头指针*/ int N;/*定义进程的数目*/ void firstin(void); //调度就绪队列的第一个进程投入运行; void print1(char a); //打印表头行信息 void print2(char chose,PCB *p); //打印每一行的状态信息 void print(char chose); //打印每执行一次算法后所有的进程的状态信息 void insert_prio(PCB *q); //在优先数算法中,将尚未完成的PCB按优先数顺序插入到就绪队列中; void prior_init(char chose); //进程优先级法初始化将进程按优先级插入到就绪队列里 void priority(char chose); //进程优先级算法总函数 void insert_rr(PCB *q); //在轮转法中,将执行了一个时间片单位(为2),但尚未完成的进程的PCB,插到就绪队列的队尾; void roundrun_init(char chose); //循环轮转法初始化将就绪队列保存为FIFO队列 void roundrun(char chose); //循环轮转法总算法 void main()//主函数 {

优先级调度算法实验报告

优 先 级 调 度 算 法 实 验 报 告 院系:****************学院班级:*********** 姓名:*** 学号:************

一、实验题目:优先级调度算法 二、实验目的 进程调度是处理机管理的核心内容。本实验要求用高级语言编写模拟进程调度程序,以便加深理解有关进程控制快、进程队列等概念,并体会和了解优先级算法的具体实施办法。 三、实验内容 1.设计进程控制块PCB的结构,通常应包括如下信息: 进程名、进程优先数(或轮转时间片数)、进程已占用的CPU时间、进程到完成还需要的时间、进程的状态、当前队列指针等。 2.编写优先级调度算法程序 3.按要求输出结果。 四、实验要求 每个进程可有三种状态;执行状态(RUN)、就绪状态(READY,包括等待状态)和完成状态(FINISH),并假定初始状态为就绪状态。(一)进程控制块结构如下: NAME——进程标示符 PRIO/ROUND——进程优先数 NEEDTIME——进程到完成还需要的时间片数 STATE——进程状态 NEXT——链指针 注: 1.为了便于处理,程序中进程的的运行时间以时间片为单位进行

计算; 2.各进程的优先数或,以及进程运行时间片数的初值,均由用户在程序运行时给定。 (二)进程的就绪态和等待态均为链表结构,共有四个指针如下:RUN——当前运行进程指针 READY——就需队列头指针 TAIL——就需队列尾指针 FINISH——完成队列头指针 五、实验结果:

六、实验总结: 首先这次实验的难度不小,它必须在熟悉掌握数据结构的链表和队列的前提下才能完成,这次实验中用了三个队列,就绪队列,执行队列和完成队列,就绪队列中的优先级数是有序插入的,当进行进程调度的时候,需要先把就绪队列的队首节点(优先级数最大的节点)移入执行队列中,当执行进程结束后,判断该进程是否已经完成,如果已经完成则移入完成队列,如果没有完成,重新有序插入就绪队列中,这就是这次实验算法的思想。 附录(算法代码):

操作系统短作业优先调度算法

课程设计 采用短作业优先调度算法调度程序 学号: 姓名: 专业: 指导老师: 日期:

目录 一、实验题目 (3) 二、课程设计的目的 (3) 三、设计内容 (3) 四、设计要求 (3) 五、主要数据结构及其说明 (4) 六、程序运行结果 (5) 七、流程图 (7) 八、源程序文件 (9) 九、实验体会 (13) 十、参考文献 (13)

摘要 在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目。这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。分配处理机的任务是由处理机调度程序完成的。由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统性能(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机调度便成为操作系统设计的中心问题之一。 在多道程序系统中,一个作业被提交后必须经过处理机调度后,方能获得处理机执行。对于批量型作业而言,通常需要经历作业调度和进程调度两个过程后方能获得处理机。作业调度是对成批进入系统的用户作业,根据作业控制块的信息,按一定的策略选取若干个作业使它们可以去获得处理器运行的一项工作。而对每个用户来说总希望自己的作业的周转时间是最小的,短作业优先(SJF)便是其中一种调度方法。本次课程设计主要是模拟短作业优先(SJF)调度算法。

一、实验题目 采用短作业优先算法的的进程调度程序 二、课程设计的目的 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合一起,独立分析和解决实际问题的机会。 进一步巩固和复习操作系统的基础知识。 培养学生结构化程序、模块化程序设计的方法和能力。 提高学生调试程序的技巧和软件设计的能力。 提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 三、设计内容 设计并实现一个采用短作业优先算的进程调度算法演示程序 四、设计要求 1. 每一个进程有一个PCB,其内容可以根据具体情况设定。 2. 进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定 3. 可读取样例数据(要求存放在外部文件中)进行进程数、进入内存时间、时间片长度、进程优先级的初始化 4. 可以在运行中显示各进程的状态:就绪、执行(由于不要求设置互斥资源与进程间同步关系,故只有两种状态) 5. 采用可视化界面,可在进程调度过程中随时暂停调度,查看当前进程的状态以及相应的阻塞队列

操作系统模拟进程调度算法

操作系统 ——项目文档报告 进程调度算法 专业: 班级: 指导教师: 姓名: 学号:

一、核心算法思想 1.先来先服务调度算法 先来先服务调度算法是一种最简单的调度算法,该算法既可以用于作业调度,也可用于进程调度。当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将他们调入内存,为它们分配资源、创建进程,然后放入就绪队列。在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。FCFS算法比较有利于长作业(进程),而不利于短作业(进程)。 2.短作业(进程)优先调度算法 短作业(进程)优先调度算法SJ(P)F,是指对短作业或短进程优先调度的算法。它们可以分别用于作业调度和进程调度。短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。而短进程(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机再重新调度。SJ(P)F调度算法能有效地降低作业(进程)的平均等待时间,提高系统吞吐量。该算法对长作业不利,完全未考虑作业的紧迫程度。 3.高响应比优先调度算法 在批处理系统中,短作业优先算法是一种比较好的算法,其主要不足之处是长作业的运行得不到保证。如果我们能为每个作业引人动态优先权,并使作业的优先级随着等待时间的增加而以速率a提高,则长作业在等待一定的时间后,必然有机会分配到处理机。该优先权的变化规律可描述为: 优先权=(等待时间+要求服务时间)/要求服务时间 即优先权=响应时间/要求服务时间 如果作业的等待时间相同,则要求服务的时间越短,其优先权越高,因而该算法有利于短作业。 当要球服务的时间相同时,作业的优先权决定于其等待时间,等待时间越长,优先权越高,因而它实现的是先来先服务 对于长作业,作业的优先级可以随着等待时间的增加而提高,当其等待时间足够长时,其优先级便可以升到很高,从而也可获得处理机。 4.时间片轮转算法 在时间片轮转算法中,系统将所有的就绪进程按先来先服务的原则排成一个队列,每次调度时,把CPU分配给队首进程,并令其执行一个时间片。当执行的时间片用完时,由一个计数器发出时钟中断请求,调度程序便据此信号来停止该进程的执行,并将它送往就绪队列的末尾;然后,再把处理机分配给就绪队列中新的队首进程,同时也让它执行一个时间片。这样就可以保证就绪队列中的所有进程在一给定的时间内均能获得一时间片的处理机执行时间。换言之,系统能在给定的时间内响应所有用户的请求。 二、核心算法流程图

短作业优先调度算法 (1)

短作业优先调度算法 学院计算机科学与技术 专业 学号 学生姓名 指导教师姓名 2014-3-18目录

九参考文献……………………………………………………………………………………………………… 实验题目 采用短作业优先算法的进程调度程序 课程设计的目的 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合一起,独立分析和解决实际问题的机会。 进一步巩固和复习操作系统的基础知识。 培养学生结构化程序、模块化程序设计的方法和能力。 提高学生调试程序的技巧和软件设计的能力。 提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 设计内容 设计并实现一个采用短作业优先算的进程调度算法演示程序 设计要求 1. 每一个进程有一个PCB,其内容可以根据具体情况设定。 2. 进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定

3. 可读取样例数据(要求存放在外部文件中)进行进程数、进入内存时间、时间片长度、进程优先级的初始化 4. 可以在运行中显示各进程的状态:就绪、执行(由于不要求设置互斥资源与进程间同步关系,故只有两种状态) 5. 具有一定的数据容错性 主要数据结构及其说明 算法的简要说明:短作业(进程)优先调度算法SJ(P)F,是指对短作业或短进程优先调度的算法。它们可以分别用于作业调度和进程调度。短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。而短进程(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机再重新调度。优点是SJ(P)F调度算法能有效地降低作业(进程)的平均等待时间,提高系统吞吐量。缺点是该算法对长作业不利;完全未考虑作业的紧迫程度,因而不能保证紧迫性作业(进程)长期不被调度;由于作业(进程)的长短只是根据用户所提供的估计执行时间而定的,而用户又可能会有意或无意地缩短其作业的估计运行时间,致使该算法不一定能真正做到短作业游戏那调度。 该程序定义了一个进程数据块(struct spf),该数据块有进程名(name)、到达时间(arrivetime)、服务时间(servicetime)、开始执行时间(starttime)、完成时间 (finishtime)、周转时间(zztime)、带权周转时间(dqzztime)。用到的公式有:完成时间=到达时间+服务时间;周转时间=完成时间-到达时间;带权周转时间=周转时间/服务时间;(第一次执行的进程的完成时间=该进程的到达时间;下一个进程的开始执行时间=上一个进程的完成时间)。运行进程的顺序需要对进程的到达时间和服务时间进行比较。如果某一进程是从0时刻到达的,那么首先执行该进程;之后就比较进程的服务时间,谁的服务时间短就先执行谁(如果服务时间相同则看它们的到达时间,到达时间短的先执行);如果到达时间和服务时间相同,则按先来先服务算法执行。

时间片轮转调度算法实验报告

xx大学操作系统实验报告 姓名:学号:班级: 实验日期: 实验名称:时间片轮转RR进程调度算法 实验二时间片轮转RR进程调度算法 1.实验目的:通过这次实验,理解时间片轮转RR进程调度算法的运行原理,进一步 掌握进程状态的转变、进程调度的策略及对系统性能的评价方法。 2.需求分析 (1) 输入的形式和输入值的范围; 输入:进程个数n 范围:0

(4) 测试数据,包括正确的输入及其输出结果和含有错误的输入及其输出结果。正确输入: 错误输入:

2、概要设计 所有抽象数据类型的定义: static int MaxNum=100 int ArrivalTime //到达时间 int ServiceTime //服务时间 int FinishedTime //结束时间 int WholeTime //周转时间 double WeightWholeTime //带权周转时间double AverageWT //平均周转时间double AverageWWT //平均带权周转时间主程序的流程: 变量初始化

OS短作业优先调度算法C语言知识分享

O S短作业优先调度算 法C语言

采用短作业优先调度算法调度程序 学号: 姓名: 专业: 指导老师: 日期:

目录 一、实验题目 (3) 二、课程设计的目的 (3) 三、设计内容 (3) 四、设计要求 (3) 五、主要数据结构及其说明 (4) 六、程序运行结果 (5) 七、流程图 (7) 八、源程序文件 (9) 九、实验体会 (13) 十、参考文献 (14)

摘要 在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目。这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。分配处理机的任务是由处理机调度程序完成的。由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统性能(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机调度便成为操作系统设计的中心问题之一。 在多道程序系统中,一个作业被提交后必须经过处理机调度后,方能获得处理机执行。对于批量型作业而言,通常需要经历作业调度和进程调度两个过程后方能获得处理机。作业调度是对成批进入系统的用户作业,根据作业控制块的信息,按一定的策略选取若干个作业使它们可以去获得处理器运行的一项工作。而对每个用户来说总希望自己的作业的周转时间是最小的,短作业优先(SJF)便是其中一种调度方法。本次课程设计主要是模拟短作业优先(SJF)调度算法。

一、实验题目 采用短作业优先算法的的进程调度程序 二、课程设计的目的 ●操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既 动手又动脑,将课本上的理论知识和实际有机的结合一起,独立分析和解决实际问题的机会。 ●进一步巩固和复习操作系统的基础知识。 ●培养学生结构化程序、模块化程序设计的方法和能力。 ●提高学生调试程序的技巧和软件设计的能力。 ●提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 三、设计内容 设计并实现一个采用短作业优先算的进程调度算法演示程序 四、设计要求 1. 每一个进程有一个PCB,其内容可以根据具体情况设定。 2. 进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定

设计一个按优先数调度算法实现处理器调度的程序 改

题目:设计一个按优先数调度算法实现处理器调度的程序 提示: (1)假定系统有5个进程,每个进程用一个PCB来代表。PCB的格式为: 进程名、指针、要求运行时间、优先数、状态。 进程名——P1~P5。 指针——按优先数的大小把5个进程连成队列,用指针指出下一个进程PCB的首地址。 要求运行时间——假设进程需要运行的单位时间数。 优先数——赋予进程的优先数,调度时总是选取优先数大的进程先执行。 状态——假设两种状态,就绪,用R表示,和结束,用E表示。初始状态都为就绪状态。 (2) 每次运行之前,为每个进程任意确定它的“优先数”和“要求运行时间”。 (3) 处理器总是选队首进程运行。采用动态改变优先数的办法,进程每运行1次,优先 数减1,要求运行时间减1。 (4) 进程运行一次后,若要求运行时间不等于0,则将它加入队列,否则,将状态改为“结 束”,退出队列。 (5) 若就绪队列为空,结束,否则,重复(3)。 2.程序中使用的数据结构及符号说明: #define num 5//假定系统中进程个数为5 struct PCB{ char ID;//进程名 int runtime;//要求运行时间 int pri;//优先数 char state; //状态,R-就绪,F-结束 }; struct PCB pcblist[num];//定义进程控制块数组 3.流程图: (1)主程序流程图: (2)子程序init()流程图:

(3) 子程序max_pri_process()流程图:

(4)子程序show()流程图:

(5)子程序run()流程图:

采用时间片轮转算法调度程序

采用时间片轮转算法调度程序 学号: 姓名: 专业: 指导教师: 日期: 目录 一、需求分析 (3)

1、设计要求: (3) 2、解决方案: (3) 二、课程设计简介 (4) 1、课程设计题目 (4) 2、课程设计目的 (4) 3、课程设计内容 (4) 4、时间安排 (4) 三、概要设计 (4) 1、基本原理 (4) 2、算法思想设计 (5) 3、数据结构及模块说明: (5) 四、主要函数及其说明 (6) 五、调试分析 (7) 1、调试过程及步骤 (7) 2、结果分析(以三个进程数为例) (8) 六、总结及参考文献 (9) 1、总结: (9) 2、参考文献 (9) 附录:程序源代码 (9)

一、需求分析 1、设计要求: 在多道程序或多任务系统中,系统同时处于就绪状态的进程有若干个。为了使系统中各进程能有条不紊地进行,必须选择某种调度策略,以选择一进程占用处理机。要求用时间片轮转算法模拟单处理机调度,以巩固和加深处理机调度的概念。 2、解决方案: (1)、假设系统有5个进程,每个进程用一个进程控制块PCB来表示。PCB包括:进程名、链接指针、到达时间、估计运行时间和进程状态。其中,进程名即进程标识。链接指针指出下一个到达进程的进程控制块地址,按照进程到达的顺序排队,统设置一个队头和队尾指针分别指向第一个和最后一个进程,新生成的进程放队尾。估计运行时间:可由设计者任意指定一个时间值。到达时间:进程创建时的系统时间或由用户指定,调度时,总是选择到达时间最早的进程。进程状态:为简单起见,假定进程有三种状态,就绪、等待和完成,并假定进程一创建就处于就绪状态,用R表示,当一个进程运行结束时,就将其置成完成状态,用F表示。当一个进程未运行完成并且时间片不足时,就将其置成等待状态,用W表示。 (2)、为每个进程任意确定一个要求运行时间和到达时间。 (3)、按照进程到达的先后顺序排成一个循环队列。再设一队首指针指向第一个到达进程的首址。 (4)、执行处理机调度时,开始选择队首的第一个进程运行。另外再设一个当前运行进程的指针,指向当前正运行进程。 (5)、由于本实验是模拟实验,所以对被选中进程并不实际启动运行,而只是执行: a)、估计运行时间减时间片长度; b)、输出当前运行进程的名字。用这两个操作来模拟进程的一次运行(即一个时间片)。 (6)、进程运行一次后,以后的调度则将当前指针依次下移一个位置,指向下一个进程,即调整当前运行指针指向该进程的链接指针所指进程,以指示应运行进程。同时还应判断该进程的剩余运行时间是否为零。若不为零,则等待下一轮的运行;若该进程的剩余运行时间为零,则将该进程的状态置为完成状态F,并退出循环队列插入完成队列。 (7)、若就绪队列不空,则重复上述(5)和(6)步骤直到所有进程都运行完为止。 (8)、在所有设计的调度程序中,应包含显示或打印语句,以便显示或打印每次选中进程的名称及运行一次后队列的变化情况。

相关主题
文本预览
相关文档 最新文档