当前位置:文档之家› 高优先权优先调度算法

高优先权优先调度算法

高优先权优先调度算法
高优先权优先调度算法

第3章处理器调度

第3章处理器调度 一、填空 1.一个操作系统的可扩展性,是指该系统能够跟上先进计算机技术发展的能力。 2.在引入线程的操作系统中,线程是进程的一个实体,是进程中实施调度和处理机分派的基本单位。 3.一个线程除了有所属进程的基本优先级外,还有运行时的动态优先级。 4.进程调度程序具体负责处理器的分配。 5.为了使系统的各种资源得到均衡使用,进行作业调度时,应该注意cpu繁忙型作业和输入/输出繁忙型作业的搭配。 6.总的来说,进程调度有两种方式,即剥夺方式和不剥夺方式。 7.作业被系统接纳后到运行完毕,一般还需要经历后备、运行和完成三个阶段。 8.假定一个系统中的所有作业同时到达,那么使作业平均周转时间为最小的作业调度算法是短作业优先调度算法。 二、选择 1.计算机系统在执行时,会自动从目态变换到管态。 A.P操作B.V操作C.系统调用D.I/O指令2.在Windows 2000/XP中,只有状态的线程才能成为被切换成运行状态,占用处理器执行。 A.备用B.就绪C.等待D.转换 3.Windows 2000/XP是采用来实现对线程的调度管理的。 A.线程调度器就绪队列表 B.线程调度器就绪队列表、就绪位图 C.线程调度器就绪队列表、就绪位图、空闲位图 D.线程调度器就绪队列表、空闲位图 4.在Windows 2000/XP里,一个线程的优先级,会在时被系统降低。 A.时间配额用完B.请求I/O C.等待消息D.线程切换6.由各作业JCB形成的队列称为。 A.就绪作业队列B.阻塞作业队列 C.后备作业队列D.运行作业队列 7.既考虑作业等待时间,又考虑作业执行时间的作业调度算法是。 A.响应比高者优先B.短作业优先 C.优先级调度D.先来先服务 8.作业调度程序从处于状态的队列中选取适当的作业投入运行。 A.就绪B.提交C.等待D.后备9.是指从作业提交到作业完成的时间间隔。

(售后服务)操作系统编程进程或作业先来先服务高优先权按时间片轮转调度算法

(售后服务)操作系统编程进程或作业先来先服务高优先权按时间片轮转调度 算法

湖南农业大学科学技术师范学院 学生实验报告

(高优先权流程图) (按时间片轮转调度) 程序说明及实现: 1)先来先服务调度算法: 高响应比优先实现进程调度.(用C语言实现), 2)优先级调度程序: 该程序由主程序、构造队列子程序、打印子程序、运行子程序构成。 3)时间片轮转法程序: 于此程序中由于程序比较小,未进行分模块设计。直接采用单壹模块。 1先来先服务 #include floatt,d;/*定义俩个全局变量*/ struct/*定义壹个结构体数组,包括进程的信息*/ { intid; floatArriveTime; floatRequestTime; floatStartTime; floatEndTime; floatRunTime; floatDQRunTime; intStatus; }arrayT ask[4];/*定义初始化的结构体数组*/ GetTask()/*给结构体数组赋值,输入到达,服务时间*/ {inti; floata; for(i=0;i<4;i++) {arrayT ask[i].id=i+1; printf("inputthenumber"); printf("inputthetheArriveTimeofarrayT ask[%d]:",i);/*用户输入进程的时间,初始为零*/ scanf("%f",&a); arrayT ask[i].ArriveTime=a; printf("inputtheRequestTimeofarrayT ask[%d]:",i); scanf("%f",&a); arrayT ask[i].RequestTime=a; arrayT ask[i].StartTime=0; arrayT ask[i].EndTime=0; arrayT ask[i].RunTime=0;

设计一个按优先数调度算法实现处理器调度的程序

题目:设计一个按优先数调度算法实现处理器调度的程序 提示: (1)假定系统有5个进程,每个进程用一个PCB来代表。PCB的格式为: 进程名、指针、要求运行时间、优先数、状态。 进程名——P1~P5。 指针——按优先数的大小把5个进程连成队列,用指针指出下一个进程PCB的首地址。 要求运行时间——假设进程需要运行的单位时间数。 优先数——赋予进程的优先数,调度时总是选取优先数大的进程先执行。 状态——假设两种状态,就绪,用R表示,和结束,用E表示。初始状态都为就绪状态。 (2) 每次运行之前,为每个进程任意确定它的“优先数”和“要求运行时间”。 (3) 处理器总是选队首进程运行。采用动态改变优先数的办法,进程每运行1次,优先 数减1,要求运行时间减1。 (4) 进程运行一次后,若要求运行时间不等于0,则将它加入队列,否则,将状态改为“结 束”,退出队列。 (5) 若就绪队列为空,结束,否则,重复(3)。 2.程序中使用的数据结构及符号说明: #define num 5//假定系统中进程个数为5 struct PCB{ char ID;//进程名 int runtime;//要求运行时间 int pri;//优先数 char state; //状态,R-就绪,F-结束 }; struct PCB pcblist[num];//定义进程控制块数组 3.流程图: (1)主程序流程图: (2)子程序init()流程图:

(3) 子程序max_pri_process()流程图:

(4)子程序show()流程图:

(5)子程序run()流程图:

操作系统编程进程或作业先来先服务、高优先权、按时间片轮转调度算法

操作系统编程进程或作业先来先服务、高优先权、按时间 片轮转调度算法 湖南农业大学科学技术师范学院 学生实验报告 姓名: 汤黎波年级专业班级 06级计算机教育班日期 2008 年 12 月 8 日 成绩 验证设计编程进程或作业先来先服务、 综合创新实验类型课程名称计算机操作系统实验名称高优先权、按时间片轮转调度 算法(4学时) 【实验目的、要求】 实验目的:(1)通过编写程序实现进程或作业先来先服务、高优先权、按时间片轮转调度算法,使学生进一步掌握进程调度的概念和算法,加深对处理机分配的理解。 (2)了解Windows2000/XP中进程(线程)的调度机制。 (3)学习使用Windows2000/XP中进程(线程)调度算法,掌握相应的与调度有关的Win32 API 函数。 实验要求:(1)经调试后程序能够正常运行。 (2)采用多进程或多线程方式运行,体现了进程或作业先来先服务、高优先权、按时间片轮转 调度的关系。 (3)程序界面美观。

【实验内容】 在Windows XP、Windows 2000等操作系统下,使用C语言,利用相应的WIN32 API函数,编写程序实现进程或作业先来先服务、高优先权、按时间片轮转调度算法。 【实验环境】(含主要设计设备、器材、软件等) Pc电脑一台 【实验步骤、过程】(含原理图、流程图、关键代码,或实验过程中的记录、 数据等) 定义: 1)先来先服务算法:如果早就绪的进程排在就绪队列的前面,迟就绪的进程排 在就绪队列的后面, 那么先来先服务(FCFS:first come first service)总是把当前处于就绪队列 之首的那个进程 调度到运行状态。 2)轮转法就是按一定时间片(记为q)轮番运行各个进程。如果q是一个定值,则轮转法是一种对各 进程机会均等的调度方法。 3)优先级调度的基本思想是,把当前处于就绪队列中优先级最高的进程投入运行,而不管各进程的 下一个CPU周期的长短和其他因素。 实验步骤: (1)需求分析:了解基本原理,确定程序的基本功能,查找相关资料,画出基本的数据流图; (2)概要设计:确定程序的总体结构、模块关系和总体流程; (3)详细设计:确定模块内部的流程和实现算法;

处理机调度算法详解

关于处理机调度算法 《操作系统》教材中,介绍了常用的作业调度算法和进程调度算法。其中先来先服务法(FCFS)和优先级法对作业调度和进程调度都适用,时间片轮转法(RR)适用于进程调度。此外,还介绍了其他调度算法,如短作业优先法、最短剩余时间优先法、多级队列法和多级反馈队列法,这4个算法不是课程的重点内容,不作为考核要求。 需要指出的是:(1)在作业调度和进程调度中同时出现的算法,如FCFS、优先级法,其使用原理是基本相同的;(2)作业调度算法和进程调度算法应严格与存储管理中的“请求淘汰换页算法”相区别,注意不要混淆。 下面,结合具体的例题,详解调度算法: 1. 先来先服务法(FCFS) 算法描述:每次调度时,从后备作业队列或就绪队列中选择一个最先进入该队列的作业或进程。 【例1】下表给出作业l,2,3的到达时间和运行时间。采用先来先服务调度算法,试问作业调度的次序和平均周转时间各为多少?(时间单位:小时,以十进制进行计算。) 分析解题关键是要根据系统采用的调度算法,弄清系统中各道作业随时间的推进情况。我们可以用一个作业执行时间图来形象地表示作业的执行情况,帮助我们理解此题。 先来先服务调度算法是按照作业到达的先后次序挑选作业,先进入的作业优先被挑选。即按照“排队买票”的办法,依次选择作业。其作业执行时间图如下: 或者简化为下图: 作业1 作业2 作业3 | | | | 时间 0 8 12 13 由于作业1,2,3是依次到来的,所以刚开始时系统中只有作业1,于是作业1被选中。在8.0时刻,作业1运行完成,这时作业2和作业3已经到达,都在系统中等待调度,按照先来先服务法的规定,每次调度最先进入就绪队列中的作业,由于作业2比作业3先到达,于是作业2被优先选中运行。待作业2运行完毕,最后运行作业3。因此,作业调度的次序

优先级调度算法实验报告

优 先 级 调 度 算 法 实 验 报 告 院系:****************学院班级:*********** 姓名:*** 学号:************

一、实验题目:优先级调度算法 二、实验目的 进程调度是处理机管理的核心内容。本实验要求用高级语言编写模拟进程调度程序,以便加深理解有关进程控制快、进程队列等概念,并体会和了解优先级算法的具体实施办法。 三、实验内容 1.设计进程控制块PCB的结构,通常应包括如下信息: 进程名、进程优先数(或轮转时间片数)、进程已占用的CPU时间、进程到完成还需要的时间、进程的状态、当前队列指针等。 2.编写优先级调度算法程序 3.按要求输出结果。 四、实验要求 每个进程可有三种状态;执行状态(RUN)、就绪状态(READY,包括等待状态)和完成状态(FINISH),并假定初始状态为就绪状态。(一)进程控制块结构如下: NAME——进程标示符 PRIO/ROUND——进程优先数 NEEDTIME——进程到完成还需要的时间片数 STATE——进程状态 NEXT——链指针 注: 1.为了便于处理,程序中进程的的运行时间以时间片为单位进行

计算; 2.各进程的优先数或,以及进程运行时间片数的初值,均由用户在程序运行时给定。 (二)进程的就绪态和等待态均为链表结构,共有四个指针如下:RUN——当前运行进程指针 READY——就需队列头指针 TAIL——就需队列尾指针 FINISH——完成队列头指针 五、实验结果:

六、实验总结: 首先这次实验的难度不小,它必须在熟悉掌握数据结构的链表和队列的前提下才能完成,这次实验中用了三个队列,就绪队列,执行队列和完成队列,就绪队列中的优先级数是有序插入的,当进行进程调度的时候,需要先把就绪队列的队首节点(优先级数最大的节点)移入执行队列中,当执行进程结束后,判断该进程是否已经完成,如果已经完成则移入完成队列,如果没有完成,重新有序插入就绪队列中,这就是这次实验算法的思想。 附录(算法代码):

动态优先权算法模拟-操作系统课程设计

实用标准文档 东北大学分校 计算机与通信工程学院 操作系统课程设计 设计题目动态优先权算法模拟 专业名称计算机科学与技术 班级学号 学生 指导教师 设计时间

课程设计任务书 专业:计算机科学与技术学号:学生(签名): 设计题目:动态优先权算法模拟 一、设计实验条件 综合楼808 二、设计任务及要求 模拟单处理机环境下的进程调度模型,调度采用基于动态优先权的调度算法。 三、设计报告的容 1.设计题目与设计任务 设计题目:动态优先权算法模拟 设计任务:模拟单处理机环境下的进程调度模型,调度采用基于动态优先权的调度算法。 2.前言(绪论) 在操作系统中调度算法的实质是一种资源的分配,因而调度算法是指“根据系统资源分配策略所规定的资源分配算法”。对于不同的操作系统和系统目标,通

常采用不同的调度算法。 为了照顾紧迫作业,使之在进入系统后便获得优先处理,引入了最高优先权先调度算法。在作为进程调度算法时,该算法是把处理机分配给就绪队列优先权最高的进程。这可以分为抢占式优先权算法和非抢占式优先权算法。 对于最高优先权优先调度算法,其关键在于:它是使用静态优先权还是动态优先权,以及如何确定进程的优先权。本次课程设计所实现的算法就是动态优先权算法的抢占式优先权调度算法和非抢占式动态优先权算法。 动态优先权拥有其特有的灵活优点,同时,若所有的进程都具有相同的优先权初值,则显然是最先进入就绪队列的进程,将因其动态优先权变得高而优先获得处理机,此即FCFS算法。若所有的就绪进程具有各不相同优先权初值,那么,对于优先权初值低的进程,在等待了足够长的时间后,其优先权便可能升为最高,从而获得处理机。当采用抢占式优先权调度算法时,如果规定当前进程的优先权以一定速率下降,则可防止一个长作业长期垄断处理机。 这里,我们采用高响应比来决定每个进程的优先权。 3.设计主体(各部分设计容、分析、结论等) 【设计容】 动态优先权是指在创建进程时所赋予的优先权,是可以随进程的推进或随其等待时间的增加而改变的,以便获得更好的调度性能。 非抢占式优先权调度算法。在这种方式下,系统一旦把处理机分配给就绪队

处理器调度之动态优先数调度算法

1 处理机调度 1.1 实验内容及要求 实验内容:按优先数调度算法实现处理器调度。 实验要求:能接受键盘输入的进程数、进程标识、进程优先数及要求运行时间,能显示每次进程调度的情况:运行进程、就绪进程和就绪进程的排列情况。 1.2 实验目的 本实验模拟在单处理器环境下的处理器调度,加深了解处理器调度工作。 1.3 实验环境 本实验的设计基于Windows7操作系统DevC++5.11环境,用C语言实现编程。 1.4 实验思路 (1) 每个进程用一个PCB来代表。PCB的结构为: 进程名——作为进程标识。 优先数——赋予进程的优先数,调度时总是选取优先数大的进程先执行。 要求运行时间——假设进程需要运行的单位时间数。 状态——假设两种状态:就绪和结束,用R表示就绪,用E表示结束。 初始状态都为就绪状态。 指针——按优先数的大小把5个进程连成队列,用指针指出下一个进程PCB的首地址。 (2) 开始运行之前,为每个进程确定它的“优先数”和“要求运行时间”。通过键盘输入这些参数。 (3) 处理器总是选择队首进程运行。采用动态改变优先数的办法,进程每运

行1次,优先数减1,要求运行时间减1。 (4) 进程运行一次后,若要求运行时间不等于0,则将它加入就绪队列,否则,将状态改为“结束”,退出就绪队列。 (5) 若就绪队列为空,结束,否则转到(3)重复。 1.5 数据结构与全局变量 typedef struct pcb{ int pname;//进程名 int priority;//优先级 int runTime;//所需时间 int state;//状态 struct pcb* next;//下一个进程控制块 }PCB; //进程控制块 int num;//存储进程数 PCB readyHead;//头结点,不存储进程 PCB *readyEnd;//指向尾结点的指针 1.6 函数说明 (1)主函数main() 输入进程数并调createProcess()初始化进程;若有进程,则依次调用sortProcess()、runProcess()、printProcessLink()和printProcessInfo()。(2)进程创建函数createProcess() 输入进程标识、优先级和运行时间进行初始化。 (3)进程排序函数sortProcess() 用冒泡排序算法根据进程的优先级进行降序排序,每次排序之后优先级最高的进程放在就绪队列首。 (4)进程运行函数runProcess() 将数组首的进程优先级和所需时间减1; 若剩余所需时间为0,则PCB状态标记为E(结束)。

操作系统原理-第四章 处理机调度(有答案)

第四章处理机调度 4.3 习题 4.3.1 选择最合适的答案 1.某系统采用了银行家算法,则下列叙述正确的是()。 A.系统处于不安全状态时一定会发生死锁 B.系统处于不安全状态时可能会发生死锁 C.系统处于安全状态时可能会发生死锁 D.系统处于安全状态时一定会发生死锁 2.银行家算法中的数据结构包括有可利用资源向量Available、最大需求矩阵Max、分配矩阵Allocation、需求矩阵Need,下列选项正确的是()。 A.Max[i,j]=Allocation[i,j]+Need[i,j] B.Need[i,j]= Allocation[i,j]+ Max[i,j] C.Max[i,j]= Available[i,j]+Need[i,j] D.Need[i,j]= Available[i,j]+ Max[i,j] 3.下列进程调度算法中,()可能会出现进程长期得不到调度的情况。 A.非抢占式静态优先权法 B.抢占式静态优先权法 C.时间片轮转调度算法 D.非抢占式动态优先权法 4.在下列选项中,属于预防死锁的方法是()。 A.剥夺资源法 B.资源分配图简化法 C.资源随意分配 D.银行家算法 5.在下列选项中,属于检测死锁的方法是()。 A.银行家算法 B.消进程法 C.资源静态分配法 D.资源分配图简化法 6.在下列选项中,属于解除死锁的方法是()。 A.剥夺资源法 B.资源分配图简化法 C.银行家算法 D.资源静态分配法 7.为了照顾紧迫型作业,应采用()。 A.先来服务调度算法 B.短作业优先调度算法 C.时间片轮转调度算法 D.优先权调度算法 8.在采用动态优先权的优先权调度算法中,如果所有进程都具有相同优先权初值,则

使用动态优先权与时间片轮转的进程调度算法的模拟

计算机与信息工程学院设计性实验报告 一、实验目的 通过动态优先权调度算法的模拟加深进程概念和进程调度过程的理解。二、实验仪器或设备 虚拟机 三、总体设计(设计原理、设计方案及流程等) 实验内容 (1)在Linux下用C语言编程模拟N个进程采用高优先权优先(要求采用 动态优先权)和简单时间片轮转两种进程调度算法。为了清楚地观察每 个进程的调度过程,程序应将每个时间片内的进程情况显示出来; (2)进程控制块是进程存在的唯一标志,因此,在模拟算法中每一个进程用 一个进程控制块PCB来代表,PCB用一结构体表示。包括以下字段: ●进程标识数id,或者进程的名称name; ●进程优先数priority,并规定优先数越大的进程,其优先权越高; ●进程需要运行的CPU时间ntime; ●进程的运行时间rtime; ●进程状态state; ●队列指针next,用来将PCB排成队列。 (3)进程在运行过程中其状态将在就绪、执行、阻塞(可选)、完成几种状态 之间转换,同时进程可能处于不同的队列中,如就绪队列、阻塞队列(可 选)。在两种调度算法中,考虑分别可以选择什么样的队列及如何实现进 程的入队、出队操作; (4)为了便于处理,优先权调度每次也仅让进程执行一个时间片,若在一个 时间片内未运行结束,调整进程优先级将其插入就绪队列,进行新一轮

调度; (5)优先数改变原则: ●进程每运行若一个时间单位,优先数减3; ●进程在就绪队列中呆一个时间片,优先数增加1。(仅供参考,合理 即可) (6)优先权调度中,对于遇到优先权一致的情况,可采用FCFS策略解决; (7)由于是模拟进程调度,所以,对被选中的进程并不实际启动运行,而是 修改进程控制块的相关信息来模拟进程的一次运行; (8)为了清楚地观察诸进程的调度过程,程序应将每个时间片内的进程的情 况显示出来,参照格式如下: id cputime needtime priority(count) state 0 0 2 48 ready 1 0 3 47 ready 2 0 6 44 ready 3 0 5 45 ready 4 0 4 46 ready 简单时间片轮转调度模拟程序见roundrobin.c,优先权调度大家请参考时间片轮转自行实现,有自己想法的同学可以按照自己的思路独立完成实验,而不用参考roundrobin.c程序。 四、实验步骤(包括主要步骤、代码分析等) #include "stdio.h" #include #define getpch(type) (type*)malloc(sizeof(type)) struct pcb { char name[10]; char state; int count; int ntime; int rtime; int priority; struct pcb* link; }*ready=NULL,*tail=NULL,*p; typedef struct pcb PCB; int slice;

单调速率调度算法RMS

余蓝涛1 (天津大学精密仪器与光电子工程学院天津 300072 ) 摘要: 嵌入式系统对强大实时处理能力的需求和相对紧张的内存及内核资源的现实,对嵌入式操作系统任务调度提出了较高的要求。因此任务调度的算法的分析,实现和优化,对实现嵌入式系统的实时性有着重大的意义。从算法提出的理论基础出发,深入分析了经典的单调速率调度算法的思想,特点,具体实现并重点评价了该算法的优点和局限性。 关键词:单调速率调度算法实时嵌入式系统 Abstract: The zest for powerful real-time processing of embedded system and the reality of relatively scare memory and kernel resource pave way for the high request for task scheduling. Therefore, the analysis, implementation and optimization of task scheduling algorithm have a vast meaning for the real-time system. Based on theoretical basis of classic rate-monotonic scheduling algorithm, this paper not only analyzes fundamental thought, characteristics, practical implementation of this classic algorithm in depth, but also rate its advantages and disadvantages. Key words: Rate-monotonic Scheduling, Algorithm, Real-time, Embedded System 一,引言 现在嵌入式系统得到高速的发展。它的发展为几乎所有的电子产品注入了新的活力。它在国民经济各领域和我们日常生活中发挥了越来越重要的作用。 嵌入式系统在航天、军事、工控以及家电等方面得到了广泛应用。囿于体积,能耗,价格等方面的约束,嵌入式系统处理器速度比较慢,存储器容量也有限。而传统的操作系统为了取得较高的性能,要求硬件设备具有强大的处理能力,大容量的存储能力以及对网络的支持功能,这使得传统的操作系统难以简单地移植到嵌入式系统中。 这就导致了嵌入式操作系统由于受到系统的限制,往往内存资源都非常的有限,要求操作系统的内核都非常的精炼,对于系统中的资源操作系统内核需要进行统一的分配和调度。 嵌入式操作系统调度策略一直以来都是嵌入式操作系统的研究 中的一个热点。任务调度是嵌入式操作系统内核的关键部分,如何进行任务调度,使得各个任务能在其截止期限内得以完成是嵌入式操作系统的一个重要的研究领域。 二,嵌入式实时操作系统 绝大部分嵌入式系统都是实时系统,而且多是实时多任务系统。所谓“实时”,是指系统的正确性不仅仅依赖于计算的逻辑结果而且依赖于结果产生的时间[1][6]。结果产生的时间就是通常所说的截止期限(deadline),描述系统实时性的指标主要有: a,对紧急事件可预见性的快速响应; 1作者简介:余蓝涛(1991-)江西省人天津大学精密仪器与光电子工程学院测控技术与仪器本科生学号:79

采用静态优先权优先算法的进程调度程序

采用静态优先权优先算法的进程调度程序 学号: 姓名: 专业: 指导教师: 日期: 目录 第1部分课设简介 (3)

1.1 课程设计题目 (3) 1.2 课程设计目的 (3) 1.3 课程设计内容 (3) 1.4 时间安排 (3) 第2部分实验原理分析 (3) 2.1问题描述 (3) 2.2解决方法 (4) 第3部分主要的功能模块 (5) 3.1主要的函数 (5) 3.2 测试用例及运行结果 (7) 第4部分源代码 (9) 第5部分总结及参考文献 (16) 5.1 总结 (16) 5.2 参考文献 (17)

第1部分课设简介 1.1 课程设计题目 采用静态优先权优先算法的进程调度程序 1.2 课程设计目的 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合起来,独立分析和解决实际问题的机会。 1)进一步巩固和复习操作系统的基础知识。 2)培养学生结构化程序、模块化程序设计的方法和能力。 3)提高学生调试程序的技巧和软件设计的能力。 4)提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 1.3 课程设计内容 设计并实现一个采用静态优先权算法的进程调度演示程序 1.4 时间安排 1)分析设计贮备阶段(1 天) 2)编程调试阶段(7 天) 3)写课程设计报告、考核(2 天) 第2部分实验原理分析 2.1问题描述 (1)每一个进程有一个PCB,其内容可以根据具体情况设定。 (2)进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定

(3)可读取样例数据(要求存放在外部文件中)进行进程数、进入内存时间、时间片长度、作业大小、进程优先级的初始化 (4)可以在运行中显示各进程的状态:就绪、执行(由于不要求设置互斥资源与进程间的同步关系,故只有两种状态) (5)采用可视化界面,可在进程调度过程中随时暂停调度,查看当前进程的状态以及相应的阻塞队列 (6)有性能比较功能,可比较同一组数据在不同调度算法下的平均周转时间(7)具有一定的数据容错性 2.2程序设计流程图

操作系统-第3章复习题答案

操作系统第三章总复习题 一、单选题 1、进程调度又称低级调度,其主要功能是( D )。 A.选择一个作业调入内存 B.选择一个主存中的进程调出到外存 C.选择一个外存中的进程调入到主存 D.将一个就绪的进程投入到运行 2、若进程P一旦被唤醒就能够投入运行,系统可能为( D )。 A.分时系统,进程P的优先级最高 B.抢占调度方式,就绪队列上的所有进程的优先级皆比P的低 C.就绪队列为空队列 D.抢占调度方式,P的优先级高于当期运行的进程。 3、一个进程P被唤醒后,( D )。 A.P就占有了CPU。 B.P的PCB被移到就绪队列的队首。 C.P的优先级肯定最高 D.P的状态变成就绪 4、若当期运行进程( C )后,系统将会执行进程调度原语。 A 执行了一个转移指令 B 要求增加主存空间,经系统调用银行家算法进行测算认为是安全的。 C 执行了一条I/O指令要求输入数据。 D 执行程序期间发生了I/O完成中断。 5、当系统中( C )时,系统将不会执行进程调度原语。 A.一个新进程被创建 B.当前进程执行了P操作。 C.在非抢占调度中,进程A正在运行而进程B恰好被唤醒。 D.分时系统中时间片用完。 6、在分时系统中,若当期运行的进程连续获得了两个时间片,原因可能是( B )。 A 该进程的优先级最高 B 就绪队列为空 C 该进程最早进入就绪队列 D 该进程是一个短进程 7、实时系统中采用的调度算法可以有如下几种:

1、非抢占优先权调度算法 2、立即抢占优先权调度算法 3、时间片轮转调度算法 4、基于时钟中断抢占的优先权调度算法 按实时要求的严格程度由低到高的顺序( B )。 A 1-3-2-4 B 3-1-4-2 C 3-1-2-4 D 1-3-4-2 8、三种主要类型的OS 中都必须配置的调度( C )。 A 作业调度 B 中级调度 C 低级调度 D I/O调度 9、设系统中n 个进程并发,共同竞争资源X,且每个进程都需要m个X资源,为使该系统不会发生死锁,资源X最少要有( C )个。 A m*n+1 B n*m+n C n*m+1-n D 无法预计 注:可以这样理解 N个进程,都需要M个资源,最坏的一种情况是: 每个进程都占有M-1个资源,都得不到M个资源,总共资源数(m-1)*n。 (m-1)*n加上一个资源后,就至少有一个进程拥有M个资源,不会发生死锁。 10、死锁的预防方法中,不太可能的一种方法使( A )。 A 摈弃互斥条件 B摈弃请求和保持条件 C摈弃不剥夺条件 D摈弃环路等待条件 11、某系统采用了银行家算法,则下列叙述正确的使( B ) A 系统处于不安全状态时一定会发生死锁 B 系统处于不安全状态时可能会发生死锁 C 系统处于安全状态时可能会发生死锁 D 系统处于安全状态时一定会发生死锁 12、下列进程调度算法中,( A )可能会出现进程长期得不到调度的情况。A.静态优先权法 B 抢占式调度中采用动态优先权调度 C 分时处理中的时间片轮转调度算法 D 非抢占调度中采用FIFO算法 13、采用动态优先权的调度算法中,如果所有的进程都具有相同优先权初值,则此时的优先权调度算法实际上和( A )相同。 A 先来先服务调度算法 B 短作业优先调度算法 C时间片轮转调度算法 D 长作业优先调度算法

动态优先级调度算法的特点与实现

动态优先级调度算法的特点与实现 本文从实时操作系统的调度功能入手,简单介绍了实时调度算法的分类和种类,并主要讨论动态优先级调度算法的特点和实现。接下来本文介绍了两类动态优先级调度算法:截止时间优先调度算法和最短空闲时间优先调度算法的定义及实现方式。然后将静态调度与动态调度进行比较,突出动态优先级调度的特点,同时指出其可能导致的优先级反转、死锁等不良后果。然后具体介绍了优先级反转的定义以及解决该问题的两种方案:采用优先级继承协议与采用优先级天花板协议。 在嵌入式的实时操作系统中,调度是一个非常重要的功能,用来确定多任务环境下任务执行的顺序和在获得CPU资源后能够执行的时间长度。 操作系统通过一个调度程序(Scheduler)来实现调度功能。调度程序以函数的形式存在,用来实现操作系统的调度算法。调度程序本身并不是一个任务,而是一个函数调用,可在内核的各个部分进行调用。调度程序是影响系统性能(如吞吐率、延迟时间等)的重要部分。在设计调度程序是、时,通常要综合考虑如下因素: ●CPU的使用率(CUP utilization); ●输入/输出设备的吞吐率; ●响应时间(responsive time); ●公平性; ●截止时间。 这些因素之间具有一定的冲突性。比如可通过让更多的任务处于就绪状态来提高CPU 的使用率,但这显然会降低系统的响应时间。因此,调度程序的设计需要优先考虑最重要的需求,然后在各种因素之间进行折中处理。 可以把一个调度算法(Scheduling Algorithms)描述为是在一个特定时刻用来确定将要运行的任务的一组规则。从1973年Liu和Layland开始关于实时调度算法的研究工作以来

车辆调度算法研究及其应用文献综述

文献综述 车辆调度算法研究及其应用 一、前言部分 车辆调度问题是现代物流系统优化中关键的一环,也是开展电子商务不可缺少的内容。对车辆调度优化理论与算法进行系统研究是构建综合物流系统、建立现代调度指挥系统、发展智能交通运输系统和开展电子商务的基础[1]。 车辆调度问题是运筹学与组合优化领域的研究热点。有效的调度车辆,不仅可以提高物流工作效率,而且能够为及时生产模式的企业提供运输上的保障,从而实现物流管理科学化。由于该问题的理论涉及很多学科,很多实际问题的理论抽象都可归结为这一类问题,研究该问题具有很重要的理论意义和实际意义。 1 . VRP(Vehicle Routing Problem)问题描述及其分类 VRP问题一般可定义为:对一系列的装货点或卸货点,组织适当的行车路线,使车辆 有序地通过它们,在满足一定的约束条件(货物需求量、发送量、车辆容量限制、行驶里程限制、时间限制)下,达到一定的目标(路程最短、时间最小、费用最省、车辆数目最少等)。由于该问题研究范围非常广,根据其网络性能大致可以分为两类:一类为静态 VRP (StaticVRP, SVRP),一类为动态VRP (dynamic VRP, DVRP)。 (1)静态VRP问题描述 SVRP 问题是VRP 中较简单的一类问题,是大部分研究者研究的热点。该问题具有一 个很重要的特征:在安排初始路线时,和路线相关的所有信息已知,并且在安排路线以后其相关信息始终保持改变[2]。以下列举了一些常见的SVRP 问题:仅考虑车辆容量限制的 VRP(CVRP)、带时间窗的VRP(VRPTW)、带有回收的VRP(VRP with backhauls)、带有集派的VRP(VRPPD)。除此以外,还有许多其它 CVRP 的延伸问题,如顾客有优先权,考虑卸货时间、装卸时间、等待时间等,甚至综合了以上不同的特征。这些问题的相关信息均已知且保持不变[3]。 (2)动态VRP问题描述 所谓DVRP,是指在安排初始路线时,并不是和路线相关的所有信息都为已知,并且初始路线安排以后,其相关信息可能发生改变。DVRP 研究范围较广,需求不确定、动态网络、服务车辆不确定、提供数据有偏差等都属于DVRP 的研究范畴。从网络性能角度,DVRP 可以分为以下三种类型:1)时间依赖型VRP (TDVRP)。2)概率VRP (PVRP)。车辆运行时间以离散

实验二——动态高优先权优先调度算法

《操作系统》课程实验报告实验名称:动态分区存储管理 姓名:王子瑜 学号: 541413450235 地点:四教楼 指导老师:刘放美 专业班级:软件工程(测试技术14-02) 实验成绩:

一、实验要求: 熟悉并掌握动态分区分配的各种算法。 熟悉并掌握动态分区中分区回收的各种情况,并能够实现分区合并。 二、实验内容: 用高级语言模拟实现动态分区存储管理,要求: 1、分区分配算法至少实现首次适应算法、最佳适应算法和最坏适应算法中的至 少一种。熟悉并掌握各种算法的空闲区组织方式。 2、分区的初始化——可以由用户输入初始分区的大小。(初始化后只有一个空 闲分区,起始地址为0,大小是用户输入的大小) 3、分区的动态分配过程:由用户输入作业号和作业的大小,实现分区过程。 4、分区的回收:用户输入作业号,实现分区回收,同时,分区的合并要体现出 来。(注意:不存在的作业号要给出错误提示!) 5、分区的显示:任何时刻,可以查看当前内存的情况(起始地址是什么,大小 多大的分区时空闲的,或者占用的,能够显示出来) 要求考虑:(1)内存空间不足的情况,要有相应的显示; (2)作业不能同名,但是删除后可以再用这个名字; (3)作业空间回收是输入作业名,回收相应的空间,如果这个作业名不存在,也要有相应的提示。 三、实验代码 #include #include #define SIZE 640 // 内存初始大小 #define MINSIZE 5 // 碎片最小值 enum STATE { Free, Busy }; struct subAreaNode { int addr; // 起始地址 int size; // 分区大小

处理器调度之动态优先数调度算法

1 处理机调度 实验内容及要求 实验内容:按优先数调度算法实现处理器调度。 实验要求:能接受键盘输入的进程数、进程标识、进程优先数及要求运行时间,能显示每次进程调度的情况:运行进程、就绪进程和就绪进程的排列情况。 实验目的 本实验模拟在单处理器环境下的处理器调度,加深了解处理器调度工作。 实验环境 本实验的设计基于Windows7操作系统DevC++环境,用C语言实现编程。 实验思路 (1) 每个进程用一个PCB来代表。PCB的结构为: 进程名——作为进程标识。 优先数——赋予进程的优先数,调度时总是选取优先数大的进程先执行。 要求运行时间——假设进程需要运行的单位时间数。 状态——假设两种状态:就绪和结束,用R表示就绪,用E表示结束。 初始状态都为就绪状态。 指针——按优先数的大小把5个进程连成队列,用指针指出下一个进程PCB的首地址。 (2) 开始运行之前,为每个进程确定它的“优先数”和“要求运行时间”。通过键盘输入这些参数。 (3) 处理器总是选择队首进程运行。采用动态改变优先数的办法,进程每运

行1次,优先数减1,要求运行时间减1。 (4) 进程运行一次后,若要求运行时间不等于0,则将它加入就绪队列,否则,将状态改为“结束”,退出就绪队列。 (5) 若就绪队列为空,结束,否则转到(3)重复。 数据结构与全局变量 typedef struct pcb{ int pname; .\n", >pname); printf("%s ends after %d slice(s).", >pname, >runTime); } else while!=NULL) { sortProcess(); printProcessInfo(); printProcessLink(); runProcess(); }

静态优先权优先算法的进程调度程序

静态优先权优先算法的进程调度程序 学院 专业 学生姓名 学号 指导教师姓名 21014年3 月19 日

目录 1.系统需求分析 (1) 1.1问题描述 (1) 1.2功能要求 (1) 2.总体设计 (1) 2.1总体设计图 (2) 2.2各模块功能 (2) 2.3相关数据结构设计 (3) 3.详细设计 (3) 3.1采用C语言定义的相关数据类型 (3) 3.2调度算法的主要实现 (4) 4.运行结果 (4) 4.1系统调试 (4) 4.2功能实现界面 (5) 5.使用说明 (7) 6.心得体会 (8) 7.附录 (8) 7.1 源代码 (8) 7.2 参考文献 (17)

1.系统需求分析 1.1问题描述 1)设计并实现一个采用静态优先权算法的进程调度演示程序。并且求出每个进程的周转时间以及带权周转时间。 2)静态优先权是在创建进程时确定的,且在进程的整个运行期间保持不变. 一般地,优先权是利用某一范围内的一个整数来表示的,例如,0~7或0~255中的某一整数, 又把该整数称为优先数.只是具体用法各异:有的系统用"0"表示最高优先权,当数值愈大时,其优先权愈低;而有的系统恰恰相反. 确定进程优先权的依据有如下三个方面: a.进程类型.(系统进程/用户进程) b.进程对资源的需求.(需求量的大小) c.用户要求.(用户进程紧迫程度) 3)本程序采用优先级数字大的优先权大。 1.2功能要求 1)每一个进程有一个PCB,其内容可以根据具体情况设定。 2)进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定。3)可读取样例数据(要求存放在外部文件中)进行进程数、进入内存时间、进程优先级的初始化。 4)可以在运行中显示各进程的状态:就绪、执行(由于不要求设置互斥资源与进程间的同步关系,故只有两种状态)。 5)具有一定的数据容错性。

优先级调度算法

优先级调度算法 1、调度算法 考虑到紧迫型作业进入系统后能得到优先处理,引入了高优先级优先调度算法。 优先级调度的含义: (1)当该算法用于作业调度时,系统从后背作业队列中选择若干个优先级最高的,且系统能满足资源要求的作业装入内存运行;(2)当该算法用于进程调度时,将把处理机分配给就绪进行队列中优先级最高的进程。 2、调度算法的两种方式 非抢占式优先级算法:在这种调度方式下,系统一旦把处理机分配给就绪队列中优先级最高的进程后,该进程就能一直执行下去,直至完成;或因等待某事件的发生使该进程不得不放弃处理机时,系统才能将处理机分配给另一个优先级高的就绪队列。 抢占式优先级调度算法:在这种调度方式下,进程调度程序把处理机分配给当时优先级最高的就绪进程,使之执行。一旦出现了另一个优先级更高的就绪进程时,进程调度程序就停止正在执行的进程,将处理机分配给新出现的优先级最高的就绪进程。常用于实时要求比较严格的实时系统中,以及对实时性能要求高的分时系统。 3、优先级的类型 进程的优先级可采用静态优先级和动态优先级两种,优先级可由用户自定或由系统确定。

静态优先级调度算法 含义:静态优先级是在创建进程时确定进程的优先级,并且规定它在进程的整个运行期间保持不变。 确定优先级的依据: 1)进程的类型。 2)进程对资源的需求。 3)根据用户的要求。 优点:简单易行;系统开销小。 缺点:不太灵活,很可能出现低优先级的作业,长期得不到调度而等待的情况;静态优先级法仅适合于实时要求不太高的系统。 动态优先级调度算法 含义:动态优先级是创建进程时赋予该进程一个初始优先级,然后其优先级随着进程的执行情况的变化而改变,以便获得更好的调度性能。 优点:使相应的优先级调度算法比较灵活、科学,可防止有些进程一直得不到调度,也可防止有些进程长期垄断处理机。 缺点:需要花费相当多的执行程序时间,因而花费的系统开销比较大。 4、实时调度算法 由于在任何一个实时系统中毒存在着若干个实时进程或任务,用来反应或控制相应的外部事件,并往往具有某种程度的紧迫性,所以对实时系统中的调度算法提出了某些特殊要求。 对实时系统的要求

使用动态优先权的进程调度算法的模拟

实验四使用动态优先权的进程调度算法的模拟 1、实验目的 通过动态优先权算法的模拟加深对进程概念和进程调度过程的理解。 2、实验内容 (1)用C语言来实现对N个进程采用动态优先算法的进程调度; (2)每个用来标识进程的进程控制块PCB用结构来描述,包括以下字段: ●进程标识符id ●进程优先数priority,并规定优先数越大的进程,其优先权越高; ●进程已占用的CPU时间cputime ; ●进程还需占用的CPU时间alltime,当进程运行完毕时,alltime变为0; ●进程的阻塞时间startblock,表示当进程再运行startblock个时间片后, 进程将进入阻塞状态; ●进程被阻塞的时间blocktime,表示已阻塞的进程再等待blocktime个时间 片后,将转换成就绪态 ●进程状态state; ●队列指针next,用来将PCB排成队列 (3)优先数改变的原则: ●进程在就绪队列中呆一个时间片,优先数增加1 ●进程每运行一个时间片,优先数减3。 显示出来,参照的具体格式如下: RUNNING PROG: i READY_QUEUE:->id1->id2 BLOCK_QUEUE:->id3->id4 ================================== ID 0 1 2 3 4 PRIORITY P0 P1 P2 P3 P4 CPUTIME C0 C1 C2 C3 C4 ALLTIME A0 A1 A2 A3 A4 STARTBLOCK T0 T1 T2 T3 T4 BLOCKTIME B0 B1 B2 B3 B4 STATE S0 S1 S2 S3 S4

相关主题
文本预览
相关文档 最新文档