当前位置:文档之家› 方程的加速迭代法

方程的加速迭代法

方程的加速迭代法
方程的加速迭代法

2013-2014(1)专业课程实践论文题目:方程的加速迭代方法

一、算法理论

Aitken 加速迭代算法基本原理:

对于收敛的迭代过程,只要迭代足够多次,就可以使结果达到任意的精度。但有时迭代过程收敛缓慢,从而使计算量变得很大,因此,迭代过程的加速是个重要的过程。

设0x 是跟*x 的某个预测值,只迭代公式校正一次)(01x f x =,而由微分中值定理有:)x (x (t)f x x **-?'=-01(其中t 介于*x 与0x 之间)

。 假定()x f '改变不大,近似的取某个近似值L ,则由)(*0*1x x L x x -?≈-得到

L

x L L x x -?-

-=

1101

*,可以期望按上式右端求得

()L

x x L x L L x L x x --?+

=-?--=

11101101

2是比1x 更好的近似值,将每得到一次改进值算做一步,并用k

x '和k x 分别表示第K 步的校正值和改进值,则加速迭代计算方案可表述如下:

校正:1+'k

x ()k x f = 改进:=+1k x ()L

x x L x k k

k

--'?+'++111

然而上述加速公式有个缺点,由于其中含有倒数()x f '的有关信息L ,实际使用不便。

仍设已知*x 的某个猜测值为0x ,将校正值()01x f x =,再校正一次,又得

()12x f x =。由于≈-*2x x ()*1L x x -?将它与式

=

*x L

x L L x -?-

-1101

联立,消去未知L ,然后有 =*x ()2

102

1222x x x x x x +?---

这样构造出的改进公式确定不再含有关于导数的

信息,但是它需要用2次迭代值进行加工,如果将得到一次改进值作为一步,则计算公式如下:

校正:()k k

x f x ='+1 再校正:()11++'=''k k

x f x 改进:()k k k

k k k k x x x x x x x +'?-'''-''-''=++++++112

11112

上述处理过程称为Aitken 方法。如下用2个题说明:

例题(1)用Aitken 加速迭代算法通过编程计算013=--x x 在[1,2]内的近似根,要求精度达到0001.0。例题(2)用Aitken 加速迭代算法通过编程计算023=--x x 在[1,2]内的近似根,要求精度达到001.0。

二、算法框图

三、算法程序

(1)题程序:

#include

#include

double s(double t)

{

return (t*t*t-1);

}

using namespace std;

int main()

{

int i;

double x,x0,x1,x2,e;

cout<<"请输入迭代初始值x0"<<",和控制精度e"<>x0>>e;

i=0;

while(fabs(x0*x0*x0-x0-1)>e)

{

i++;

x1=s(x0);

x2=s(x1);

x0=x2-(x2-x1)*(x2-x1)/(x2-2*x1+pow((x1+1),1.0/3.0)); }

x=x0;

cout<<"近似根x="<

cout<<"所需迭代次数i="<

return 0;

}

(2)题程序:

#include

#include

double s(double t)

{

return (t*t*t-2);

}

using namespace std;

int main()

{

int i;

double x,x0,x1,x2,e;

cout<<"请输入迭代初始值x0"<<",和控制精度e"<>x0>>e;

i=0;

while(fabs(x0*x0*x0-x0-2)>e)

{

i++;

x1=s(x0);

x2=s(x1);

x0=x2-(x2-x1)*(x2-x1)/(x2-2*x1+pow((x1+1),1.0/3.0)); }

x=x0;

cout<<"近似根x="<

cout<<"所需迭代次数i="<

return 0;

}

四、算法实现

例1. 用Aitken 加速迭代算法通过编程计算013=--x x 在[1,2]内的近似根,要求精度达到0001.0。 解:运行程序

(1)输入0x 的初始值是1.5以及精度值0.0001.然后按回车。 (2)得到结果近似根=x 1.32472,所需迭代次数为5次。 当精度达到0.0001时,程序运行结果如下图:

Aitken 迭代法是将迭代值在迭代一次,此时对于发散的1-3

1k

k x x =+迭代公式,经过Aitken 迭代法处理后却获得了相当好的收敛性。

例2. 用Aitken 加速迭代算法通过编程计算023=--x x 在[1,2]内的近似根,要求精度达到0.1。 解:运行程序

(1)首先输入0x 的初始值是2,以及精度值0.1按回车。

x 1.53466,迭代次数为19 (2)得到结果近似根

当精度达到0.1时,程序运行结果如下图:

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

改进的牛顿迭代法

改进的牛顿迭代法求解非线性方程 摘要:牛顿法思想是将非线性方程线性化,以线性方程的解逐步逼近非线性方程的解,但是其对初值、波动和可能出现的不收敛等缺点,而牛顿下山法克服了可能出现的发散的缺点。 关键词:牛顿法、牛顿下山法、非线性方程 一、牛顿法的迭代公式 设)(x f 在其零点*x 附近一阶连续可微,且0)(≠'x f ,当*0x x →时,由Taylor 公式有: ))(()()(000x x x f x f x f -'+≈ 以方程 0))(()(000=-'+x x x f x f 近似方程0)(=x f ,其解 ) ()(0001x f x f x x '-= 可作为方程的近似解,重复上述过程,得迭代公式 ),1,0(,) ()(1 ='-=+n x f x f x x n n n n 该方法称为牛顿迭代法。 二、牛顿法的改进 由于牛顿法缺点对牛顿法进行改进,使其计算简单,无需每次迭代都去计算)(x f ',且能够更好的收敛。 2.1简化的牛顿法 牛顿法的缺点之一是每次迭代都得去计算)(k x f '。为回避该问题,常用一个固定 )(k x f '迭代若干步后再求)(k x f '。这就是简化牛顿法的基本思想。 简化牛顿法的公式为: )(1k k k x cf x x -=+

迭代函数 )()(x cf x x -=? 若 2)(0,1)(1)(<'<<'-='x f c x f c x 即?,在根*x 附近成立,则迭代法局部收敛。 显然此法简化了计算量,却降低了收敛速度。 2.2牛顿下山法 牛顿法的缺点二是其收敛依赖与初值0x 的选取,若0x 偏离所求根*x 较远,则牛顿法可能发散。为防止迭代发散,我们对迭代过程再附加一项条件,即具有单调性: )()(1k k x f x f <+ 保证函数值稳定下降,然后结合牛顿法加快收敛速度,即可达目的。将牛顿法的计算结果 ) ()(1k k k k x f x f x x '-=+ 与前一步的近似值k x 适当加权平均作为新的改进值 k k k x x x )1(11λλ-+=++ 其中,称 )10(≤<λλ为下山因子,即为: ) ()(1k k k k x f x f x x '-=+λ 称为牛顿下山法。选择下山因子λ时,从 1=λ开始逐次将λ减半进行试算,直到条件成立为止。 三 举例说明 例1 求方程013=--x x 的根 (1)取5.10=x ,用牛顿法公式: 1 32131---=-+k k k k x x x x x 计算得:32472.1,32520.1,34783.1321===x x x

常微分方程的解线性方程组的迭代法

实验五 解线性方程组的迭代法 【实验内容】 对1、设线性方程组 ?? ? ? ?? ? ? ?? ? ? ?? ? ? ??-=???????????????? ?????????????????? ? ?--------------------------211938134632312513682438100412029137264 2212341791110161035243120 536217758683233761624491131512 013012312240010563568 0000121324 10987654321x x x x x x x x x x ()T x 2,1,1,3,0,2,1,0,1,1*--= 2、设对称正定系数阵线性方程组 ?? ? ????? ??? ? ? ??---=????????????? ??????????????? ??---------------------4515229 23206019243360021411035204111443343104221812334161 2065381141402312122 00240424 87654321x x x x x x x x ()T x 2,0,1,1,2,0,1,1*--= 3、三对角形线性方程组

?? ? ?? ? ????? ??? ? ? ??----=???????????????? ?????????????????? ??------------------5541412621357410000000014100000000141000000001410000000014100000000141000000001410000000014100000000 14100000000 1410987654321x x x x x x x x x x ()T x 1,1,0,3,2,1,0,3,1,2*---= 试分别选用Jacobi 迭代法,Gauss-Seidol 迭代法和SOR 方法计算其解。 【实验方法或步骤】 1、体会迭代法求解线性方程组,并能与消去法加以比较; 2、分别对不同精度要求,如54310,10,10---=ε由迭代次数体会该迭代法的收敛快慢; 3、对方程组2,3使用SOR 方法时,选取松弛因子ω=0.8,0.9,1,1.1,1.2等,试看对算法收敛性的影响,并能找出你所选用的松弛因子的最佳者; 4、给出各种算法的设计程序和计算结果。 程序: 用雅可比方法求的程序: function [x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200;

非线性方程组迭代法

实验二 非线性方程的数值解法 1.1 实验内容和要求 在科学研究和工程技术中大量的实际问题是非线性的,求非线性方程()0f x =满足一定精确度的近似根是工程计算与科学研究中诸多领域经常需要解决的问题。 实验目的:进一步理解掌握非线性方程求根的简单迭代法、埃特金Aitken 加速法、牛顿迭代法的思想和构造。 实验内容: 求方程2320x x x e -+-=的实根。 要求: (1)设计一种简单迭代法,要使迭代序列收敛,然后再用埃特金Aitken 加速迭代,计算到-8110k k x x --<为止。 (2)用牛顿迭代法,同样计算到-8110k k x x --< (3)输出迭代初值、迭代次数k 及各次迭代值,并比较算法的优劣。 1.2 算法描述 普通迭代法计算步骤: (1)给定初始近似值0x ,eps 为精确度。 (2)用迭代公式 进行迭代,直到-8110k k x x --<为止。 埃特金Aitken 加速迭代法计算步骤: (1)将()0f x =化成同解方程()x x ?= ()k k y x ?= ,()k k z y ?= 21()2k k k k k k k y x x x z y x +-=--+=22k k k k k k x z y z y x --+ (2)计算到-8110k k x x --<为止。 牛顿法计算步骤:

给定初始近似值0x ,1ε为根的容许误差,2ε为()f x 的容许误差,N 为迭代 次数的容许值。 计算00(),()f x f x ' (1)如果0()0f x '=或者迭代次数大于N ,则算法失败,结束;否则执行(2) (2)按公式0100()() f x x x f x =-'迭代一次,得到新的近似值1x ,计算11(),()f x f x ' (3)如果101x x ε-<或者12()f x ε<,则迭代终止,以1x 作为所求的根,结 束;否则执行(4) (4)以111(,(),())x f x f x '代替000(,(),())x f x f x ',转步骤(1)继续迭代。 1.3程序代码清单

二分法、简单迭代法的matlab代码实现教学文案

实验一非线性方程的数值解法(一)信息与计算科学金融崔振威201002034031 一、实验目的: 熟悉二分法和简单迭代法的算法实现。 二、实验内容: 教材P40 2.1.5 三、实验要求 1 根据实验内容编写二分法和简单迭代法的算法实现 2 简单比较分析两种算法的误差 3 试构造不同的迭代格式,分析比较其收敛性 (一)、二分法程序: function ef=bisect(fx,xa,xb,n,delta) % fx是由方程转化的关于x的函数,有fx=0。 % xa 解区间上限 % xb 解区间下限 % n 最多循环步数,防止死循环。 %delta 为允许误差 x=xa;fa=eval(fx); x=xb;fb=eval(fx); disp(' [ n xa xb xc fc ]'); for i=1:n xc=(xa+xb)/2;x=xc;fc=eval(fx); X=[i,xa,xb,xc,fc]; disp(X), if fc*fa<0 xb=xc; else xa=xc; end if (xb-xa)

k=0; while abs(x-x0)>eps & k> fplot('[x^5-3*x^3-2*x^2+2]',[-3,3]);grid 得下图: 由上图可得知:方程在[-3,3]区间有根。 (2)、二分法输出结果 >> f='x^5-3*x^3-2*x^2+2' f = x^5-3*x^3-2*x^2+2 >> bisect(f,-3,3,20,10^(-12)) 2.0000 - 3.0000 0 -1.5000 0.0313

线性方程组的迭代法及程序实现

线性方程组的迭代法及程序实现 学校代码:11517 学号:200810111217 HENAN INSTITUTE OF ENGINEERING 毕业论文 题目线性方程组的迭代法及程序实现 学生姓名 专业班级 学号 系 (部)数理科学系 指导教师职称 完成时间 2012年5月20日河南工程学院 毕业设计(论文)任务书 题目:线性方程组的迭代法及程序实现专业:信息与计算科学学号 : 姓名一、主要内容: 通过本课题的研究,学会如何运用有限元方法来解决线性代数方程组问题,特别是Gaussie-Seidel迭代法和Jacobi迭代法来求解线性方程组。进一步学会迭代方法的数学思想,并对程序代码进行解析与改进,这对于我们以后学习和研究实际问题具有重要的意义。本课题运用所学的数学专业知识来研究,有助于我们进一步掌握大学数学方面的知识,特别是迭代方法。通过这个课题的研究,我进一步掌握了迭代方法的思想,以及程序的解析与改进,对于今后类似实际问题的解决具有重要的意义。

二、基本要求: 学会编写规范论文,独立自主完成。 运用所学知识发现问题并分析、解决。 3.通过对相关资料的收集、整理,最终形成一篇具有自己观点的学术论文,以期能对线性方程组迭代法的研究发展有一定的实践指导意义。 4.在毕业论文工作中强化英语、计算机应用能力。 完成期限: 2012年月指导教师签名:专业负责人签名: 年月日 目录 中文摘要....................................................................................Ⅰ英文摘要 (Ⅱ) 1 综述 1 2 经典迭代法概述 3 2.1 Jacobi迭代法 3 2.2 Gauss?Seidel迭代法 4 2.3 SOR(successive over relaxation)迭代法 4 2.4 SSOR迭代法 5 2.5 收敛性分析5 2. 6 数值试验 6 3 matlab实现的两个例题8 3.1 例1 迭代法的收敛速度8 3.2 例 2 SOR迭代法松弛因子的选取 12致谢16参考文献17附录19

方程组的简单迭代法

2013-2014(1)专业课程实践论文题目:方程组的简单迭代法

一、算法理论 1.解线性方程组的两种方法: 直接法: 经过有限次运算后可求得方程组精确解的方法(不计舍入误差!) 迭代法:从解的某个近似值出发,通过构造一个无穷序列去逼近精确解的方法。 2.迭代法主要研究的问题: 1)迭代格式的构造; 2)迭代的收敛性分析; 3)收敛速度分析; 4)复杂性分析;(计算工作量) 5)初始值选择。 3.迭代法的原理: Ax=中系数矩阵的主对角线移到一边并将其系将原线性方程组b 数化为一,然后在给定迭代初值的情况下通过迭代的方法求解线性方程组的值。 4.迭代法的基本思想: Ax=(1)将线性方程组b (其中A为n阶非奇异矩阵,b为n维向量)

改写成等价形式 f Bx x += (2) 构造简单迭代格式: j k j k j f Bx x +=+)( )1( )(,,...2,1,0=k (3) 亦即 j k j k j f Bx x +=+)( )1( )( , ,...,,...,n;k ,j 1021== (4) 可算出线性方程组(1)的近似解序列:))1(0,...,k x x x ()( 我们把用公式(3)进行迭代求解的方法称为简单法,并称式(3) 为简单迭代式,矩阵B 称为迭代矩阵,)(0x 称为初始近似解,) (k x 称为k 次近似解,k 称为迭代次数。

#include #include #include using namespace std; #define kk 50 //定义最大方程元数 int n,i,c,j,hh,gg,mm; double A[kk][kk],x[kk][kk],b[kk],y[kk],a[kk],z[kk],m,nn,d,e=1,w,fff ; int main() { cout<<"输入的方程元数"<>n; cout<<"请输入方程系数矩阵:"<>A[i][j]; cout<<"请输入右边向量:"<>b[i]; cout<<"输入你想要的迭代精度(建议1e-5以上)!"<>fff; cout<<"输入最大迭代次数(建议300次以上)!"<>mm; //计算出迭代矩阵 for(i=0;i

线性方程组的迭代法应用及牛顿迭代法的改进

线性方程组的迭代法应用及牛顿迭代法的改进 摘要: 迭代解法就是通过逐次迭代逼近来得到近似解的方法。由于从不同 的问题而导出的线性代数方程组的系数矩阵不同,因此对于大型稀疏矩阵所对应线性代数方程组,用迭代法求解。本文论述了Jacobi 法,Gauss-Seidel 法,逐次超松弛法这三种迭代法,并在此基础上对牛顿型的方法进行了改进,从而使算法更为精确方便。 关键词:线性方程组,牛顿迭代法,Jacobi 法,Gauss-Seidel 法,逐次超松弛 法 1.线性方程组迭代法 1.1线性方程组的迭代解法的基本思想 迭代法求解基本思想:从某一初始向量X (0)=[x 1(0) ,x 2(0) ,……………x n (0) ]出发,按某种迭代规则,不断地对前一次近似值进行修改,形成近似解的向量{X (k)}。当近似解X (k) =[x 1(k) ,x 2(k) ,……………x n (k) ]收敛于方程组的精确解向量X* =[x 1*,x 2*,……………x n *]时,满足给定精度要求的近似解向量X (k)可作为X*的数值解。 1.2 线性方程组的迭代法主要研究的三个问题 (1) 如何构造迭代公式 (2) 向量数列{X (k)}的收敛条件 (3) 迭代的结束和误差估计 解线性方程组的迭代解法主要有简单迭代法、 Gauss-Seidel 法和SOR 法。简单迭代法又称同时代换法或Jacobi 法,是最简单的解线性方程组的迭代解法也是其他解法的基础。 1.3Jacobi 迭代法 设方程组点系数矩阵n n j A ai R ???=∈??满足条件0ii a ≠,i=0,1,2, …n 。把A 分解为 A=D+L+U

第六章解线性方程组的迭代法

第五章 解线性方程组的迭代法 本章主要内容: 迭代法收敛定义,矩阵序列收敛定义,迭代法基本定理,雅可比迭代法,高斯-塞德尔迭代法,系数矩阵为严格对角占优阵的采用雅可比迭代、高斯-塞德尔迭代的收敛性。 教学目的及要求: 使学生了解迭代法收敛定义,迭代法基本定理,掌握雅可比迭代法、高斯-塞德尔迭代法。 教学重点: 雅可比迭代法,高斯-塞德尔迭代法。 教学难点: 迭代法基本定理的证明以及作用。 教学方法及手段: 应用严格的高等代数、数学分析知识,完整地证明迭代法基本定理,讲清雅可比迭代法与高斯-塞德尔迭代法的关系,介绍雅可比迭代法与高斯-塞德尔迭代法在编程中的具体实现方法。 在实验教学中,通过一个具体实例,让学生掌握雅可比迭代法与高斯-塞德尔迭代法的具体实现,并能通过数值计算实验,揭示高斯-塞德尔迭代法是对雅可比迭代法的一种改进这一事实。 教学时间: 本章的教学的讲授时间为6学时,实验学时4学时。 教学内容: 一 迭代法定义 对于给定的线性方程组x Bx f =+,设它有唯一解*x ,则 **x Bx f =+ (6.1) 又设(0)x 为任取的初始向量,按下述公式构造向量序列 (1)(),0,1,2, k k x Bx f k +=+= (6.2) 这种逐步代入求近似解的方法称为迭代法(这里B 与f 与k 无关)。如果() lim k k x →∞ 存在 (记为*x ),称此迭代法收敛,显然* x 就是方程组的解,否则称此迭代法发散。 迭代法求方程近似解的关键是是讨论由(6.1)式所构造出来的向量序列() {} k x 是否收敛。为此,我们引入误差向量 (1)(1)*k k x x ε++=- 将(6.2)式与(6.1)式相减,我们可得 (1)*()*()k k x x B x x +-=- (1)(),0,1,2, k k B k εε+== 递推下去,得 ()(1)2(2)(0)k k k k B B x B x εε--====

数值计算_第4章 解线性方程组的迭代法

第4章解线性方程组的迭代法 用迭代法求解线性方程组与第4章非线性方程求根的方法相似,对方程组进行等价变换,构造同解方程组(对可构造各种等价方程组, 如分解,可逆,则由得到),以此构造迭代关系式 (4.1) 任取初始向量,代入迭代式中,经计算得到迭代序列。 若迭代序列收敛,设的极限为,对迭代式两边取极限 即是方程组的解,此时称迭代法收敛,否则称迭代法发散。我们将看到,不同于非线性方程的迭代方法,解线性方程组的迭代收敛与否完全决定于迭代矩阵的性质,与迭代初始值的选取无关。迭代法的优点是占有存储空间少,程序实现简单,尤其适用于大型稀疏矩阵;不尽人意之处是要面对判断迭代是否收敛和收敛速度的问题。 可以证明迭代矩阵的与谱半径是迭代收敛的充分必要条件,其中是矩阵的特征根。事实上,若为方程组的解,则有 再由迭代式可得到

由线性代数定理,的充分必要条件。 因此对迭代法(4.1)的收敛性有以下两个定理成立。 定理4.1迭代法收敛的充要条件是。 定理4.2迭代法收敛的充要条件是迭代矩阵的谱半径 因此,称谱半径小于1的矩阵为收敛矩阵。计算矩阵的谱半径,需要求解矩阵的特征值才能得到,通常这是较为繁重的工作。但是可以通过计算矩阵的范数等方法简化判断收敛的 工作。前面已经提到过,若||A||p矩阵的范数,则总有。因此,若,则必为收敛矩阵。计算矩阵的1范数和范数的方法比较简单,其中 于是,只要迭代矩阵满足或,就可以判断迭代序列 是收敛的。 要注意的是,当或时,可以有,因此不能判断迭代序列发散。

在计算中当相邻两次的向量误差的某种范数小于给定精度时,则停止迭代计算,视为方程组的近似解(有关范数的详细定义请看3.3节。) 4.1雅可比(Jacobi)迭代法 4.1.1 雅可比迭代格式 雅可比迭代计算 元线性方程组 (4.2) 写成矩阵形式为。若将式(4.2)中每个方程的留在方程左边,其余各项移到方程右边;方程两边除以则得到下列同解方程组: 记,构造迭代形式

数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法))资料

本科生实验报告 实验课程数值计算方法 学院名称信息科学与技术学院 专业名称计算机科学与技术 学生姓名 学生学号 指导教师 实验地点 实验成绩 二〇一六年五月二〇一六年五月

实验一非线性方程求根 1.1问题描述 实验目的:掌握非线性方程求根的基本步骤及方法,。 实验内容:试分别用二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法),求x5-3x3+x-1= 0 在区间[-8,8]上的全部实根,误差限为10-6。 要求:讨论求解的全过程,对所用算法的局部收敛性,优缺点等作分析及比较, 第2章算法思想 2.1二分法 思想:在函数的单调有根区间内,将有根区间不断的二分,寻找方程的解。 步骤: 1.取中点mid=(x0+x1)/2 2.若f(mid)=0,则mid为方程的根,否则比较与两端的符号,若与f(x0) 异号,则根在[x0,mid]之间,否则在[mid,x1]之间。 3并重复上述步骤,直达达到精度要求,则mid为方程的近似解。

2.2 简单迭代法 思想:迭代法是一种逐次逼近的方法,它是固定公式反复校正跟的近似值,使之逐步精确,最后得到精度要求的结果。 步骤:1.构造迭代公式f(x),迭代公式必须是收敛的。 2.计算x1,x1=f(x0). 3.判断|x1-x0|是否满足精度要求,如不满足则重复上述步骤。 4.输出x1,即为方程的近似解。 f为迭代函数

2.3 Newton迭代法 思想:设r 是的根,选取作为r的初始近似值,过点 做曲线 的切线L,L 的方程为,求出L与x轴交点的 横坐标,称x 1 为r的一次近似值。过点做曲线 的切线,并求该切线与x 轴交点的横坐标,称为r的二次近似值。重复以上过程,得r 的近似值序列,其中,称为r 的 次近似值 步骤:1.计算原函数的导数f’(x);构造牛顿迭代公式 2.计算 ,若f’(x0)=0,退出计算,否则继续向下迭代。 3.若|x1-x0|满足精度要求,x1即为方程的近似解。

高斯-赛德尔迭代法解线性方程组精选.

数值分析实验五 班级: 10信计二班 学号:59 姓名:王志桃 分数: 一.实验名称 高斯-赛德尔迭代法解线性方程组 二.实验目的 1. 学会利用高斯赛德尔方法解线性方程组 2. 明白迭代法的原理 3. 对于大型稀疏矩阵方程组适用于迭代法比较简单 三.实验内容 利用Gauss-Seidel 迭代法求解下列方程组 ?????=++=-+=+-36123633111420238321 321321x x x x x x x x x , 其中取→=0)0(x 。 四、算法描述 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值,若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量)1(+k i x 时,用最新分量)1(1+k x ,???+)1(2k x )1(1-+k i x 代替旧分量)(1k x ,???)(2k x )(1-k i x ,就得到所谓解方程组的Gauss-Seidel 迭代法。 其迭代格式为 T n x x x x )()0()0(2)0(1)0(,,,???= (初始向量), )(11111)()1( ) 1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者写为 ?? ???--=???=???==?+=∑∑-=-+=+++)(1)210i 210(1111)( )1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 五、 编码 #include #include

解线性方程组的直接法和迭代法

数值分析方法中方程求解的直接法和迭代法 第3章 解线性方程组的直接法 一、 消元法 1. 高斯消元法(加减消元):首先将A 化为上三角阵,再回代求解。 11121121222212n n n n nn n a a a b a a a b a a a b ?? ? ? ? ??? (1)(1)(1)(1)(1)11 121311(2)(2)(2)(2)222322 (3)(3)(3)3333()()000 00 n n n n n nn n a a a a b a a a b a a b a b ?? ? ? ? ? ? ?? ? 步骤如下: 第一步:1 11 1,2,,i a i i n a -? +=第行第行 11121121222212 n n n n nn n a a a b a a a b a a a b ?? ? ? ? ??? 111211(2)(2)(2)2222 (2)(2)(2)2 00n n n nn n a a a b a a b a a b ?? ? ? ? ??? 第二步:(2)2 (2)222,3, ,i a i i n a -?+=第行第行 111211(2)(2)(2)2222 (2)(2)(2)200n n n nn n a a a b a a b a a b ?? ? ? ? ?? ? 111213 11 (2)(2)(2)(2) 222322 (3)(3)(3) 33 33(3)(3)(3) 3 00000n n n n nn n a a a a b a a a b a a b a a b ?? ? ? ? ? ? ?? ? 类似的做下去,我们有: 第k 步:() ()k ,1, ,k ik k kk a i i k n a -?+=+第行第行。 n -1步以后,我们可以得到变换后的矩阵为:

线性方程组的直接法和迭代法

线性方程组的直接法 直接法就是经过有限步算术运算,无需迭代可直接求得方程组精确解的方法。 线性方程组迭代法 迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法.该方法具有对计算机的存贮单元需求少,程序设计简单、原始系数矩阵在计算过程中不变等优点,是求解大型稀疏矩阵方程组的重要方法.迭代法不是用有限步运算求精确解,而是通过迭代产生近似解逼近精确解.如Jacobi 迭代、Gauss — Seidel 迭代、SOR 迭代法等。 1. 线性方程组的直接法 直接法就是经过有限步算术运算,无需迭代可直接求得方程组精确解的方法。 1.1 Cramer 法则 Cramer 法则用于判断具有n 个未知数的n 个线性方程的方程组解的情况。当方程组的系数行列式不等于零时,方程组有解且解唯一。如果方程组无解或者有两个不同的解时,则系数行列式必为零。如果齐次线性方程组的系数行列式不等于零,则没有非零解。如果齐次线性方程组有非零解,则系数行列式必为零。 定理1如果方程组Ax b =中0D A =≠,则Ax b =有解,且解事唯一的,解为1212,,...,n n D D D x x x D D D ===i D 是D 中第i 列换成向量b 所得的行列式。 Cramer 法则解n 元方程组有两个前提条件: 1、未知数的个数等于方程的个数。 2、系数行列式不等于零 例1 a 取何值时,线性方程组

1231231 2311x x x a ax x x x x ax ++=??++=??++=?有唯一解。 解:2111111 11011(1)11001 A a a a a a a ==--=--- 所以当1a ≠时,方程组有唯一解。 定理2当齐次线性方程组0Ax =,0A ≠时该方程组有唯一的零解。 定理3齐次线性方程组0Ax =有非零解0A <=>=。 1.2 Gauss 消元法 Gauss 消元法是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。 1.2.1 用Gauss 消元法为线性方程组求解 eg :Gauss 消元法可用来找出下列方程组的解或其解的限制: ()()()123283211223x y z L x y z L x y z L +-=??--+=-??-++=-? 这个算法的原理是:首先,要将1L 以下的等式中的x 消除,然后再将2L 以下的等式中的y 消除。这样可使整个方程组变成一个三角形似的格式。之后再将已得出的答案一个个地代入已被简化的等式中的未知数中,就可求出其余的答案了。 在刚才的例子中,我们将132 L 和2L 相加,就可以将2L 中的x 消除了。

“牛顿迭代法”最新进展文献综述

“牛顿迭代法”最新进展文献综述牛顿法是一种重要的迭代法,它是逐步线性化的方法的典型代表。牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。 介绍一下牛顿迭代法研究的前沿进展,1992年南京邮电学院基础课部的夏又生写的一篇题名一类代数方程组反问题的牛顿迭代法,对一类代数方程组反问题提出了一个可行的迭代解法。从算法上看,它是一种解正问题—迭代—解正问题迭代改善的求解过程。湖南师范大学的吴专保;徐大发表的题名堆浸工艺中浸润面的非线性问题牛顿迭代方法,为了研究堆浸工艺的机理,用牛顿迭代公式寻求浸润面的非线性方程的数值解,经过14次迭代的误差达到了,说明此算法收敛有效。浙江大学电机系的林友仰发表的牛顿迭代法在非线性电磁场解算中的限制对非线性电磁场解算中的限制做了分析,求解非线性方程组时迭代法是不可避免的。牛顿—拉斐森迭代法由于它的收敛速度快常被优先考虑。应用这个方法的主要问题是求雅可比矩阵。因为雅可比矩阵元素的计算非常费时。然而,本文要说明的是当利用以三角形为单元的有限元法求解非线性方程组时,应用牛顿法其雅可比矩阵容易求得,并且它保持了原系数的对称性和稀疏性,因而节省了时间。与此相反,若在差分法中应用牛顿迭代,并且按习惯用矩形网格进行剖分,则雅可比阵的计算很费时,而且不再保持原有对称性,这就使得存贮量和计算时间大为增加。南株洲工学院信息与计算科学系的吕勇;刘兴国发表的题名为牛顿迭代法加速收敛的一种修正格式,主要内容牛顿迭代法是求解非线性方程的一种重要的数值计算方法,在通常情况下,它具有至少平方收敛。本文利用文献[4]所建立的迭代格式xn+1=xn-αf(xfn)(x+n)f′(xn),对迭代格式中的参数α的讨论,实现了牛顿迭代法加速收敛的一种修正格式。

解线性方程组的几种迭代算法

解线性方程组的几种迭代算法 内容摘要: 本文首先总结了分裂法解线性方程组的一些迭代算法,在此基础上分别通过改变系数矩阵A的分裂形式和对SSOR算法的改进提出了两种新的算法,并证明了这两种算法的收敛性.与其它方法相比,通过改变系数矩阵A的分裂形式得到的新算法具有更好的收敛性,改进的SSOR算法有了更快的收敛速度.最后通过数值实例验证了这两种算法在有些情况下确实可以更有效的解决问题. 关键词: 线性方程组迭代法算法收敛速度 Several kinds of solving linear equations iterative algorithm Abstract: In this paper, we firstly summarize some Iterative algorithms of Anti-secession law solution of linear equations. Based on these, two new algorithms are put forward by changing the fission form of coefficient matrix A and improving the algorithm of SSOR, and the convergence of the two algorithms is demonstrated. Compared with other methods, the new algorithm acquired by changing the fission form of coefficient matrix A is possessed of a better convergence. And the improved SSOR algorithm has a faster convergence speed. Finally, some numerical examples verify that the two algorithms can solve problems more effectively in some cases. Key words: Linear equations Iteration method algorithm Convergence speed

数值分析实习作业不同迭代法求解(简单迭代法,艾特肯加速迭代法,牛顿法弦割法)

实习题六:用简单迭代法,艾特肯加速迭代法,牛顿法弦割法求解方程1-x-sin(x) = 0在[0,1]上的根。 简单迭代法和艾特肯加速法求解方程1-x-sin(x) = 0在[0,1]上的根。 主程序: %利用简单迭代法求解方程1-x-sin(x) = 0在[0,1]上的根 clear clc format long f = @f1; a = 0; b = 1; eps = 0.5*10^(-4); [x,time] = iteration(f,a,b,eps); disp('利用简单迭代法求解方程1-x-sin(x) = 0在[0,1]上的根') disp('方程1-x-sinx = 0的根是 x = ') disp(x) disp('迭代次数') disp (time) %% %利用艾特肯加速法求解方程1-x-sin(x) = 0在[0,1]上的根 [x,time] = iteration_aitken(f,a,b,eps); disp('利用艾特肯加速法求解方程1-x-sin(x) = 0的[0,1]上的根') disp('方程1-x-sinx = 0的根是 x = ') disp(x) disp('迭代次数') disp (time) 简单迭代法函数: function [y,time] = iteration(f,a,b,eps) x0 = (a+b)/2; D = 1; time = 0; while abs(D)>=eps x1 = feval(f,x0); D = x1-x0; x0 = x1; time = time+1; end y = x0; 艾特肯加速法函数 function [y,time] = iteration_aitken(f,a,b,eps) x0 = (a+b)/2; D = 1; t = 0; while abs(D)>=eps

非线性方程的简单迭代法和Steffensen迭代法

《数值计算方法》实验报告 实验名称:实验1 非线性方程的简单迭代法和Steffensen 迭代法 实验题目:分别用简单迭代法和Steffensen 迭代法求方程 010423=-+x x 在 [1, 2] 内的一个实根. 实验目的:理解并掌握简单迭代法和Steffensen 迭代法 基础理论:简单迭代法和Steffensen 迭代法 1).简单迭代法的原理:将一元非线性方程:0)(=x f 改写成等价方程:)(x x ρ= ,对此,从某个初始值x0开始,对应式)(x x ρ= 构成迭代公式 ,...1,0),(1==+k x x k k ρ ,这样就可以确定序列 {}k x (k=0,1,2…)。如果 {}k x 有极限 *lim x x k k =∞→ ,由式 ,...1,0),(1==+k x x k k ρ 两边取极限可得 )(**x x ρ= ,可知 * x 为方程0)(=x f 的近似解。 2)Steffensen 迭代法的原理: 通过把改进的Aitken 方法应用于根据不动点迭代所得到的线性收敛序列,将收敛速度加速到二阶。

()???? ?????+---===+k k k k k k k k k k k x y z x y x x y z x y 2) ()(21ρρ []x x x x x x x +---=)(2)(()()(2ρρρρψ 实验环境:操作系统:Windows 7; 实验平台:Turbo C++ 实验过程:写出算法→编写程序→调试运行程序→计算结果 1)简单迭代法的算法: Input:初始近似值x0,精度要求del,最大迭代次数N Output:近似解x 或失败信息 1. n ←1 2. While n ≤N do; 3. x ←f(x0); 4. if | x-x0|

线性方程组的迭代法

第六章 线性方程组的迭代法 一、教学目标及基本要求 通过对本节的学习,使学生掌握线性方程组的数值解法。 二、教学内容及学时分配 本节主要介绍线性方程组的数值解法,迭代公式的建立,迭代收敛性。 三、教学重点难点 1.教学重点:迭代公式的建立、迭代收敛性。 2. 教学难点:迭代收敛性。 四、教学中应注意的问题 多媒体课堂教学为主。适当提问,加深学生对概念的理解。 6.2 解线性方程组的迭代法 重要性:解线性代数方程组的有效方法在计算数学和科学计算中具有特殊的地位和作用。如弹性力学、电路分析、热传导和振动、以及社会科学及定量分析商业经济中的各种问题。在实际问题中产生的线性方程组的类型有很多,如按系数矩阵含零元素多少分类,有稠密和稀疏(零元素占80%以上)线性方程组之分;如按阶数的高低分类,有高阶(阶数在1000阶以上)中阶、(500~1000阶) 和低阶(500阶以下)线性方程组之分;如按系数矩阵的形状和性质分类,有对称正定、三对角、对角占优线性方程组之分。因为数值解法必须考虑方法的计算时间和空间效率以及算法的数值稳定性。因此,不同类型的线性方程组,其数值解法也不相同。但是,基本的方法可以归结为两大类,即直接法和迭代法。 分类:线性方程组的解法可分为直接法和迭代法两种方法。 (a) 直接法:对于给定的方程组,在没有舍入误差的假设下,能在预定的运算次数内求得精确解。最基本的直接法是Gauss 消去法,重要的直接法全都受到Gauss 消去法的启发。计算代价高。但实际计算中由于舍入误差的存在和影响,这种方法也只能求得线性方程组的近似解,如何避免舍入误差的增长是设计直接法时必须考虑的问题。 (b) 迭代法:基于一定的递推格式,产生逼近方程组精确解的近似序列。收敛性是其为迭代法的前提,此外,存在收敛速度与误差估计问题。迭代法要求方程组系数矩阵具有某种特殊形式(如对角占优阵),是解高阶稀疏矩阵方程组的重要方法。 §6.1 迭代公式的建立 迭代法的基本思想是用逐次逼近的方法求线性方程组的解。 设有方程组b Ax = (1) 将其转化为等价的便于迭代的形式f Bx x += (2) (这种转化总能实现,如令b f A I B =-=,)并由此构造迭代公式

牛顿迭代法的一种改进方法

第30卷第5期 佛山科学技术学院学报(自然科学版) Vol.30No.5  2012年9月 Jo ur nal of Fo shan University(Natural Science Edition)Sep.2012文章编号:1008-0171(2012)05-0001-03 牛顿迭代法的一种改进方法 陈玉骥 (佛山科学技术学院环建学院,广东佛山528000) 摘要:牛顿迭代法是求解非线性方程的一种常用方法,该法对初值要求较高,只具有局部收敛性。在牛顿迭代法的基础上,通过调整非线性方程对应曲线切线的斜率,从而保证在取任意初值时,迭代均可收敛,有效改善了牛顿迭代法对初值的苛刻要求。 关键词:牛顿迭代法;非线性方程;初值;斜率 中图分类号:O242.23 文献标志码:A 工程上,不少实际问题的数学模型都涉及到非线性方程f(x)=0的求解。由于工程问题对应的方程f(x)=0大多不存在求根公式,因此确定精确解十分困难。故近似解的计算成为人们关心的主要问题。目前,人们已提出了不少求解非线性方程f(x)=0近似解的方法[1-8],其中,牛顿迭代法是最基本的方法之一。由于牛顿迭代法在方程的单根附近具有平方收敛速度,而且还可以求解方程的重根和复根,故该法得到了广泛应用。但牛顿迭代法对初值的要求较苛刻,只有适当选取初值,才能保证其收敛性。 为保证牛顿迭代法局部收敛,必须对f(x)和初值附加如下条件[9]: (1)f(x)在区间[a,b]上二阶可导; (2)f(a)f(b)<0; (3)f′(x)≠0; (4)f″(x)在区间[a,b]上不变号; (5)初值x0∈[a,b]应使f″(x0)f(x0)>0。 其中,条件(1)、(2)保证了方程f(x)=0根的存在性;条件(3)表示函数单调变化,则方程的根惟一;条件(4)表示函数f(x)的图形凸凹向不变;条件(5)是对初值的要求。 只要满足以上条件,就可保证牛顿迭代法的收敛性。但当表达式f(x)很复杂时,确定f(x)导数的计算量很大,且求出f″(x)的表达式非常复杂,要满足条件(3)、(4)比较困难。另外,还有不少方程不完全符合上述条件,无法按以上要求确定初值,迭代过程很难确保收敛性。 为了扩大牛顿迭代法的适用性,本文提出一种牛顿迭代法的改进方法,可以有效避免牛顿迭代法对初值选取范围的苛刻要求。其基本思想是,通过不断增加非线性方程对应曲线切线的斜率,达到迭代收敛的目的。所以,笔者将该法称为“改变斜率法”。 1 改变斜率法 在定义域内取任一初值x0∈[a,b],按牛顿迭代法的公式进行计算,得 收稿日期:2012-03-13 基金项目:国家自然科学基金资助项目(50978058);广东省自然科学基金资助项目(S2011010005037) 作者简介:陈玉骥(1962-),男,海南文昌人,佛山科学技术学院教授,博士。

相关主题
文本预览
相关文档 最新文档