当前位置:文档之家› 解非线性方程牛顿迭代法的一种新的加速技巧

解非线性方程牛顿迭代法的一种新的加速技巧

解非线性方程牛顿迭代法的一种新的加速技巧
解非线性方程牛顿迭代法的一种新的加速技巧

解非线性方程牛顿迭代法的一种新的加速技巧

倪健;马昌凤

【期刊名称】《广西科学院学报》

【年(卷),期】2010(026)001

【摘要】通过对非线性方程求根牛顿迭代法的分析,给出牛顿迭代法的一种新的加速技巧,并通过数值算例验证所作的理论分析.数值结果表明该加速方法是行之有效的.

【总页数】3页(1-3)

【关键词】非线性方程;牛顿迭代法;全局收敛

【作者】倪健;马昌凤

【作者单位】桂林电子科技大学数学与计算科学学院,广西桂林,541004;桂林电子科技大学数学与计算科学学院,广西桂林,541004;福建师范大学数学与计算机科学学院,福建福州,350007

【正文语种】中文

【中图分类】O151.1

【相关文献】

1.构造一种六阶牛顿迭代法解非线性方程组 [J], 张辉; 陈豫眉; 周琴

2.一种新的牛顿迭代在解非线性方程中的应用 [J], 刘建平; 李霞; 马会泉; 张瑞丰

3.一种新的非线性方程求根迭代法 [J], 高虹霓; 曹泽阳

4.解非线性方程的一类新的迭代法 [J], 马成业; 黄世华

5.二分法和牛顿迭代法求解非线性方程的比较及应用 [J], 张晓勇; 王仲君

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

牛顿法求非线性方程的根

学科前沿讲座论文 班级:工程力学13-1班姓名:陆树飞

学号:02130827

牛顿法求非线性方程的根 一 实验目的 (1)用牛顿迭代法求解方程的根 (2)了解迭代法的原理,了解迭代速度跟什么有关 题目:用Newton 法计算下列方程 (1) 013=--x x , 初值分别为10=x ,7.00=x ,5.00=x ; (2) 32943892940x x x +-+= 其三个根分别为1,3,98-。当选择初值02x =时 给出结果并分析现象,当6510ε-=?,迭代停止。 二 数学原理 对于方程f(x)=0,如果f(x)是线性函数,则它的求根是很容易的。牛顿迭代法实质上是一种线性化方法,其基本思想是将非线性方程f(x)=0逐步归结为某种线性方程来求解。 设已知方程f(x)=0有近似根x k (假定k f'(x )0≠) ,将函数f(x)在点x k 进行泰勒展开,有 k k k f(x)f(x )+f'(x )(x-x )+≈??? 于是方程f(x)=0可近似的表示为 k k k f(x )+f'(x )(x-x )=0 这是个线性方程,记其根为x k+1,则x k+1的计算公式为 k+1k ()x =x -'() k k f x f x ,k=0,1,2,… 这就是牛顿迭代法。

三 程序设计 (1)对于310x x --=,按照上述数学原理,编制的程序如下 program newton implicit none real :: x(0:50),fx(0:50),f1x(0:50)!分别为自变量x ,函数f(x)和一阶导数f1(x) integer :: k write(*,*) "x(0)=" read(*,*) x(0) !输入变量:初始值x(0) open(10,file='1.txt') do k=1,50,1 fx(k)=x(k-1)**3-x(k-1)-1 f1x(k)=3*x(k-1)**2-1 x(k)=x(k-1)-fx(k)/f1x(k) !牛顿法 write(*,'(I3,1x,f11.6)') k,x(k) !输出变量:迭代次数k 及x 的值 write(10,'(I3,1x,f11.6)') k,x(k) if(abs(x(k)-x(k-1))<1e-6) exit !终止迭代条件 end do stop end (2)对于32943892940x x x +-+=,按照上述数学原理,编制的程序如下 program newton implicit none

C++实现 牛顿迭代 解非线性方程组

C++实现牛顿迭代解非线性方程组(二元二次为例) 求解{0=x*x-2*x-y+0.5; 0=x*x+4*y*y-4; }的方程 #include #include #define N 2 // 非线性方程组中方程个数、未知量个数#define Epsilon 0.0001 // 差向量1范数的上限 #define Max 100 // 最大迭代次数 using namespace std; const int N2=2*N; int main() { void ff(float xx[N],float yy[N]); //计算向量函数的因变量向量yy[N] void ffjacobian(float xx[N],float yy[N][N]); //计算雅克比矩阵yy[N][N] void inv_jacobian(float yy[N][N],float inv[N][N]); //计算雅克比矩阵的逆矩阵inv void newdundiedai(float x0[N], float inv[N][N],float y0[N],float x1[N]); //由近似解向量x0 计算近似解向量x1 float x0[N]={2.0,0.25},y0[N],jacobian[N][N],invjacobian[N][N],x1[N],errornorm; int i,j,iter=0; //如果取消对x0的初始化,撤销下面两行的注释符,就可以由键盘x读入初始近似解向量for( i=0;i>x0[i]; cout<<"初始近似解向量:"<

常微分方程的解线性方程组的迭代法

实验五 解线性方程组的迭代法 【实验内容】 对1、设线性方程组 ?? ? ? ?? ? ? ?? ? ? ?? ? ? ??-=???????????????? ?????????????????? ? ?--------------------------211938134632312513682438100412029137264 2212341791110161035243120 536217758683233761624491131512 013012312240010563568 0000121324 10987654321x x x x x x x x x x ()T x 2,1,1,3,0,2,1,0,1,1*--= 2、设对称正定系数阵线性方程组 ?? ? ????? ??? ? ? ??---=????????????? ??????????????? ??---------------------4515229 23206019243360021411035204111443343104221812334161 2065381141402312122 00240424 87654321x x x x x x x x ()T x 2,0,1,1,2,0,1,1*--= 3、三对角形线性方程组

?? ? ?? ? ????? ??? ? ? ??----=???????????????? ?????????????????? ??------------------5541412621357410000000014100000000141000000001410000000014100000000141000000001410000000014100000000 14100000000 1410987654321x x x x x x x x x x ()T x 1,1,0,3,2,1,0,3,1,2*---= 试分别选用Jacobi 迭代法,Gauss-Seidol 迭代法和SOR 方法计算其解。 【实验方法或步骤】 1、体会迭代法求解线性方程组,并能与消去法加以比较; 2、分别对不同精度要求,如54310,10,10---=ε由迭代次数体会该迭代法的收敛快慢; 3、对方程组2,3使用SOR 方法时,选取松弛因子ω=0.8,0.9,1,1.1,1.2等,试看对算法收敛性的影响,并能找出你所选用的松弛因子的最佳者; 4、给出各种算法的设计程序和计算结果。 程序: 用雅可比方法求的程序: function [x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200;

牛顿法非线性方程求解

《MATLAB 程序设计实践》课程考核 ---第37-38页 题1 : 编程实现以下科学计算算法,并举一例应用之。(参考书籍《精 通MAT LAB科学计算》,王正林等著,电子工业出版社,2009 年) “牛顿法非线性方程求解” 弦截法本质是一种割线法,它从两端向中间逐渐逼近方程的根;牛顿法本质上是一种切线法,它从一端向一个方向逼近方程的根,其递推公式为: - =+n n x x 1) ()(' n n x f x f 初始值可以取)('a f 和)('b f 的较大者,这样可以加快收敛速度。 和牛顿法有关的还有简化牛顿法和牛顿下山法。 在MATLAB 中编程实现的牛顿法的函数为:NewtonRoot 。 功能:用牛顿法求函数在某个区间上的一个零点。 调用格式:root=NewtonRoot )(```eps b a f 其中,f 为函数名; a 为区间左端点; b 为区间右端点 eps 为根的精度; root 为求出的函数零点。 ,

牛顿法的matlab程序代码如下: function root=NewtonRoot(f,a,b,eps) %牛顿法求函数f在区间[a,b]上的一个零点%函数名:f %区间左端点:a

%区间右端点:b %根的精度:eps %求出的函数零点:root if(nargin==3) eps=1.0e-4; end f1=subs(sym(f),findsym(sym(f)),a); f2=subs(sym(f),findsym(sym(f)),b); if (f1==0) root=a; end if (f2==0) root=b; end if (f1*f2>0) disp('两端点函数值乘积大于0 !'); return; else tol=1; fun=diff(sym(f)); %求导数 fa=subs(sym(f),findsym(sym(f)),a); fb=subs(sym(f),findsym(sym(f)),b); dfa=subs(sym(fun),findsym(sym(fun)),a); dfb=subs(sym(fun),findsym(sym(fun)),b); if(dfa>dfb) %初始值取两端点导数较大者 root=a-fa/dfa; else root=b-fb/dfb; end while(tol>eps) r1=root; fx=subs(sym(f),findsym(sym(f)),r1); dfx=subs(sym(fun),findsym(sym(fun)),r1); %求该点的导数值 root=r1-fx/dfx; %迭代的核心公式 tol=abs(root-r1); end end 例:求方程3x^2-exp(x)=0的一根 解:在MATLAB命令窗口输入: >> r=NewtonRoot('3*x^2-exp(x)',3,4) 输出结果: X=3.7331

线性方程组的迭代法及程序实现

线性方程组的迭代法及程序实现 学校代码:11517 学号:200810111217 HENAN INSTITUTE OF ENGINEERING 毕业论文 题目线性方程组的迭代法及程序实现 学生姓名 专业班级 学号 系 (部)数理科学系 指导教师职称 完成时间 2012年5月20日河南工程学院 毕业设计(论文)任务书 题目:线性方程组的迭代法及程序实现专业:信息与计算科学学号 : 姓名一、主要内容: 通过本课题的研究,学会如何运用有限元方法来解决线性代数方程组问题,特别是Gaussie-Seidel迭代法和Jacobi迭代法来求解线性方程组。进一步学会迭代方法的数学思想,并对程序代码进行解析与改进,这对于我们以后学习和研究实际问题具有重要的意义。本课题运用所学的数学专业知识来研究,有助于我们进一步掌握大学数学方面的知识,特别是迭代方法。通过这个课题的研究,我进一步掌握了迭代方法的思想,以及程序的解析与改进,对于今后类似实际问题的解决具有重要的意义。

二、基本要求: 学会编写规范论文,独立自主完成。 运用所学知识发现问题并分析、解决。 3.通过对相关资料的收集、整理,最终形成一篇具有自己观点的学术论文,以期能对线性方程组迭代法的研究发展有一定的实践指导意义。 4.在毕业论文工作中强化英语、计算机应用能力。 完成期限: 2012年月指导教师签名:专业负责人签名: 年月日 目录 中文摘要....................................................................................Ⅰ英文摘要 (Ⅱ) 1 综述 1 2 经典迭代法概述 3 2.1 Jacobi迭代法 3 2.2 Gauss?Seidel迭代法 4 2.3 SOR(successive over relaxation)迭代法 4 2.4 SSOR迭代法 5 2.5 收敛性分析5 2. 6 数值试验 6 3 matlab实现的两个例题8 3.1 例1 迭代法的收敛速度8 3.2 例 2 SOR迭代法松弛因子的选取 12致谢16参考文献17附录19

数值分析5-用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组

作业六:分别编写用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组Ax=B的标准程序,并求下列方程组的解。 可取初始向量 X(0) =(0,0,0)’; 迭代终止条件||x(k+1)-x(k)||<=10e-6 (1) = (2) = Jacobi迭代法: 流程图 开 始 判断b中的最大值 有没有比误差大 给x赋初值 进行迭代 求出x,弱到100次还没到,警告不收 结束

程序 clear;clc; A=[8,-1,1;2,10,01;1,1,-5]; b=[1;4;3]; e=1e-6; x0=[0;0;0]'; n=length(A); x=zeros(n,1); k=0; r=max(abs(b)); while r>e for i=1:n d=A(i,i); if abs(d)100 warning('不收敛'); end end x=x0;

程序结果(1)

(2)

Gauss-Seidel迭代法: 程序 clear;clc; %A=[8,-1,1;2,10,01;1,1,-5]; %b=[1;4;3]; A=[5,2,1;-1,4,2;2,-3,10]; b=[-12;20;3]; m=size(A); if m(1)~=m(2) error('矩阵A不是方阵'); end n=length(b); %初始化 N=0;%迭代次数 L=zeros(n);%分解A=D+L+U,D是对角阵,L是下三角阵,U是上三角阵U=zeros(n); D=zeros(n); G=zeros(n);%G=-inv(D+L)*U d=zeros(n,1);%d=inv(D+L)*b x=zeros(n,1); for i=1:n%初始化L和U for j=1:n if ij U(i,j)=A(i,j); end end end for i=1:n%初始化D D(i,i)=A(i,i); end G=-inv(D+L)*U;%初始化G d=(D+L)\b;%初始化d %迭代开始 x1=x; x2=G*x+d; while norm(x2-x1,inf)>10^(-6)

matlab程序设计实践-牛顿法解非线性方程

中南大学MATLAB程序设计实践学长有爱奉献,下载填上信息即可上交,没有下载券的自行百度。所需m文件照本文档做即可,即新建(FILE)→脚本(NEW-Sscript)→复制本文档代码→运行(会跳出保存界面,文件名默认不要修改,保存)→结果。第一题需要把数据文本文档和m文件放在一起。全部测试无误,放心使用。本文档针对做牛顿法求非线性函数题目的同学,当然第一题都一样,所有人都可以用。←记得删掉这段话 班级: ? 学号: 姓名:

一、《MATLAB程序设计实践》Matlab基础 表示多晶体材料织构的三维取向分布函数(f=f(φ1,φ,φ2))是一个非常复杂的函数,难以精确的用解析函数表达,通常采用离散 空间函数值来表示取向分布函数,是三维取向分布函数的一个实例。 由于数据量非常大,不便于分析,需要借助图形来分析。请你编写一 个matlab程序画出如下的几种图形来分析其取向分布特征: (1)用Slice函数给出其整体分布特征; " ~ (2)用pcolor或contour函数分别给出(φ2=0, 5, 10, 15, 20, 25, 30, 35 … 90)切面上f分布情况(需要用到subplot函数);

(3) 用plot函数给出沿α取向线(φ1=0~90,φ=45,φ2=0)的f分布情况。 (

备注:数据格式说明 解: (1)( (2)将文件内的数据按照要求读取到矩阵f(phi1,phi,phi2)中,代码如 下: fid=fopen(''); for i=1:18 tline=fgetl(fid); end phi1=1;phi=1;phi2=1;line=0; f=zeros(19,19,19); [ while ~feof(fid) tline=fgetl(fid); data=str2num(tline); line=line+1;数据说明部分,与 作图无关此方向表示f随着 φ1从0,5,10,15, 20 …到90的变化而 变化 此方向表示f随着φ 从0,5,10,15, 20 … 到90的变化而变化 表示以下数据为φ2=0的数据,即f(φ1,φ,0)

求解线性方程组——超松弛迭代法(c)

求解线性方程组——超松弛迭代法 #include #include using namespace std; float *one_array_malloc(int n); //一维数组分配float **two_array_malloc(int m,int n); //二维数组分配float matrix_category(float* x,int n); int main() { const int MAX=100;//最大迭代次数 int n,i,j,k; float** a; float* x_0; //初始向量 float* x_k; //迭代向量 float precision; //精度 float w; //松弛因子 cout<<"输入精度e:"; cin>>precision; cout<>n; a=two_array_malloc(n,n+1); cout<>a[i][j]; } } x_0=one_array_malloc(n); cout<>x_0[i]; } x_k=one_array_malloc(n);

cout<<"输入松弛因子w (1>w; float temp; //迭代过程 for(k=0;k

Gauss-Seidel迭代法求解线性方程组

Gauss-Seidel迭代法求解线性方程组

一. 问题描述 用Gauss-Seidel 迭代法求解线性方程组 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值。使用了两倍的存储空间,浪费了存储空间。若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量 ) 1(+k i x 时,用最新分量 ) 1(1 +k x , ???+) 1(2 k x ) 1(1 -+k i x 代替旧分量 ) (1 k x , ???) (2 k x ) (1 -k i x ,可以起 到节省存储空间的作用。这样就得到所谓解方程组的Gauss-Seidel 迭代法。 二. 算法设计 将A 分解成U D L A --=,则b x =A 等价于b x =--U)D (L 则Gauss-Seidel 迭代过程 ) ()1()1(k k k Ux Lx b Dx ++=++ 故 ) ()1()(k k Ux b x L D +=-+ 若设1 )(--L D 存在,则 b L D Ux L D x k k 1)(1)1()()(--+-+-= 令 b L D f U L D G 11)()(---=-=,

则Gauss-Seidel 迭代公式的矩阵形式为 f Gx x k k +=+) () 1( 其迭代格式为 T n x x x x ) ()0()0(2)0(1)0(,,,???= (初始向量), ) (1 1 1 1 1 )()1()1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者 ?? ???--=???=???==?+=∑∑-=-+=+++) (1)210i 210(111 1)()1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 三. 程序框图

数值计算_第4章 解线性方程组的迭代法

第4章解线性方程组的迭代法 用迭代法求解线性方程组与第4章非线性方程求根的方法相似,对方程组进行等价变换,构造同解方程组(对可构造各种等价方程组, 如分解,可逆,则由得到),以此构造迭代关系式 (4.1) 任取初始向量,代入迭代式中,经计算得到迭代序列。 若迭代序列收敛,设的极限为,对迭代式两边取极限 即是方程组的解,此时称迭代法收敛,否则称迭代法发散。我们将看到,不同于非线性方程的迭代方法,解线性方程组的迭代收敛与否完全决定于迭代矩阵的性质,与迭代初始值的选取无关。迭代法的优点是占有存储空间少,程序实现简单,尤其适用于大型稀疏矩阵;不尽人意之处是要面对判断迭代是否收敛和收敛速度的问题。 可以证明迭代矩阵的与谱半径是迭代收敛的充分必要条件,其中是矩阵的特征根。事实上,若为方程组的解,则有 再由迭代式可得到

由线性代数定理,的充分必要条件。 因此对迭代法(4.1)的收敛性有以下两个定理成立。 定理4.1迭代法收敛的充要条件是。 定理4.2迭代法收敛的充要条件是迭代矩阵的谱半径 因此,称谱半径小于1的矩阵为收敛矩阵。计算矩阵的谱半径,需要求解矩阵的特征值才能得到,通常这是较为繁重的工作。但是可以通过计算矩阵的范数等方法简化判断收敛的 工作。前面已经提到过,若||A||p矩阵的范数,则总有。因此,若,则必为收敛矩阵。计算矩阵的1范数和范数的方法比较简单,其中 于是,只要迭代矩阵满足或,就可以判断迭代序列 是收敛的。 要注意的是,当或时,可以有,因此不能判断迭代序列发散。

在计算中当相邻两次的向量误差的某种范数小于给定精度时,则停止迭代计算,视为方程组的近似解(有关范数的详细定义请看3.3节。) 4.1雅可比(Jacobi)迭代法 4.1.1 雅可比迭代格式 雅可比迭代计算 元线性方程组 (4.2) 写成矩阵形式为。若将式(4.2)中每个方程的留在方程左边,其余各项移到方程右边;方程两边除以则得到下列同解方程组: 记,构造迭代形式

迭代法解线性方程组

迭代法解线性方程组作业 沈欢00986096 北京大学工学院,北京100871 2011年10月12日 摘要 由所给矩阵生成系数矩阵A和右端项b,分析系数矩阵A,并用Jacobi迭代法、GS迭代法、SOR(逐步松弛迭代法)解方程组Ax=b 1生成系数矩阵A、右端项b,并分析矩阵A 由文件”gr900900c rg.mm”得到了以.mm格式描述的系数矩阵A。A矩阵是900?900的大型稀 疏对称矩阵。于是,在matlaB中,使用”A=zeros(900,900)”语句生成900?900的零矩阵。再 按照.mm文件中的描述,分别对第i行、第j列的元素赋对应的值,就生成了系数矩阵A,并 将A存为.mat文件以便之后应用。 由于右端项是全为1的列向量,所以由语句”b=ones(900,1)”生成。 得到了矩阵A后,求其行列式,使用函数”det(A)”,求得结果为”Inf”,证明行列式太大,matlaB无法显示。由此证明,矩阵A可逆,线性方程组 Ax=b 有唯一解。 接着,判断A矩阵是否是对称矩阵(其实,这步是没有必要的,因为A矩阵本身是对称矩阵,是.mm格式中的矩阵按对称阵生成的)。如果A是对称矩阵,那么 A?A T=0 。于是,令B=A?A T,并对B求∞范数。结果显示: B ∞=0,所以,B是零矩阵,也就是:A是对称矩阵。 然后,求A的三个条件数: Cond(A)= A ? A?1 所求结果是,对应于1范数的条件数为:377.2334;对应于2范数的条件数为:194.5739;对应 于3范数的条件数为:377.2334; 1

从以上结果我们看出,A是可逆矩阵,但是A的条件数很大,所以,Ax=b有唯一解并且矩阵A相对不稳定。所以,我们可以用迭代方法来求解该线性方程组,但是由于A的条件数太大迭代次数一般而言会比较多。 2Jacobi迭代法 Jacobi迭代方法的程序流程图如图所示: 图1:Jacobi迭代方法程序流程图 在上述流程中,取x0=[1,1,...,1]T将精度设为accuracy=10?3,需要误差满足: error= x k+1?x k x k+1

二分法和牛顿法求解非线性方程(C语言)

(1)二分法求解非线性方程: #include #include #define f(x)((x*x-1)*x-1) void main() {float a,b,x,eps; int k=0; printf("intput eps\n");/*容许误差*/ scanf("%f",&eps); printf("a,b=\n"); for(;;) {scanf("%f,%f",&a,&b); if(f(a)*f(b)>=0)/*判断是否符合二分法使用的条件*/ printf("二分法不可使用,请重新输入:\n"); else break; } do {x=(a+b)/2; k++; if(f(a)*f(x)<0)/*如果f(a)*f(x)<0,则根在区间的左半部分*/ b=x; else if(f(a)*f(x)>0)/*否则根在区间的右半部分*/ a=x; else break; }while(fabs(b-a)>eps);/*判断是否达到精度要求,若没有达到,继续循环*/ x=(a+b)/2;/*取最后的小区间中点作为根的近似值*/ printf("\n The root is x=%f,k=%d\n",x,k); } 运行结果: intput eps 0.00001 a,b= 2,-5 The root is x=1.324721,k=20 Press any key to continue 总结:本题关键在于两个端点的取值和误差的判断,此程序较容易。二分法收敛速度较快,但缺点是只能求解单根。 (2)牛顿法求解非线性方程: #include #include float f(float x)/*定义函数f(x)*/ {return((-3*x+4)*x-5)*x+6;} float f1(float x)/*定义函数f(x)的导数*/

高斯-赛德尔迭代法解线性方程组精选.

数值分析实验五 班级: 10信计二班 学号:59 姓名:王志桃 分数: 一.实验名称 高斯-赛德尔迭代法解线性方程组 二.实验目的 1. 学会利用高斯赛德尔方法解线性方程组 2. 明白迭代法的原理 3. 对于大型稀疏矩阵方程组适用于迭代法比较简单 三.实验内容 利用Gauss-Seidel 迭代法求解下列方程组 ?????=++=-+=+-36123633111420238321 321321x x x x x x x x x , 其中取→=0)0(x 。 四、算法描述 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值,若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量)1(+k i x 时,用最新分量)1(1+k x ,???+)1(2k x )1(1-+k i x 代替旧分量)(1k x ,???)(2k x )(1-k i x ,就得到所谓解方程组的Gauss-Seidel 迭代法。 其迭代格式为 T n x x x x )()0()0(2)0(1)0(,,,???= (初始向量), )(11111)()1( ) 1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者写为 ?? ???--=???=???==?+=∑∑-=-+=+++)(1)210i 210(1111)( )1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 五、 编码 #include #include

基于Matlab的牛顿迭代法解非线性方程组

基于Matlab 实现牛顿迭代法解非线性方程组 已知非线性方程组如下 2211221212 10801080x x x x x x x ?-++=??+-+=?? 给定初值0(0,0)T x =,要求求解精度达到0.00001 首先建立函数F(x),方程组编程如下,将F.m 保存到工作路径中: function f=F(x) f(1)=x(1)^2-10*x(1)+x(2)^2+8; f(2)=x(1)*x(2)^2+x(1)-10*x(2)+8; f=[f(1) f(2)]; 建立函数DF(x),用于求方程组的Jacobi 矩阵,将DF.m 保存到工作路径中: function df=DF(x) df=[2*x(1)-10,2*x(2);x(2)^2+1,2*x(1)*x(2)-10]; 编程牛顿迭代法解非线性方程组,将newton.m 保存到工作路径中: clear; clc x=[0,0]'; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',0,x(1),x(2)); N=4; for i=1:N y=df\f'; x=x-y; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',i,x(1),x(2)); if norm(y)<0.0000001 break ; else end end

运行结果如下: 0 0.0000000 0.0000000 1 0.8000000 0.8800000 2 0.9917872 0.9917117 3 0.9999752 0.9999685 4 1.0000000 1.0000000

实验解线性方程组的基本迭代法实验

数值分析实验报告

0 a 12 K a 1,n 1 K a 2,n 1 U O M 则有: 第一步: Jacobi 迭代法 a 1n a 2n M , 则有: A D L U a n 1,n Ax b A A x D b L U (D L U)x b Dx (L U)x b x D (L U)x D b 令 J D (L U) 则称 J 为雅克比迭代矩阵 f D b 由此可得雅克比迭代的迭代格式如下: x (0) , 初始向量 x (k 1) Jx (k) f ,k 0,1,2,L 第二步 Gauss-Seidel 迭代法 Ax b (D L U )x b (D L)x Ux b x (D L) Ux (D L) b A D L U a 11 a 12 L a 1n a 11 A a 21 a 22 L a 2n a 22 M MM MO a n1 a n2 L a nn a 11 得到 D a 22 O a nn 由 a 21 0 M M O a n 1,1 a n 1,2 L 0 a nn a n1 a n2 L a n,n a 21 L M M O a n 1,1 a n 1,2 L a n1 a n2 L a n,n 1 a 12 K a 1,n 1 a 1n 0 K a 2,n 1 a 2n O M M a n 1,n 10

令 G (D L) U ,则称G 为Gauss-Seidel 迭代矩阵 f (D L) b 由此可得 Gauss-Seidel 迭代的迭代格式如下: x (0) , 初始向量 第三步 SOR 迭代法 w0 AD L U 1 ( D 1 wL ((1 w)D wU )) (D 1 wL) ((1 w)D wU ) w w w 令M w 1 (D wL), N 1 ((1 w)D wU )则有:A MN w w Ax b AM L W N M (M N )x b Mx Nx b x M Nx M b N M, 令W f Mb 带入 N 的值可有 L W ((1 w)D wU) (D wL) 1((1 w)D wU) (D wL) f 1 b w 1(D wL) 1b 1 (D wL) w 称 L W 为 SOR 迭代矩阵,由此可得 SOR 迭代的迭代格式如下: x (0) ,初始向量 二、算法程序 Jacobi 迭代法的 M 文件: function [y,n]=Jacobi(A,b,x0,eps) %************************************************* %函数名称 Jacobi 雅克比迭代函数 %参数解释 A 系数矩阵 % b 常数项 % x0 估计解向量 x (k 1) Gx (k) f ,k 0,1,2,L (k 1) f,k 0,1,2,L

解线性方程组的直接法和迭代法

数值分析方法中方程求解的直接法和迭代法 第3章 解线性方程组的直接法 一、 消元法 1. 高斯消元法(加减消元):首先将A 化为上三角阵,再回代求解。 11121121222212n n n n nn n a a a b a a a b a a a b ?? ? ? ? ??? (1)(1)(1)(1)(1)11 121311(2)(2)(2)(2)222322 (3)(3)(3)3333()()000 00 n n n n n nn n a a a a b a a a b a a b a b ?? ? ? ? ? ? ?? ? 步骤如下: 第一步:1 11 1,2,,i a i i n a -? +=第行第行 11121121222212 n n n n nn n a a a b a a a b a a a b ?? ? ? ? ??? 111211(2)(2)(2)2222 (2)(2)(2)2 00n n n nn n a a a b a a b a a b ?? ? ? ? ??? 第二步:(2)2 (2)222,3, ,i a i i n a -?+=第行第行 111211(2)(2)(2)2222 (2)(2)(2)200n n n nn n a a a b a a b a a b ?? ? ? ? ?? ? 111213 11 (2)(2)(2)(2) 222322 (3)(3)(3) 33 33(3)(3)(3) 3 00000n n n n nn n a a a a b a a a b a a b a a b ?? ? ? ? ? ? ?? ? 类似的做下去,我们有: 第k 步:() ()k ,1, ,k ik k kk a i i k n a -?+=+第行第行。 n -1步以后,我们可以得到变换后的矩阵为:

解线性方程组的几种迭代算法

解线性方程组的几种迭代算法 内容摘要: 本文首先总结了分裂法解线性方程组的一些迭代算法,在此基础上分别通过改变系数矩阵A的分裂形式和对SSOR算法的改进提出了两种新的算法,并证明了这两种算法的收敛性.与其它方法相比,通过改变系数矩阵A的分裂形式得到的新算法具有更好的收敛性,改进的SSOR算法有了更快的收敛速度.最后通过数值实例验证了这两种算法在有些情况下确实可以更有效的解决问题. 关键词: 线性方程组迭代法算法收敛速度 Several kinds of solving linear equations iterative algorithm Abstract: In this paper, we firstly summarize some Iterative algorithms of Anti-secession law solution of linear equations. Based on these, two new algorithms are put forward by changing the fission form of coefficient matrix A and improving the algorithm of SSOR, and the convergence of the two algorithms is demonstrated. Compared with other methods, the new algorithm acquired by changing the fission form of coefficient matrix A is possessed of a better convergence. And the improved SSOR algorithm has a faster convergence speed. Finally, some numerical examples verify that the two algorithms can solve problems more effectively in some cases. Key words: Linear equations Iteration method algorithm Convergence speed

相关主题
文本预览
相关文档 最新文档