当前位置:文档之家› 实变函数论课后答案第二章1

实变函数论课后答案第二章1

实变函数论课后答案第二章1
实变函数论课后答案第二章1

实变函数论课后答案第二章1

第二章第一节

1.证明'0p E ∈的充要条件是对于任意含有0p 的邻域()0,N p δ(不一定以0p 为中心)中,恒有异于0p 的点1p 属于E (事实上这样的1p 其实还是有无穷多个)而0p 为E 的内点的充要条件则上有含有0p 的邻域()0,N p δ(同样,不一定以0p 为中心)存在,使()0,N p E δ?. 证明:先设'0p E ∈,则()00,,N p E δδ?> 中有无穷多个点。现在设()00,p N p δ∈,这表明()00,p p ηρδ≤=<,

故()0,y N p δη?∈-,有()()()00,,,y p y p p p ρρρδηηδ≤+<-+= 故()()0,,N p N p δηδ-?

故()0,N p E δη- 有无穷个点,自然有异于0p 的点()10,p N p E δη∈-

(),N p δ?.这就证明了必要性,事实上,(){}00,N p E p δη-- 是无穷集,故()

,N p δ

中有无穷多个异于0p 的E 中的点.

反过来,若任意含有0p 的邻域(),N p δ中,恒有异于0p 的点1p 属于E ,则0δ?>, (),N p δ中,有异于0p 的点1p 属于E ,

记()101,p p ρδ=,则显然1δδ<

由条件()01,N p δ中有异于0p 的点2p E ∈,()2021,p p ρδδ=<

由归纳法易知,有{}11,1,2,,n n n n δδδδ+?=<<< 和()01,n n p E N p δ-∈ ,

0,1,2,n p p n ≠=

这表明()0,N p δ中有无穷个E 中的点.由0δ>的任意性知,'0x E ∈

若0p 为E 的内点,则0,δ?>使()0,N p E δ?,故必要性是显然的. 若存在邻域(),N p E δ?,使()0,p N p δ∈,则从前面的证明知 ()()()00,,,N p p p N p E δρδ-??,故0p 为E 的内点.

2.设1

n

R R =是全体实数,1E 是[]0,1上的全部有理点,求'

11,E E .

解:[]0,1x ?∈,由有理数的稠密性知,()()0,,,N x x x εεεε?>=-+中有无穷个1E 中的点,故'1x E ∈,故[]'

10,1E ?.

而另一方面,[]0,1x ??,必有0δ>,使()[]0,0,1N x δ=? ,故'01x E ? 故[]'

10,1E ?,所以[][]'

10,10,1E ??.

表明[]'

10,1E =

而[][]'

11110,10,1E E E E ===

故[]'

110,1E E ==.

1. 设2n R R =是普通的xy 平面(){}222,;1E x y x y =+<,求'22,E E . 解:(){}'222,;1E x y x y =+≤

事实上,若()'

0002,p x y E =∈,则由于()2

2

,f x y x y =+是2R 上的连续函数,必存在

0δ>,使()()0,,x y N p δ?∈有()2

2

,1f x y x y =+>.

故()02,N p E δ=? ,故0p 不是'

2E 中的点矛盾. 故22

001x y +≤时(){}220,;1p x y x y ∈+≤

反过来,若()(){}22000,,;1p x y x y x y =∈+≤ 则0δ?>,作[]0,1上的函数()()()

()2

2

000000,f t tp p tx x ty y ρ==-+-

()

2

22

22

000011

t x y t x y =

-+=-+

则()f t 是[]0,1上的连续函数,()2

2

0001f x y =+≤,()10f =,01δ?<<,

[]0,1t δ?∈使()f t δδ=

现在任取()0,0min 1,ηδη>?<<,使()()00,,N p N p δη?. 由上面的结论,存在01t δ<<,使()1f t δδ=<.

故0t p δ满足(1)00t p p δ≠;(2)0001t p t p t p t δδδδ==≤<.故02t p E δ∈ (3)()00,t p p δρδη=<,故()0,t p N p δη∈

所以(){}020,t p N p E p δη∈-

由习题1的结论知'02p E ∈,所以(){}'222,;1E x y x y =+≤. 而(){}''222222,;1E E E E x y x y ===+≤ .

2. 设2n R R =是普通的xy 平面,3E 是函数1sin 000

x y x

x ?≠?

=??=?

的图形上的点所作成的集

合,求'3E .

解:设函数的图形是()(){}{}'

1

31,;,,sin

;0x f x x R E x x R x ????∈=∈-?? ?????

(){}0,0 . 下证(){}'

330,;11E E δδ=-≤≤

()'

0003,p x y E =∈?存在()(){}300,,n n n p x y E x y =∈-,

()000,,n n n n n p x y p x x y y =→?→→,()0,0n p p ρ→

设()'

0003,p x y E =∈,则存在()(){}300,,n n x y E x y ∈-使00,n n x x y y →→

若00x ≠,则0n x ≠(当n 充分大) 则00

11sin

sin

n n

y y x x =→=

所以()003,x y E ∈

若00x ≠,则0n x →,01sin

n n

y y x =→,011y -≤≤

所以()(){}00,0,;11x y δδ∈-≤≤ 故(){}'

330,;11E E δδ?-≤≤

反过来:()(){}0003,0,;11p x y E δδ?=∈-≤≤ , 若00x ≠,00

1sin

y x =,

故存在0n x x ≠,使0n x ≠,0n x x →

从而0

11sin

sin

n

x x →

即存在()001,sin ,n n x x y x ??

→ ??

?

故'03p E ∈.

若()(){}000,0,;11p y δδ=∈-≤≤ 则从[]01,1y ∈-知存在0x 使00sin x y =, 令()0

10,1,2,2k x k k x π=

≠=+ .

则()0001sin

sin 2sin k

k x x y x π=+==,

所以()3011,sin ,,sin 0,k k

k k x E x y x x ????∈→ ? ????

?,()()00,0,k x y y → ()()00,0,k x y y ≠

故'

03p E ∈

故结论成立.

3. 证明当E 是n R 中的不可数无穷点集时,'E 不可能是有限集. 证明:记B 为E 的孤立点集,则'E B E -= 所以()'

E E B B E B =-? .

若能证明B 是至多可数集,则若'E 是有限集或可列集知'

E B E ? 为至多可数集,这将与

E 是n

R 中的不可数无穷点集矛盾.

故只用证E 的孤立点集B 是至多可数集

p B ?∈,0p δ?>使(){},p N p E p δ=

故(),n p p N p R δ? 是B 到n R 中的一个互不相交的开球邻域组成的集的11-对应. 而任一互不相交开球邻域作成的集合{},A αα∈Λ是可数的,因为任取α∈Λ,取有理点

p A α∈,则从,A A αβαβ=?≠ 则{},A αα∈Λ与Q 11-对应

α∈Λ是至多可数集. 故{}

A

,

α

证毕

实变与泛函期末试题答案

06-07第二学期《实变函数与泛函分析》期末考试参考答案 1. 设()f x 是),(+∞-∞上的实值连续函数, 则对于任意常数a , })(|{a x f x E >=是一开集, 而})(|{a x f x E ≥=总是一闭集. (15分) 证明 (1) 先证})(|{a x f x E >=为开集. (8分) 证明一 设E x ∈0,则a x f >)(0,由)(x f 在),(+∞-∞上连续,知0>?δ,使得 ),(00δδ+-∈x x x 时,a x f >)(, 即 E x U ?),(0δ, 故0x 为E 的内点. 由0x 的任意性可知,})(|{a x f x E >=是一开集. 证明二 })(|{a x f x E >=可表为至多可数的开区间的并(由证明一前半部分), 由定理可知E 为开集. (2) 再证})(|{a x f x E ≥=是一闭集. (7分) 证明一 设0x E '∈, 则0x 是E 的一个聚点, 则E ?中互异点列},{n x 使得 )(0∞→→n x x n . ………………………..2分 由E x n ∈知a x f n ≥)(, 因为f 连续, 所以 a x f x f x f n n n n ≥==∞ →∞ →)(lim )lim ()(0, 即E x ∈0.……………………………………………………………………………………6分 由0x 的任意性可知,})(|{a x f x E ≥=是一闭集. …………………………………7分 证明二 对})(|{a x f x E ≥=, {|()}E x f x a E ??=?,……………………… 5分 知E E E E =?=Y ,E 为闭集. …………………………………………………… 7分 证明三 由(1)知,})(|{a x f x E >=为开集, 同理})(|{a x f x E <=也为开集, 所以})(|{a x f x CE ≥=闭集, 得证. 2. 证明Egorov 定理:设,{()}n mE f x <∞是E 上一列..e a 收敛于一个..e a 有限的函数)(x f 的可测函数, 则对0>?δ, 存在子集E E ?δ, 使)}({x f n 在δE 上一致收敛, 且 .)\(δδ,选0,i 使0 1 ,i ε<则当0i n n >时,对一切

实变函数论课后答案第三章1

实变函数论课后答案第三章1 第三章第一节习题 1.证明:若E 有界,则m E *<∞. 证明:若n E R ?有界,则存在一个开区间 (){}120,,;n M n E R I x x x M x M ?=-<< . (0M >充分大)使M E I ?. 故()()()111 inf ;2n n n n m n n i m E I E I I M M M ∞∞ * ===??=?≤=--=<+∞????∑∏ . 2.证明任何可数点集的外测度都是零. 证:设{}12,,,n E a a a = 是n R 中的任一可数集.由于单点集的外测度为零, 故{}{}{}()12111 ,,,00n i i i i i m E m a a a m a m a ∞ ∞ ∞ * * * *===??==≤== ???∑∑ . 3.证明对于一维空间1R 中任何外测度大于零的有界集合E 及任意常数μ,只要 0m E μ*≤≤,就有1E E ?,使1m E μ*=. 证明:因为E 有界,设[],E a b ?(,a b 有限), 令()(),f x m E a x b *=?<< , 则()()()()[]()()0,,f a m E m f b m a b E m E ****=?=?=== . 考虑x x x +?与,不妨设a x x x b ≤≤+?≤, 则由[])[]())()[](),,,,,a x x E a x x x x E a x E x x x E +?=+?=+????? . 可知())()[](),,f x x m a x E m x x x E ** +?≤++??? ()[]()(),f x m x x x f x x *≤++?=+?.

实变函数论试题及答案

实变函数论测试题 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ == 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以 ∞ +=∈ 1 n m m A x ∞ =∞ =? 1n n m m A , 则可知n n A ∞ →lim ∞=∞ =? 1n n m m A 。设 ∞=∞ =∈1n n m m A x ,则有n ,使 ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →= ∞ =∞ =1n n m m A 。 2、设(){}2 2 2,1E x y x y =+<。求2E 在2 R 内的'2 E ,0 2E ,2E 。 解:(){}2 2 2,1E x y x y '=+≤, (){}222,1E x y x y =+< , (){}222,1E x y x y =+<。 3、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令 ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 4、试构造一个闭的疏朗的集合[0,1]E ?,12 m E =。 解:在[0,1]中去掉一个长度为1 6的开区间5 7 ( , )1212 ,接下来在剩下的两个闭区间 分别对称挖掉长度为11 6 3 ?的两个开区间,以此类推,一般进行到第n 次时, 一共去掉12-n 个各自长度为1 116 3 n -? 的开区间,剩下的n 2个闭区间,如此重复 下去,这样就可以得到一个闭的疏朗集,去掉的部分的测度为 11 11212166363 2 n n --+?++ ?+= 。

matlab课后习题解答第二章doc

第2章符号运算 习题2及解答 1 说出以下四条指令产生的结果各属于哪种数据类型,是“双精度” 对象,还是“符号”符号对象? 3/7+0.1; sym(3/7+0.1); sym('3/7+0.1'); vpa(sym(3/7+0.1)) 〖目的〗 ●不能从显示形式判断数据类型,而必须依靠class指令。 〖解答〗 c1=3/7+0.1 c2=sym(3/7+0.1) c3=sym('3/7+0.1') c4=vpa(sym(3/7+0.1)) Cs1=class(c1) Cs2=class(c2) Cs3=class(c3) Cs4=class(c4) c1 = 0.5286 c2 = 37/70 c3 = 0.52857142857142857142857142857143 c4 = 0.52857142857142857142857142857143 Cs1 = double Cs2 = sym Cs3 = sym Cs4 = sym 2 在不加专门指定的情况下,以下符号表达式中的哪一个变量被认 为是自由符号变量. sym('sin(w*t)'),sym('a*exp(-X)'),sym('z*exp(j*th)') 〖目的〗 ●理解自由符号变量的确认规则。 〖解答〗 symvar(sym('sin(w*t)'),1) ans = w symvar(sym('a*exp(-X)'),1) ans = a

symvar(sym('z*exp(j*th)'),1) ans = z 3 求以下两个方程的解 (1)试写出求三阶方程05.443 =-x 正实根的程序。注意:只要正实根,不要出现其他根。 (2)试求二阶方程022=+-a ax x 在0>a 时的根。 〖目的〗 ● 体验变量限定假设的影响 〖解答〗 (1)求三阶方程05.443 =-x 正实根 reset(symengine) %确保下面操作不受前面指令运作的影响 syms x positive solve(x^3-44.5) ans = (2^(2/3)*89^(1/3))/2 (2)求五阶方程02 2 =+-a ax x 的实根 syms a positive %注意:关于x 的假设没有去除 solve(x^2-a*x+a^2) Warning: Explicit solution could not be found. > In solve at 83 ans = [ empty sym ] syms x clear syms a positive solve(x^2-a*x+a^2) ans = a/2 + (3^(1/2)*a*i)/2 a/2 - (3^(1/2)*a*i)/2 4 观察一个数(在此用@记述)在以下四条不同指令作用下的异同。 a =@, b = sym( @ ), c = sym( @ ,' d ' ), d = sym( '@ ' ) 在此,@ 分别代表具体数值 7/3 , pi/3 , pi*3^(1/3) ;而异同通过vpa(abs(a-d)) , vpa(abs(b-d)) , vpa(abs(c-d))等来观察。 〖目的〗 ● 理解准确符号数值的创建法。 ● 高精度误差的观察。 〖解答〗 (1)x=7/3 x=7/3;a=x,b=sym(x),c=sym(x,'d'),d=sym('7/3'), a =

实变函数论课后答案第五章1

实变函数论课后答案第五章1 第无章第一节习题 1.试就[0,1]上 的D i r i c h l e 函数()D x 和Riemann 函数()R x 计算[0,1] ()D x dx ? 和 [0,1] ()R x dx ? 解:回忆1 1()0\x Q D x x R Q ∈?=?∈?即()()Q D x x χ= (Q 为1 R 上全体有理数之集合) 回忆: ()E x χ可测E ?为可测集和P129定理2:若E 是n R 中测度有 限的可测集, ()f x 是E 上的非负有界函数,则_ ()()() E E f x dx f x dx f x =???为E 上的可测函数 显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue 可积 由P134Th4(2)知 [0,1] [0,1][0,1][0,1][0,1]()()()10c c Q Q Q Q Q Q Q x dx x dx x dx dx dx χχχ????= + = + ? ? ? ? ? 1([0,1])0([0,1])10010c m Q m Q =??+??=?+?= 回忆Riemann 函数()R x :1:[0,1]R R 11,()0[0,1]n n x m n m R x x x Q ?= ??==??∈-?? 和无大于的公因子1 在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0 .R x a e =于[0,1]上,故()R x 可

测(P104定理3),且 [0,1] ()R x dx ? [0,1]()()Q Q R x dx R x dx -= +? ? 而0()10Q Q R x dx dx mQ ≤≤==??(Q 可数,故*0m Q =)故 [0,1] [0,1][0,1]()()00Q Q R x dx R x dx dx --= = =? ? ? 2.证明定理1(iii)中的第一式 证明:要证的是:若mE <+∞,(),()f x g x 都是E 上的非负有界函数,则 ()()()E E E f x dx f x dx g x dx --≥+??? 下面证明之: 0ε?>,有下积分的定义,有E 的两个划分1D 和2D 使 1 ()()2 D E s f f x dx ε -> - ? ,2 ()()2 D E s g g x dx ε -> - ? 此处1 ()D s f ,2 ()D s g 分别是f 关于1D 和g 关于2D 的小和数,合并12 ,D D 而成E 的一个更细密的划分D ,则当()D s f g +为()()f x g x +关于D 的小和数时 12(()())()D D D D D f x g x dx s f g s f s g s f s g - +≥+≥+≥+? ()()()()22E E E E f x dx g x dx f x dx g x dx εε ε----≥ -+-=+-? ???(用到下确界的性 质和P125引理1) 由ε的任意性,令0ε→,而得(()())()()E E f x g x dx f x dx g x dx - --+≥+??? 3.补作定理5中()E f x dx =+∞?的情形的详细证明 证明 :令 {} |||||m E E x x m =≤,当 ()E f x dx =+∞ ?时, ()lim ()m m E E f x dx f x dx →∞ +∞==?? 0M ?>,存在00()m m M N =∈,当0m m ≥时,

DS第二章-课后习题答案

第二章线性表 2.1 填空题 (1)一半插入或删除的位置 (2)静态动态 (3)一定不一定 (4)头指针头结点的next 前一个元素的next 2.2 选择题 (1)A (2) DA GKHDA EL IAF IFA(IDA) (3)D (4)D (5) D 2.3 头指针:在带头结点的链表中,头指针存储头结点的地址;在不带头结点的链表中,头指针存放第一个元素结点的地址; 头结点:为了操作方便,在第一个元素结点前申请一个结点,其指针域存放第一个元素结点的地址,数据域可以什么都不放; 首元素结点:第一个元素的结点。 2.4已知顺序表L递增有序,写一算法,将X插入到线性表的适当位置上,以保持线性表的有序性。 void InserList(SeqList *L,ElemType x) { int i=L->last; if(L->last>=MAXSIZE-1) return FALSE; //顺序表已满 while(i>=0 && L->elem[i]>x) { L->elem[i+1]=L->elem[i]; i--; } L->elem[i+1]=x; L->last++; } 2.5 删除顺序表中从i开始的k个元素 int DelList(SeqList *L,int i,int k) { int j,l; if(i<=0||i>L->last) {printf("The Initial Position is Error!"); return 0;} if(k<=0) return 1; /*No Need to Delete*/ if(i+k-2>=L->last) L->last=L->last-k; /*modify the length*/

实变函数积分理论部分复习试题[附的答案解析版]

2011级实变函数积分理论复习题 一、判断题(判断正误,正确的请简要说明理由,错误的请举出反例) 1、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可积函数。(×) 2、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可测函数。(√) 3、设{}()n f x 是[0,1]上的一列非负可测函数,则 [0,1][0,1] lim ()d lim ()d n n n n f x x f x x →∞ →∞ =? ? 。 (×) 4、设{}()n f x 是[0,1]上的一列非负可测函数,则存在{}()n f x 的一个子列{} ()k n f x ,使得, [0,1][0,1] lim ()d lim ()d k k n n k k f x x f x x →∞ →∞ ,()f x 在[0,]n 上 黎曼可积,从而()f x 是[0,]n 上的可测函数,进而()f x 是1 [0,)[0,]n n ∞ =+∞= 上的可测函数) 10、设{}()n f x 是[0,1]上的一列单调递增非负可测函数,()[0,1],n G f 表示()n f x 在

实变函数引论参考答案 曹怀信 第二章

。习题2.1 1.若E 是区间]1,0[]1,0[?中的全体有理点之集,求b E E E E ,,,' . 解 E =?;[0,1][0,1]b E E E '===?。 2.设)}0,0{(1sin ,10:),( ???? ??=≤<=x y x y x E ,求b E E E E ,,,' . 解 E =?;{(,):0,11}.b E E x y x y E E '==-≤≤== 3.下列各式是否一定成立? 若成立,证明之,若不成立,举反例说明. (1) 11n n n n E E ∞ ∞=='??'= ???; (2) )()(B A B A ''=' ; (3) n n n n E E ∞=∞==? ??? ??1 1 ; (4) B A B A =; (5) ???=B A B A )(; (6) .)(? ??=B A B A 解 (1) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则1 ( )n n E ∞=''==Q R , 而1.n n E ∞ ='=?但是,总有11 n n n n E E ∞∞=='??'? ???。 (2) 不一定。如 A =Q , B =R \Q , 则(),A B '=? 而.A B ''=R R =R (3) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则 1 n n E ∞===Q R , 而 1 .n n E ∞ ==Q 但是,总有11 n n n n E E ∞∞ ==??? ???。 (4) 不一定。如(,)A a b =,(,)B b c =,则A B =?,而{}A B b =。 (5) 不一定。如[,]A a b =, [,]B b c =, 则(,)A a b =, (,)B b c =,而 ()(,)A B a c =,(,)\{}A B a c b =. (6) 成立。因为A B A ?, A B B ?, 所以()A B A ?, ()A B B ?。因此, 有()A B A B ?。设x A B ∈, 则存在10δ>,20δ>使得1(,)B x A δ?且2(,)B x B δ?,令12min(,)δδδ=,则(,)B x A B δ?。故有()x A B ∈,即 ()A B A B ?。因此,()A B A B =. 4.试作一点集A ,使得A '≠?,而?='')(A . 解 令1111 {1,,,,,,}234A n =,则{0}A '=,()A ''=?. 5.试作一点集E ,使得b E E ?. 解 取E =Q ,则b E =R 。 6.证明:无聚点的点集至多是可数集. 证明 因为无聚点的点集必然是只有孤立点的点集,所以只要证明:任一只有孤立点的点集A 是最多可数。对任意的x A ∈,都存在0x δ>使得(,){}x B x A x δ=。有理开球(即中心为有理点、半径为正有理数的开球)(,)(,)x x x B P r B x δ?使得(,)x x x B P r ∈,从而 (,){}x x B P r A x =。显然,对于任意的,x y A ∈,当x y ≠时,有(,)(,)x x y y B P r B P r ≠, 从而(,)(,)x x y y P r P r ≠。令()(,)x x f x P r =,则得到单射:n f A + →?Q Q 。由于n + ?Q Q 可

(0195)《实变函数论》网上作业题及答案

[0195]《实变函数论》 第一次作业 [单选题]1.开集减去闭集是() A:A.开集 B:B.闭集 C:C.既不是开集也不是闭集 参考答案:A [单选题]2.闭集减去开集是() A:开集 B:闭集 C:既不是开集也不是闭集 参考答案:B [单选题]3.可数多个开集的交是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]4.可数多个闭集的并是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]6.可数集与有限集的并是() A:有界集 B:可数集 C:闭集 参考答案:B

[判断题]5.任意多个开集的并仍是开集。 参考答案:正确 [单选题]8.可数多个有限集的并一定是() A:可数集 B:有限集 C:以上都不对 参考答案:C [单选题]7.设f(x)是定义在[a,b]上的单调函数,则f(x)的间断点集是()A:开集 B:闭集 C:可数集 参考答案:C [单选题]9.设f(x)是定义在R上的连续函数,E=R(f>0),则E是 A:开集 B:闭集 C:有界集 参考答案:A [单选题]10.波雷尔集是() A:开集 B:闭集 C:可测集 参考答案:C [判断题]7.可数多个零测集的并仍是零测集合。 参考答案:正确 [单选题]1.开集减去闭集是()。 A:A.开集 B.闭集 C.既不是开集也不是闭集 参考答案:A [单选题]5.可数多个开集的并是() A:开集 B:闭集

C:可数集 参考答案:A [判断题]8.不可数集合的测度一定大于零。 参考答案:错误 [判断题]6.闭集一定是可测集合。 参考答案:正确 [判断题]10.开集一定是可测集合。 参考答案:正确 [判断题]4.连续函数一定是可测函数。 参考答案:错误 [判断题]3.零测度集合或者是可数集合或者是有限集。 参考答案:正确 [判断题]2.有界集合的测度一定是实数。 参考答案:正确 [判断题]1.可数集合是零测集 参考答案:正确 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 第二次作业 [单选题]4.设E是平面上边长为2的正方形中所有无理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:C [单选题]3.设E是平面上边长为2的正方形中所有有理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:A [单选题].2.[0,1] 中的全体有理数构成的集合的测度是() A:0 B:1

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

大物第二章课后习题答案

简答题 什么是伽利略相对性原理什么是狭义相对性原理 答:伽利略相对性原理又称力学相对性原理,是指一切彼此作匀速直线运动的惯性系,对于描述机械运动的力学规律来说完全等价。 狭义相对性原理包括狭义相对性原理和光速不变原理。狭义相对性原理是指物理学定律在所有的惯性系中都具有相同的数学表达形式。光速不变原理是指在所有惯性系中,真空中光沿各方向的传播速率都等于同一个恒量。 同时的相对性是什么意思如果光速是无限大,是否还会有同时的相对性 答:同时的相对性是:在某一惯性系中同时发生的两个事件,在相对于此惯性系运动的另一个惯性系中观察,并不一定同时。 如果光速是无限的,破坏了狭义相对论的基础,就不会再涉及同时的相对性。 什么是钟慢效应 什么是尺缩效应 答:在某一参考系中同一地点先后发生的两个事件之间的时间间隔叫固有时。固有时最短。固有时和在其它参考系中测得的时间的关系,如果用钟走的快慢来说明,就是运动的钟的一秒对应于这静止的同步的钟的好几秒。这个效应叫运动的钟时间延缓。 尺子静止时测得的长度叫它的固有长度,固有长度是最长的。在相对于其运动的参考系中测量其长度要收缩。这个效应叫尺缩效应。 狭义相对论的时间和空间概念与牛顿力学的有何不同 有何联系 答:牛顿力学的时间和空间概念即绝对时空观的基本出发点是:任何过程所经历的时间不因参考系而差异;任何物体的长度测量不因参考系而不同。狭义相对论认为时间测量和空间测量都是相对的,并且二者的测量互相不能分离而成为一个整体。 牛顿力学的绝对时空观是相对论时间和空间概念在低速世界的特例,是狭义相对论在低速情况下忽略相对论效应的很好近似。 能把一个粒子加速到光速c 吗为什么 答:真空中光速C 是一切物体运动的极限速度,不可能把一个粒子加速到光速C 。从质速关系可看到,当速度趋近光速C 时,质量趋近于无穷。粒子的能量为2 mc ,在实验室中不存在这无穷大的能量。 什么叫质量亏损 它和原子能的释放有何关系 答:粒子反应中,反应前后如存在粒子总的静质量的减少0m ?,则0m ?叫质量亏损。原子能的释放指核反应中所释 放的能量,是反应前后粒子总动能的增量k E ?,它可通过质量亏损算出20k E m c ?=?。 在相对论的时空观中,以下的判断哪一个是对的 ( C ) (A )在一个惯性系中,两个同时的事件,在另一个惯性系中一定不同时;

第二章课后习题与答案要点

第2章人工智能与知识工程初步 1. 设有如下语句,请用相应的谓词公式分别把他们表示出来:s (1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。 解:定义谓词d P(x):x是人 L(x,y):x喜欢y 其中,y的个体域是{梅花,菊花}。 将知识用谓词表示为: (?x )(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花)) (2) 有人每天下午都去打篮球。 解:定义谓词 P(x):x是人 B(x):x打篮球 A(y):y是下午 将知识用谓词表示为:a (?x )(?y) (A(y)→B(x)∧P(x)) (3)新型计算机速度又快,存储容量又大。 解:定义谓词 NC(x):x是新型计算机 F(x):x速度快 B(x):x容量大 将知识用谓词表示为: (?x) (NC(x)→F(x)∧B(x)) (4) 不是每个计算机系的学生都喜欢在计算机上编程序。 解:定义谓词 S(x):x是计算机系学生 L(x, pragramming):x喜欢编程序 U(x,computer):x使用计算机 将知识用谓词表示为: ?(?x) (S(x)→L(x, pragramming)∧U(x,computer)) (5)凡是喜欢编程序的人都喜欢计算机。 解:定义谓词 P(x):x是人 L(x, y):x喜欢y 将知识用谓词表示为: (?x) (P(x)∧L(x,pragramming)→L(x, computer))

2 请对下列命题分别写出它们的语义网络: (1) 每个学生都有一台计算机。 解: (2) 高老师从3月到7月给计算机系学生讲《计算机网络》课。 解: (3) 学习班的学员有男、有女、有研究生、有本科生。 解:参例2.14 (4) 创新公司在科海大街56号,刘洋是该公司的经理,他32岁、硕士学位。 解:参例2.10 (5) 红队与蓝队进行足球比赛,最后以3:2的比分结束。 解:

工程热力学思考题答案,第二章

第二章热力学第一定律 1.热力学能就是热量吗? 答:不是,热是能量的一种,而热力学能包括内位能,内动能,化学能,原子能,电磁能,热力学能是状态参数,与过程无关,热与过程有关。 2.若在研究飞机发动机中工质的能量转换规律时把参考坐标建在飞 机上,工质的总能中是否包括外部储能?在以氢氧为燃料的电池系统中系统的热力学能是否包括氢氧的化学能? 答:不包括,相对飞机坐标系,外部储能为0; 以氢氧为燃料的电池系统的热力学能要包括化学能,因为系统中有化学反应 3.能否由基本能量方程得出功、热量和热力学能是相同性质的参数 结论? 答:不会,Q U W ?为热力学能的差值,非热力学能,热=?+可知,公式中的U 力学能为状态参数,与过程无关。 4.刚性绝热容器中间用隔板分为两部分,A 中存有高压空气,B 中保持真空,如图2-1 所示。若将隔板抽去,分析容器中空气的热力学能如何变化?若隔板上有一小孔,气体泄漏入 B 中,分析A、B 两部分压力相同时A、B 两部分气体的热力学能如何变化? 答:将隔板抽去,根据热力学第一定律q u w w=所以容 =?+其中0 q=0 器中空气的热力学能不变。若有一小孔,以B 为热力系进行分析

2 1 2 2 222111()()22f f cv j C C Q dE h gz m h gz m W δδδδ=+++-+++ 只有流体的流入没有流出,0,0j Q W δδ==忽略动能、势能c v l l d E h m δ=l l dU h m δ=l l U h m δ?=。B 部分气体的热力学能增量为U ? ,A 部分气体的热力学能减少量为U ? 5.热力学第一定律能量方程式是否可以写成下列两种形式: 212121()()q q u u w w -=-+-,q u w =?+的形式,为什么? 答:热力学第一定律能量方程式不可以写成题中所述的形式。对于 q u w =?+只有在特殊情况下,功w 可以写成pv 。热力学第一定律是一个针对任何情况的定律,不具有w =pv 这样一个必需条件。对于公式212121()()q q u u w w -=-+-,功和热量不是状态参数所以不能写成该式的形式。 6.热力学第一定律解析式有时写成下列两种形式: q u w =?+ 2 1 q u pdV =?+? 分别讨论上述两式的适用范围. 答: q u w =?+适用于任何过程,任何工质。 2 1 q u pdV =?+? 可逆过程,任何工质 7.为什么推动功出现在开口系能量方程式中,而不出现在闭口系能量

实变函数试题库 及参考答案

实变函数试题库及参考答案(5) 本科 一、填空题 1.设,A B 为集合,则___(\)A B B A A U U 2.设n E R ?,如果E 满足0E E =(其中0E 表示E 的内部),则E 是 3.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ?且,a G b G ??,则(,)a b 必为G 的 4.设{|2,}A x x n n ==为自然数,则A 的基数 a (其中a 表示自然数集N 的基数) 5.设,A B 为可测集,B A ?且mB <+∞,则__(\)mA mB m A B - 6.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是 7.若()E R ?是可数集,则__0mE 8.设{}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果.()() ()a e n f x f x x E →∈,则()()n f x f x ? x E ∈ (是否成立) 二、选择题 1、设E 是1R 中的可测集,()x ?是E 上的简单函数,则 ( ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 2.下列集合关系成立的是( ) (A )()()()A B C A B A C =I U I U I (B )(\)A B A =?I

(C )(\)B A A =?I (D )A B A B ?U I 3. 若() n E R ?是闭集,则 ( ) (A )0E E = (B )E E = (C )E E '? (D )E E '= 三、多项选择题(每题至少有两个以上的正确答案) 1.设{[0,1]}E =中的有理点,则( ) (A )E 是可数集 (B )E 是闭集 (C )0mE = (D )E 中的每一点均为E 的内点 2.若()E R ?的外测度为0,则( ) (A )E 是可测集 (B )0mE = (C )E 一定是可数集 (D )E 一定不是可数集 3.设mE <+∞,{}()n f x 为E 上几乎处处有限的可测函数列,()f x 为E 上几乎处处有限的可测函数,如果()(),()n f x f x x E ?∈,则下列哪些结果不一定成立( ) (A )()E f x dx ?存在 (B )()f x 在E 上L -可积 (C ).()()()a e n f x f x x E →∈ (D )lim ()()n E E n f x dx f x dx →∞=?? 4.若可测集E 上的可测函数()f x 在E 上有L 积分值,则( ) (A )()()f x L E +∈与()()f x L E - ∈至少有一个成立 (B )()()f x L E +∈且()()f x L E - ∈ (C )|()|f x 在E 上也有L -积分值 (D )|()|()f x L E ∈

第三版实变函数论课后答案

1. 证明:()B A A B -=的充要条件是A B ?. 证明:若() B A A B -=,则()A B A A B ?-?,故A B ?成立. 反之,若A B ?,则()()B A A B A B B -?-?,又x B ?∈,若x A ∈, 则 ()x B A A ∈-,若x A ?,则()x B A B A A ∈-?-.总有 () x B A A ∈-.故 ()B B A A ?-,从而有()B A A B -=。 证毕 2. 证明c A B A B -=. 证明:x A B ?∈-,从而,x A x B ∈?,故,c x A x B ∈∈,从而x A B ?∈-, 所以c A B A B -?. 另一方面, c x A B ?∈,必有,c x A x B ∈∈,故,x A x B ∈?,从而x A B ∈-, 所以 c A B A B ?-. 综合上两个包含式得c A B A B -=. 证毕 3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理 9. 证明:定理4中的(3):若A B λλ?(λ∈∧),则 A B λλλλ∈∧ ∈∧ ? . 证:若x A λλ∈∧ ∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ?(?λ∈∧) 成立 知x A B λλ∈?,故x B λλ∈∧ ∈,这说明 A B λλλλ∈∧ ∈∧ ? . 定理4中的(4): ()()( )A B A B λ λλλλλλ∈∧ ∈∧ ∈∧ =. 证:若 () x A B λ λλ∈∧ ∈ , 则 有 'λ∈∧ ,使 ''()( )()x A B A B λλλλλλ∈∧ ∈∧ ∈?. 反过来,若()( )x A B λλλλ∈∧ ∈∧ ∈则x A λλ∈∧ ∈或者x B λλ∈∧ ∈ . 不妨设x A λλ∈∧ ∈,则有'λ∈∧使'' '()x A A B A B λλλλλλ∈∧ ∈?? . 故( )()()A B A B λλλ λλλλ∈∧ ∈∧ ∈∧ ? . 综上所述有 ()( )( )A B A B λ λλλλλλ∈∧ ∈∧ ∈∧ =. 定理6中第二式()c c A A λλλλ∈∧ ∈∧ = . 证:( )c x A λλ∈∧ ?∈,则x A λλ∈∧ ? ,故存在'λ∈∧ ,'x A λ?所以 'c c x A A λλλ∈∧ ?? 从而有( )c c A A λλλλ∈∧ ∈∧ ? . 反过来,若c x A λλ∈∧ ∈ ,则'λ?∈∧使'c x A λ?,故'x A λ?, x A λλ∈∧ ∴? ,从而()c x A λλ∈∧ ∈

实变函数论习题选解

《实变函数论》习题选解 一、集合与基数 1.证明集合关系式: (1))()()()(B D C A D C B A --?---Y ; (2))()()()(D B C A D C B A Y I I -=--; (3)C B A C B A Y )()(-?--; (4)问)()(C B A C B A --=-Y 成立的充要条件是什么? 证 (1)∵c B A B A I =-,c c c B A B A Y I =)((对偶律), )()()(C A B A C B A I Y I Y I =(交对并的分配律) , ∴)()( )()()()(D C B A D C B A D C B A c c c c c Y I I I I I ==---第二个用 对偶律 )()()()()()(B D C A D B C A D B A C B A c c c c c --=?=Y I Y I I I Y I I 交对并 分配律 . (2))()() ()()()(c c c c D B C A D C B A D C B A I I I I I I I ==--交换律 结合律 )()()()(D B C A D B C A c Y I Y I I -== 第二个用对偶律 . (3))()() ()()(C A B A C B A C B A C B A c c c c I Y I Y I I I = ==--分配律 C B A C B A c Y Y I )()(-=?. (4)A C C B A C B A ??--=-)()(Y . 证 必要性(左推右,用反证法): 若A C ?,则C x ∈? 但A x ?,从而D ?,)(D A x -?,于是)(C B A x --?; 但C B A x Y )(-∈,从而左边不等式不成立,矛盾! 充分性(右推左,显然):事实上, ∵A C ?,∴C C A =I ,如图所示: 故)()(C B A C B A --=-Y . 2.设}1 ,0{=A ,试证一切排列 A a a a a n n ∈ ),,,,,(21ΛΛ 所成之集的势(基数)为c . 证 记}}1 ,0{),,,,,({21=∈==A a a a a a E n n ΛΛ为所有排列所成之集,对任一排列}1 ,0{ ),,,,,(21=∈=A a a a a a n n ΛΛ,令ΛΛn a a a a f 21.0)(=,特别, ]1 ,0[0000.0)0(∈==ΛΛf ,]1 ,0[1111.0)1(∈==ΛΛf , 即对每一排列对应于区间]1 ,0[上的一个2进小数]1 ,0[.021∈ΛΛn a a a ,则f 是一一对

第二章课后习题答案

1. 已知某一时期内某商品的需求函数为Q =50-5P ,供给函数为Qs=-10+5p。(1)求均衡价格Pe和均衡数量Qe,并作出几何图形。 (2)假定供给函数不变,由于消费者收入水平提高,使需求函数变为Qd=60-5P。求出相应的均衡价格Pe 和均衡数量Qe ,并作出几何图形。(3)假定需求函数不变,由于生产技术水平提高,使供给函数变为Qs=-5+5p。 求出相应的均衡价格Pe 和均衡数量Qe ,并作出几何图形。 (4)利用(1)(2 )(3),说明静态分析和比较静态分析的联系和区别。(5)利用(1)(2 )(3),说明需求变动和供给变动对均衡价格和均衡数量的影响. 解答: (1)将需求函数Qd = 50-5P和供给函数Qs =-10+5P 代入均衡条件Qd = Qs ,有: 50- 5P= -10+5P 得: Pe=6 以均衡价格Pe =6 代入需求函数Qd =50-5p ,得: Qe=20 所以,均衡价格和均衡数量分别为Pe =6 , Qe=20 (图略) (2)将由于消费者收入提高而产生的需求函数Qd=60-5p 和原供给函数 Qs=-10+5P, 代入均衡条件Q d= Qs ,有: 60-5P=-10+5P 得Pe=7 以均衡价格Pe=7代入Qd方程,得Qe=25 所以,均衡价格和均衡数量分别为Pe =7 , Qe=25 (图略) (3) 将原需求函数Qd =50-5p和由于技术水平提高而产生的供给函数Q =-5+5p , 代入均衡条件Qd =Qe ,有: 50-5P=-5+5P得Pe= 5.5 以均衡价格Pe= 5.5 代入Qd =50-5p ,得22.5 所以,均衡价格和均衡数量分别为Pe=5.5 Qe=22.5 (4)所谓静态分析是考察在既定条件下某一经济事物在经济变量的相互作用下所实现的均衡状态及其特征.也可以说,静态分析是在一个经济模型中根据所给的外生变量来求内生变量的一种分析方法.以(1)为例,在图中,均衡点 E 就是一个体现了静态分析特征的点.它是在给定的供求力量的相互作用下所达到的一个均衡点.在此,给定的供求力量分别用给定的供给函数Q=-10+5P 和需求函数Q=50-5P表示,均衡点具有的特征是:均衡价格P=6 且当P =6 时,有Q= Q d= Qe =20 ,同时,

相关主题
文本预览
相关文档 最新文档