当前位置:文档之家› 燃料电池简介

燃料电池简介

燃料电池简介
燃料电池简介

燃料电池简介

摘要:燃料电池是一种清洁、高效的能源利用方式,本文主要介绍了燃料电池的

工作原理、燃料电池的分类和燃料电池的优点,另外,本文还简单的介绍了燃料

电池的发展前景。

关键词:燃料电池 工作原理 固体氧化物

燃料电池作为一种新型的发电方式,发展燃料电池对于改善环境, 实施能源

可持续发展具有重要意义。对比于传统的火力发电方式可以大大降低空气污染及

解决电力供应、电网调峰问题。传统的火力发电站的燃烧能量大约有近70%要消

耗在锅炉和汽轮发电机这些庞大的设备上,燃烧时还会排放大量的有害物质。而

使用燃料电池发电,是将燃料的化学能直接转换为电能,不需要进行燃烧,没有

多余的能量转换过程,理论上能量转换率为100%,实际应用上装置无论大小发

电效率可达40%~60%,可以实现直接进入企业、饭店、宾馆、家庭实现热电联

产联用,没有输电输热损失,综合能源效率可达80%,装置为积木式结构,容量

可小到只为手机供电、大到和火力发电厂相比,应用范围极为广泛。基于以上这

些优点,我们可以看出研究燃料电池是很有必要的。

1、燃料电池的原理

燃料电池是一种能量转化装置,它是按电化学原理等温的把贮存在燃料和氧

化剂中的化学能直接转化为电能, 因而实际过程是氧化还原反应, 其工作原理

如图1所示。燃料电池主要由四部分组成, 即阳极、阴极、电解质和外部电路。

燃料气和氧化气分别由燃料电池的阳极和阴极通入。燃料气在阳极上放出电子, 电子经外电路传导到阴极并与氧化气结合生成离子。离子在电场作用下, 通过电

解质迁移到阳极上, 与燃料气反应,构成回路,产生电流。同时, 由于本身的电化

学反应以及电池的内阻, 燃料电池还会产生一定的热量。电池的阴、阳两极除传

导电子外, 也作为氧化还原反应的催化剂。当燃料为碳氢化合物时, 阳极要求有

更高的催化活性。阴、阳两极通常为多孔结构, 以便于反应气体的通入和产物排

出。电解质起传递离子和分离燃料气、氧化气的作用。为阻挡两种气体混合导致

电池内短路, 电解质通常为致密结构。

图一:燃料电池工作原理图

例如我们常说的氢氧燃料电池,如图二。氢-氧燃料电池反应原理实际上是电解

水的逆过程。电极反应 负极:H 2-2e-→2H +

正极:1/2O 2+2H ++2e -→H 2O

电池总反应:H 2+1/2O 2=H 2O

在该燃料电池中,阳极供给的燃料气H 2分解成H +和e -,H +移动到电解质中与

空气极侧供给的O

2

发生反应。e-经由外部的负荷回路,再反回到阴极,参与阴极的反应。一系列的反应促成了e-不间断地经由外部回路,因而就构成了发电。并

且从上面的电池总反应式可以看出,由H

2和O

2

生成的H

2

O,除此以外没有其他的

反应,H

2所具有的化学能转变成了电能。原则上只要反应物H

2

及O

2

不断输入,

反应产物H

2

O不断排出,氢氧燃料电池就能连续地发电。

图二:氢氧燃料电池工作原理

2、燃料电池的优点

(1)发电效率高

燃料电池按电化学原理等温地直接将化学能转化为电能, 它不像常规电厂

那样通过锅炉、汽轮机、发电机三级能量转换才能得到电能, 因此既没有中间环节的转换损失, 也不受热力学卡诺循环理论的限制, 理论上它的发电效率可达85%-90% 。但实际上, 由于工作时各种极化的限制, 目前各类燃料电池的实际能量转化效率为40%-60%, 若实现热电联供,燃料的总利用率可高达80%以上。[1] (2)环境污染小

燃料电池以天然气等富氢气体为燃料时, 二氧化碳的排放量比热机过程减

少40% 以上, 这对缓解地球的温室效应是十分重要的。另外, 由于燃料电池的

燃料气在反应前必须脱硫, 而且按电化学原理发电, 没有高温燃烧过程, 因此

几乎不排放氮和硫的氧化物, 减轻了对大气的污染。[2]

(3)比能量高

液氢燃料电池的比能量是镍镉电池的800倍, 直接甲醇燃料电池的比能量

比锂离子电池(能量密度最高的充电电池)高10 倍以上。目前, 燃料电池的实际比能量尽管只有理论值的10% , 但仍比一般电池的实际比能量高很多。

(4)噪声低

由于燃料电池按电化学反应原理工作, 运动部件很少。因此, 工作时噪声很低。

(5)负荷调节灵活

由于燃料电池发电装置是模块结构, 容量可大可小, 布置可集中可分散,

且安装简单, 维修方便。另外, 当燃料电池的负载有变动时, 它会很快响应,故无论处于额定功率以上过载运行或低于额定功率运行, 它都能承受且效率变化

不大。这种优良性能使燃料电池不仅能向广大民用用户提供独立热电联供系统, 也能以分散的形式向城市公用事业用户供电, 或在用电高峰时作为调节的储能

电池使用。[3]

(6)燃料范围广

对于燃料电池而言, 只要含有氢原子的物质都可以作为燃料, 例如天然气、石油、煤炭等化石产物, 或是沼气、酒精、甲醇等, 因此燃料电池非常符合能源多样化的需求, 可减缓主流能源的耗竭。

(7)易于建设

燃料电池具有组装式结构, 安装维修方便, 不需要很多辅助设施。燃料电池电站的设计和制造相当方便。

3、燃料电池的分类

燃料电池的类型不同,其用途也不同。按其工作温度是不同,把碱性燃料电池(AFC,工作温度为100℃)、固体高分子型质子膜燃料电池(PEMFC,也称为质子膜燃料电池,工作温度为100℃以内)和磷酸型燃料电池(PAFC,工作温度为200℃)称为低温燃料电池;把熔融碳酸盐型燃料电池(MCFC,工作温度为650℃)和固体氧化型燃料电池(SOFC,工作温度为1000℃)称为高温燃料电池,并且高温燃料电池又被称为面向高质量排气而进行联合开发的燃料电池。另一种分类是按其开发早晚顺序进行的,把PAFC称为第一代燃料电池,把MCFC称为第二代燃料电池,把SOFC称为第三代燃料电池。这些电池均需用可燃气体作为其发电用的燃料。

按燃料的处理方式的不同,可分为直接式、间接式和再生式。直接式燃料电池按温度的不同又可分为低温、中温和高温三种类型。间接式的包括重整式燃料电池和生物燃料电池。再生式燃料电池中有光、电、热、放射化学燃料电池等。按照电解质类型的不同,可分为碱型、磷酸型、聚合物型、熔融碳酸盐型、固体电解质型燃料电池。[4]

(1)固体氧化物燃料电池(SOFC)

固体氧化物燃料电池(SOFC)是一种直接将燃料气和氧化气中的化学能转换成电能的全固态能量转换装置, 具有一般燃料电池的结构。固体氧化物燃料电池以致密的固体氧化物作电解质, 在高温800-1 000℃下操作,反应气体不直接接触[5], 因此可以使用较高的压力以缩小反应器的体积而没有燃烧或爆炸的危险。

(2)氢燃料电池(RFC)

氢燃料电池以氢气为燃料, 与氧气经电化学反应后透过质子交换膜产生电能。氢和氧反应生成水, 不排放碳化氢、一氧化碳、氮化物和二氧化碳等污染物, 无污染, 发电效益高。

(3)直接甲醇燃料电池(DMFC)

直接甲醇燃料电池是直接以甲醇为燃料的质子交换膜燃料电池。膜电极主要由甲醇阳极、氧气阴极和质子交换膜(PEM)构成。阳极和阴极分别由不锈钢板、塑料薄膜、铜质电流收集板、石墨、气体扩散层和多孔结构的催化层组成。其中,气体扩散层起支撑催化层、收集电流及传导反应物的作用, 由具有导电功能的碳纸或碳布组成,催化层是电化学反应的场所, 常用的阳极和阴极电极催化剂分别为PtRu /C和Pt /C。直接甲醇燃料电池无须中间转化装置, 因而系统结构简单, 体积能量密度高, 还具有起动时间短、负载响应特性佳、运行可靠性高, 在较大的温度范围内都能正常工作, 燃料补充方便等优点。

4、燃料电池的开发前景

中国是一个人口众多的大国, 随着现代化事业的发展,对能源的需求将与日

俱增。据报道, 中国一次能源探明总量的90%为煤炭。在中国煤炭提供76%的发电能源和80%的民用商品能源。展望21世纪, 随着石油资源的日益枯竭, 以煤炭为第一能源的状况将仍然是中国的基本国情。目前, 由于燃烧技术的落后, 造成我国煤炭资源的极大浪费, 同时也造成严重的环境污染。研究并开发可以用净化煤气及天然气为直接燃料的MCFC及SOFC ,对中国是一种适合国情的具有长远意义的选择。[6]

参考文献:

[1]衣宝廉.燃料电池--原理.技术.应用[M].北京:化学工业出版社, 2003.

[2]刘洁.燃料电池研究进展及发展探析[M].节能技术.2010.07:366-367.

[3]贾林,邵震宇.燃料电池的应用与发展.煤气与热力.2005.4:73-76.

[4]钱伯章,燃料电池的发展现状与展望[M].节能。2004.03:3-7.

[5]尹艳红,朱威,夏长荣. 一种新的生物质气发电装置- 固体氧化物燃料电池[J]可再生能源.2004.03: 39.

[6]毕道治.中国燃料电池的发展.[M]中国电源.2000.04:107

氢氧燃料电池基础知识集锦

氢氧燃料电池基础知识集锦 氢氧燃料电池是很有发展前途的新的动力电源,一般以氢气、碳、甲醇、硼氢化物、煤气或天然气为燃料,作为负极,用空气中的氧作为正极.和一般电池的主要区别在于一般电池的活性物质是预先放在入的,因而电池容量取决于贮存的活性物质的量;而燃料电池的活性物质(燃料和氧化剂)是在反应的同时源源不断地输入的,因此,这类电池实际上只是一个能量转换装置。 一:氢氧燃料电池特点 这类电池具有转换效率高、容量大、比能量高、功率范围广、不用充电等优点,但由于成本高,系统比较复杂,仅限于一些特殊用途,如飞船、潜艇、军事、电视中转站、灯塔和浮标等方面。 二:氢氧燃料电池的分类 目前氢氧燃料电池可分为离子膜、培根型和石棉膜三类。 1.离子膜氢氧燃料电池:用阳离子交换膜作电解质的酸性燃料电池,现代采用全氟磺酸膜。电池放电时,在氧电极处生成水,通过灯芯将水吸出。这种电池在常温下工作、结构紧凑、重量轻,但离子交换膜内阻较大,放电电流密度小。

2.培根型燃料电池:属碱性电池。氢、氧电极都是双层多孔镍电极(内外层孔径不同),加铂作催化剂。电解质为80%~85%的苛性钾溶液,室温下是固体,在电池工作温度(204~260°C)下为液体。这种电池能量利用率较高,但自耗电大,起动和停机需较长的时间(起动需24小时,停机17小时)。 3.石棉膜燃料电池:也属碱性电池。氢电极由多孔镍片加铂、钯催化剂制成,氧电极是多孔银极片,两电极夹有含35%苛性钾溶液的石棉膜,再以有槽镍片紧压在两极板上作为集流器,构成气室,封装成单体电池。放电时在氢电极一边生成水,可以用循环氢的办法排出,亦可用静态排水法。这种电池的起动时间仅15分钟,并可瞬时停机。比磷酸铁锂电池要更环保。 三:氢氧燃料电池的原理 工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电

氢氧燃料电池性能测试实验报告

氢氧燃料电池性能测试 实验报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

氢氧燃料电池性能测 试实验报告 学号: 姓名:冯铖炼 指导老师:索艳格 一、实验目的 1.了解燃料电池工作原理 2.通过记录电池的放电特性,熟悉燃料电池极化特性 3.研究燃料电池功率和放电电流、燃料浓度的关系 4.熟悉电子负载、直流电源的操作 二、工作原理 氢氧燃料电池以氢气作燃料为还原剂,氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电,在氧电极上由于缺少电子而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。

工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂全部储藏在电池内的装置氢氧燃料电池的反应物都在电池外部它只是提供一个反应的容器 氢气和氧气都可以由电池外提供燃料电池是一种化学电池,它利用物质发生化学反应时释出的能量,直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给反应物质——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,2013年正发展为直接使用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气)。氢在负极分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,所以也可称它为一种"发电机"。 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。在正、负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢—氧燃料电池有酸式和碱式两种: 若电解质溶液是碱、盐溶液则

燃料电池及其发展前景

燃料电池及其发展前景 燃料电池及其发展前景 作者: Raymond George Klaus Hassmann燃料电池具有非同寻常的性能:电效率可达60%以上,而且可以在带着部分负荷运行的情况下进行维修,除了有低比率碳氧化物排放外几乎没有任何有害的排放物。文章介绍按温度划分的4种主要燃料电池(PEMFC、PAFC、MCFC和SOFC)的性能,重点介绍高温固体氧化物燃料电池(SOFC)的应用及其发展前景。 With demonstration projects fuel cells are Well uder way toward penetrating the power market,covering a wide range of application.This paper introduces the main four types of fuel cells which are PEMFC,PAFC,MCFC and SOFC.Then it puts the emphasis on SOFC and its application market.燃料电池是通过由电解液分隔开的2个电极中间的燃料(如天然气、甲醇或纯净氢气)的化学反应直接产生出电能。与汽轮发电机生产的电能相比,燃料电池具有非同寻常的特性:它的电效率可达60%以上,可以在带部分负荷运行的情况下进行维修,而且除了排放低比率碳氧化物外,几乎没有任何其他的有害排放物。1 燃料电池的分类目前研制的燃料电池技术在运行温度上有不同的类型,从比室温略高直到高达1000℃的范围。大多数工业集团公司的注意力集中在以下4种主要类型上:(1)运行温度在60-80℃之间的聚合物电解液隔膜型燃料电池(PEMFC);(2)运行温度在160-220℃之间的磷酸类燃料电池(PAFC);(3)运行温度在620-660℃之间的熔融碳酸盐类燃料电池(MCFC);(4)运行温度在880-1000℃之间的固体氧化物燃料电池(SOFC)。可以将这些类型的燃料电池划分为低温型(100℃及以下)、中温型(约200℃左右)及高温型(600-l000℃)燃料电池。表1简要地列出了各种类型燃料电池的性能。中温型和高温型燃料电池适于用在静止式装置上,而低温型燃料电池对于静止装置和移动式装置都适用。实用装置的功率容量差别也很大,可以给笔记本电脑及移动电话供电(数以W计),也可以给居民住宅(数kW)或是分散的电热设备和动力设备(数百KW到数MW)供电。最适于用来驱动汽车的是低温型燃料电池。根据使用期限成本进行的经济性比较结果表明,就发电成本而言,SOFC型燃料电池要PEM型低30%。这个结果是根据SOFC型燃料电池的电效率比PEM型的高,

氢氧燃料电池的制作

氢氧燃料电池的制作 燃料电池是一类新型化学电池。氢气、氧气、甲烷等都可以成为它的原料。它具有能量转化率高、无污染、节约金属资源等优点,具有巨大的应用价值。但是,由于这类电池必须用特殊的催化剂,而该类催化剂现在制造困难,价格昂贵,所以,这类电池还不能普及,仅能应用于人造卫星、太空站等高科技领域。我们运用已学过的原电池、电解池知识,在学校科技活动中,我创新制作了可用于演示的氢氧燃料电池,效果很好.现介绍如下: 一.用具和原料 U型管,石墨碳棒,分液漏斗,酒精喷灯,低压直流电源,30%的氢氧化钠溶液(或30%的稀硫酸),橡皮塞(双孔),导线等。 二.制作原理 用多孔碳棒作燃料电池的正、负极,30%的氢氧化钠溶液作电解质溶液。负极吸附氢气,正极吸附氧气。氢氧燃料电池工作时,负极上的氢放出电子,发生氧化反应,正极上的氧得到电子,发生还原反应:负极2H2+4OH-_4e=4H2O 正极O2+2H2O+4e=4OH- 总反应2H2 + O2= 2H2O 三.制作过程 1.多孔碳棒的加工 将石墨碳棒放在酒精灯喷灯上加热除去其中的胶质,并淬火3---4次,即形成多孔碳棒,也就是多孔碳电极。

2.把多孔碳电极、U型管、分液漏斗、橡皮塞(双孔)按图所示组 装;再通过分液漏斗向U型管中注满氢氧化钠溶液,密闭。 3.氢气、氧气的制备 调节低压直流电源的电压到6伏,并把其正、负极分别与图装置中的两个碳棒电极相连接;接通电源,电解氢氧化钠溶液制取氢气、氧气,且制得的氢气与氧气的体积比为2:1.去掉电源,上图所示装置就成为一只氢氧燃料电池。 四.氢氧燃料电池的工作 氢氧燃料电池的正、负极分别与灵敏电流计的正、负极连接,可以看到电流计指针偏转。如果把两个氢氧燃料电池并联,再与发光二极管串联,二极管发光。经实验测定,一只氢氧燃料电池可提供0.1安以上的电流,1.5伏以上的外电压。

燃料电池的原理及发展

燃料电池原理与发展 燃料电池是一种能够持续的通过发生在阳极和阴极的氧化还原反应将化学能转化为电能的能量转换装置。燃料电池与常规电池的区别在于,它工作时需要连续不断地向电池内输入燃料和氧化剂,只要持续供应,燃料电池就会不断提供电能。由于燃料电池能将燃料的化学能直接转换为电能,因此,它没有像普通火力发电厂那样的通过锅炉、汽轮机、发电机的能量形态变化,可避免过程中转换损失,达到市制发电效率。 近20多年来,燃料电池经历了碱式、磷酸、熔融碳酸盐和固体电解质等几种类型的发展阶段。美、日等国已相继建立了一些碳酸燃料电池电厂、熔融碳酸盐燃料电池电厂和质子交换膜燃料电池电厂。燃料电池的结构与普通电池基本相同,有阳极和阴极,通过电解质将这两个电极分开。与普通电池的区别是,燃料电池是开式系统。它要求连续供应化学反应物,以保证连续供电。其工作原理:燃料电池由阳极、阴极和离子导电的电解质构成,其工作原理与普通电化学电池类似,燃料在阳极氧化,氧化剂在阴极还原,电子从阳极通过负载流向阴极构成电回路,产生电流。 介绍一下熔融碳酸盐燃料电池(MCFC)一、MCFC概述 1.1 燃料电池简述燃料电池(FC)是一种将贮存在燃料和氧化剂中的化学能直接转化为电能的发电装置,结构如图1-1所示。它的发电方式与常规的化学电源一样,电极提供电子转移的场所,阳极催化燃料(如氢)的氧化过程,阴极催化氧化剂(如氧)的还原过程,导电离子在将阴阳极分开的电解质内迁移,电子通过外电路作功并构成总的电回路。在电池内这一化学能向电能的转化过程等温进行,即在燃料电池内,可在其操作温度下利用化学反应的自由能。但是,燃料电池的工作方式又与常规的化学电源不同,它的燃料和氧化剂并非贮存在电池内。同汽油发电机相似,它的燃料和氧化剂都贮存在电池之外的贮罐中。当电池工作时,要连续不断地向电池内送入燃料和氧化剂,排出反应产物,同时排出一定的废热,以维持电池温度的恒定。燃料电池本身只决定输出功率的大小,其贮能量则由燃料罐和氧化剂罐的贮量决定。总体上,燃料电池具有以下特点: (l) 不受卡诺循环限制,能量转换效率高。 (2) 燃料电池的输出功率由单电池性能、电极面积和单电池个数决定。

中国燃料电池发展前景分析

中国燃料电池发展前景分析 燃料电池是将燃料具有的化学能直接变为电能的发电装置。根据电解质种类不同,燃料电池基本分为五种:碱性燃料电池(AFC)、熔融碳酸盐燃料电池(MCFC)、磷酸燃料电池(PAFC)、固体氧化物燃料电池(SOFC)以及质子交换膜燃料电池(PEMFC)。燃料电池具有以下优点:能量转换效率高;无污染零排放;模块化结构,维护保养成本低;燃料来源广泛,通过多种方式制备。 质子交换膜燃料电池凭借其特性主要应用于新能源汽车。对比其他几种燃料电池,质子交换膜电池输出功率密度高,质量功率高,可在室温条件下工作,同时起动迅速,主要应用于新能源汽车。 燃料电池种类

质子交换膜电池主要由质子交换膜、催化剂,双极板等构成。当它工作时,氢气进入阳极扩散层,并在催化剂的作用下转化为质子和电子;氧气进入阴极扩散层,并在催化剂的作用下得到电子转变为 O2- 离子;质子通过质子交换膜到达阴极与 O2-作用形成水,电子则通过外电路回到阴极,在这个过程中产生并提供电能。 一、电池系统 电池系统是燃料电池汽车产业链的核心环节,而电池堆是其重要组成部分。燃料电池汽车产业链包括上游矿产等相关资源,中游的电池系统、电机电

控以及下游的整车厂、加氢站及服务等。燃料电池电池系统分为两大部分:一是电池堆,包括质子交换膜、催化剂、扩散层和双极板;二是其他部件,包括空压机、储氢瓶。 电池堆包括质子交换膜、催化剂、扩散层和双极板。其中质子交换膜直接影响燃料电池的使用寿命;催化剂决定电极反应的效率;扩散层起到支撑催化层,收集电流,传导气体和排出水作用;双极板则负责把燃料和空气分配到两个电极表面以及电池堆散热。 电池堆组成部分情况

氢氧燃料电池

一、氢氧燃料电池 氢氧燃料电池一般就是以惰性金属铂(Pt)或石墨做电极材料,负极通入H2,正极通入O2,总反应为:2H2 +O2 === 2H2O 电极反应特别要注意电解质,有下列三种情况: 1.电解质就是KOH溶液(碱性电解质) 负极发生得反应为:H2 +2e- ===2H+,2H+ + 2OH—===2H2O,所以: 负极得电极反应式为:H2–2e—+2OH—=== 2H2O; 正极就是O2得到电子,即:O2+ 4e—===2O2-,O2—在碱性条件下不能单独 存在,只能结合H2O生成OH—即:2O2- + 2H2O=== 4OH—,因此, 正极得电极反应式为:O2 + H2O+ 4e- === 4OH—。 2。电解质就是H2SO4溶液(酸性电解质) 负极得电极反应式为:H2+2e—===2H+ 正极就是O2得到电子,即:O2 +4e- ===2O2—,O2—在酸性条件下不能单独存在,只能结合H+生成H2O即:O2—+2 H+=== H2O,因此 正极得电极反应式为:O2 +4H++4e- === 2H2O(O2 +4e—=== 2O2—,2O 2- + 4H+=== 2H2O) 3、电解质就是NaCl溶液(中性电解质) 负极得电极反应式为:H2+2e-=== 2H+ 正极得电极反应式为:O2 +H2O+4e-===4OH- 说明:1、碱性溶液反应物、生成物中均无H+ 2、酸性溶液反应物、生成物中均无OH— 3、中性溶液反应物中无H+ 与OH— 4、水溶液中不能出现O2- 二、甲醇燃料电池 甲醇燃料电池以铂为两极,用碱或酸作为电解质: 1. 碱性电解质(KOH溶液为例) 总反应式:2CH4O +3O2 +4KOH=== 2K2CO3 +6H2O 正极得电极反应式为:3O2+12e-+ 6H20===12OH- 负极得电极反应式为:CH4O-6e-+8OH- ===CO32—+ 6H2O 2、酸性电解质(H2SO4溶液为例) 总反应: 2CH4O +3O2===2CO2 + 4H2O 正极得电极反应式为:3O2+12e—+12H+===6H2O 负极得电极反应式为:2CH4O-12e-+2H2O ===12H++ 2CO2 说明:乙醇燃料电池与甲醇燃料电池原理基本相同 三、甲烷燃料电池 甲烷燃料电池以多孔镍板为两极,电解质溶液为KOH,生成得CO2还要与KOH反应生成K 2CO3,所以总反应为:CH4 + 2KOH+ 2O2=== K2CO3 + 3H2O。 负极发生得反应:CH4–8e-+ 8OH—==CO2+6H2OCO2+ 2OH- ==CO32- +H2O, 所以:负极得电极反应式为:CH4 + 10OH-+8e—===CO32—+ 7H2O 正极发生得反应有:O2 + 4e—=== 2O2- 与O2—+ H2O === 2OH— 所以:正极得电极反应式为:O2 + 2H2O + 4e- ===4OH—

高中化学 氢氧燃料电池

氢氧燃料电池 高考频度:★★★★☆ 难易程度:★★★☆☆ 典例在线 下列电池工作时,O 2在正极放电的是 A .锌锰电池 B .氢燃料电池 C .铅蓄电池 D .镍镉电池 【参考答案】B 【试题解析】锌锰电池,正极反应:2MnO 2+2H 2O +2e - ===2MnOOH +2OH - ,MnO 2在正极放电,A 错误。氢燃料电池,正极反应(酸性条件下):O 2+4H + +4e - ===2H 2O ,O 2在正极放电,B 正确。铅蓄电池,正极反应:PbO 2+4H + + +2e -===PbSO 4+2H 2O ,PbO 2在正极放电,C 错误。镍镉电池,正极反应:NiOOH +H 2O +e - ===Ni(OH)2+OH - ,NiOOH 在正极放电,D 错误。 解题必备 1.构造 。 O 2=2H ==2O +22H .电池总反应:2 3.氢氧燃料电池在不同介质中的电极反应式

介质负极反应式正极反应式 酸性2H2-4e-===4H+O2+4H++4e-===2H2O 中性2H2-4e-===4H+O2+2H2O+4e-===4OH- 碱性2H2-4e-+4OH-===4H2O O2+2H2O+4e-===4OH- 学霸推荐 1.氢氧燃料电池用于航天飞机,电极反应产生的水,经冷凝后可作为航天员的饮用水,其电极反应如下: 负极:2H2+4OH--4e-===4H2O;正极:O2+2H2O+4e-===4OH-。当得到1.8 L饮用水时,电池内转移的电子数约为 A.1.8 mol B.3.6 mol C.100 mol D.200 mol 2.甲醇燃料电池(DMFC)可用于笔记本电脑、汽车、遥感通讯设备等,它的一极通入甲醇,一极通入氧气;电解质是质子交换膜,它能传导氢离子(H+)。电池工作时,甲醇被氧化为二氧化碳和水,氧气在电极上的反应是O2+4H++4e-===2H2O。下列叙述中不正确的是 A.负极的反应式为CH3OH+H2O-6e-===CO2↑+6H+ B.电池的总反应式是2CH3OH+3O2===2CO2+4H2O C.电池工作时,H+由正极移向负极 D.电池工作时,电子从通入甲醇的一极流出,经外电路再从通入氧气的一极流入 3.一种新型燃料电池,一极通入空气,另一极通入丁烷气体;电解质是掺杂氧化钇(Y2O3)的氧化锆(ZrO2)晶体,在熔融状态下能传导O2-。下列对该燃料电池说法正确的是 A.在熔融电解质中,O2-由负极移向正极 B.电池的总反应是2C4H10+13O28CO2+10H2O C.通入空气的一极是正极,电极反应为:O2+4e-===2O2- D.通入丁烷的一极是正极,电极反应为:C4H10+26e-+13O2-===4CO2+5H2O 4.H2S废气资源化利用途径之一是回收能量并得到单质硫。反应为:2H2S(g)+O2(g)===S2(s)+2H2O(l) ΔH=-632 kJ·mol-1,如图为质子膜H2S燃料电池的示意图。下列说法正确的是

燃料电池客车发展情况与技术发展趋势

燃料电池客车发展情况及技术发展趋势一、燃料电池汽车政策分析 《关于2016-2020年新能源汽车推广应用财政支持政策方的通知》(财建(2015)134号)中明确:“2017-2020年,除燃料电池汽车外,其他车型补助标准适当退坡”,明确了国家对燃料电池汽车产业发展的支持态度。而《“十三五”国家战略性新兴产业发展规划》中提出,要系统推进燃料电池汽车研发与产业化,到2020年,实现燃料电池汽车批量生产和规模化示应用。 在财政补贴层面,国家也给予了大力支持,包括整车补贴、加氢站补贴、免征购置税以及运营补贴等。其中,整车补贴额度从20万到50万每辆不等,一个加氢站则补贴400万元,运营补贴中,燃料电池客车补贴为6万元/辆/年。 二、氢燃料电池产业链概述 氢燃料电池汽车产业链包括制氢、储氢、运氢、加氢、应用(燃料电池汽车/有轨电车)等环节。 氢气制造一般是通过将化石原料、化工原料、工业尾气、可再生能源以及水等经过处理来获取,每种获取途径其成本和环保属性都不同。中国目前主要通过工业尾气处理以及电解水来制氢。长河认为,对于燃料电池来说,现在配套基础设施还有待进一步完善,需要政府以及行业机构以及专家尽快推进立法和相应的技术标准予以规。

长河表示,制氢的方法和方案比较多,而目前燃料电池汽车使用最大瓶颈和最大的障碍是缺乏加氢站。据其统计,截止到2013年底,全球加氢站只有228座,对于我国来说,我国真正投入商业化、用于燃料电池的加氢站只有两座,仅仅限于国比较大的城市,就是和,处于示运营阶段,与国外说的氢高速公路,也就是一条高速公路有多个加氢站相比,差距比较大。 在整个氢燃料电池产业链中,氢燃料电池发动机处于绝对的核心地位,氢燃料经过发动机转化为电能应用到终端。长河表示,目前制约中国燃料电池汽车发展的瓶颈,就是氢燃料电池发动机。虽然国有不少高校和相应科研机构以及企业,在就燃料电池发动机技术展开相应研究和示性运营应用,但是氢燃料电池发动机核心技术,这两年通过评估,能够达到产业化或者达到工业化应用的,核心技术仍然掌握在国外企业手中。

氢氧燃料电池性能测试实验分析报告

氢氧燃料电池性能测试实验报告 冯铖炼 实验目的 1. 了解燃料电池工作原理 2. 通过记录电池的放电特性,熟悉燃料电池极化特性 3. 研究燃料电池功率和放电电流、燃料浓度的关系 4. 熟悉电子负载、直流电源的操作 , 匚作原理 氢氧燃料电池以氢气作燃料为还原剂, 氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将 化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、 氧气在电极上的催化 剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电, 在氧电极上由于缺少电子 而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。 工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分 解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接 在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。 这正是水的电 解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂 全部储藏在电池内的装置氢氧燃料电池的反应物都在 电池外部它只是提供一个反应的容器 学号: 1141440057 指导老师: 索艳格 姓名:

氢气和氧气都可以由电池外提供燃料电池是一种化学电池, 它利用物质发生化学反应时释出的能量, 直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是, 于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间 的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成, 2013年正发展为直接使 用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气),。氢在负极 分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载 就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。 这 正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有 异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,-所以也可称它为一种"发电机"。 i 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。 发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢一氧燃料电池有酸式和碱式两种: 'I 若电解质溶液是碱、盐溶液则 负极反应式为:,2H2 + 4OH- - 4e~二4场0 正极反应式为:+ 2H2 O + 4广二4OH ■ 若电解质溶液是酸溶液则 负极反应式为:2H2 _ 4牴 —4H 正极反应式为:°2 + 4广+ 4H*二2H2O 总反应方程式为: 2H2 + 02二2H2 O 在碱溶液中,不可能有H+出现,在酸溶液中,不可能出现 0H —。 实验步骤 ① 连接电子负载,测量开路电压 它工作时需要连续地向其供给反应物质 燃料和氧化剂,这又和其他普通化学电池不大一样。由 在正、负极上

氢氧燃料电池

一、氢氧燃料电池 氢氧燃料电池一般是以惰性金属铂(Pt)或石墨做电极材料,负极通入H2,正极通入O2,总反应为:2H2 + O2 === 2H2O 电极反应特别要注意电解质,有下列三种情况: 1.电解质是KOH溶液(碱性电解质) 负极发生的反应为:H2 + 2e- === 2H+ ,2H+ + 2OH- === 2H2O,所以: 负极的电极反应式为:H2 –2e- + 2OH- === 2H2O; 正极是O2得到电子,即:O2 + 4e- === 2O2- ,O2- 在碱性条件下不能单独存在,只能结合H2O生成OH-即:2O2- + 2H2O === 4OH- ,因此, 正极的电极反应式为:O2 + H2O + 4e- === 4OH- 。 2.电解质是H2SO4溶液(酸性电解质) 负极的电极反应式为:H2 +2e- === 2H+ 正极是O2得到电子,即:O2 + 4e- === 2O2- ,O2- 在酸性条件下不能单独存在,只能结合H+生成H2O即:O2- + 2 H+ === H2O,因此 正极的电极反应式为:O2 + 4H+ + 4e- === 2H2O(O2 + 4e- === 2O2- ,2O2- + 4H + === 2H2O) 3. 电解质是NaCl溶液(中性电解质) 负极的电极反应式为:H2 +2e- === 2H+ 正极的电极反应式为:O2 + H2O + 4e- === 4OH- 说明:1.碱性溶液反应物、生成物中均无H+ 2.酸性溶液反应物、生成物中均无OH- 3.中性溶液反应物中无H+ 和OH- 4.水溶液中不能出现O2- 二、甲醇燃料电池 甲醇燃料电池以铂为两极,用碱或酸作为电解质: 1.碱性电解质(KOH溶液为例) 总反应式:2CH4O + 3O2 +4KOH=== 2K2CO3 + 6H2O 正极的电极反应式为:3O2+12e- + 6H20===12OH- 负极的电极反应式为:CH4O -6e-+8OH- === CO32-+ 6H2O 2. 酸性电解质(H2SO4溶液为例) 总反应: 2CH4O + 3O2 === 2CO2 + 4H2O 正极的电极反应式为:3O2+12e-+12H+ === 6H2O 负极的电极反应式为:2CH4O-12e-+2H2O === 12H++ 2CO2 说明:乙醇燃料电池与甲醇燃料电池原理基本相同 三、甲烷燃料电池 甲烷燃料电池以多孔镍板为两极,电解质溶液为KOH,生成的CO2还要与KOH反应生成K 2CO3,所以总反应为:CH4 + 2KOH+ 2O2 === K2CO3 + 3H2O。

燃料电池的发展现状及研究进展

应用电化学 论文作业 题目燃料电池的发展现状及研究进展学院化学与化学工程学院 专业班级制药134班 姓名郭莹莹

摘要 燃料电池是一种清洁高效的能源利用方式,它是一种能够持续将化学能转化为电能的能量转换装置。发展燃料电池对于改善环境和实现能源可持续发展有重要意义。本文介绍了燃料电池的工作原理、分类及燃料电池的优点,详细阐述了燃料电池现在的发展现状和未来研究前景的展望。 关键词:燃料电池转换装置应用发展

1 燃料电池的工作原理及分类 燃料电池( Fuel Cell,FC) 是把燃料中的化学能通过电化学反应直接转换为电能的发电装置。按电解质分类,燃料电池一般包括质子交换膜燃料电池( Proton Exchange Membrane Fuel Cell,PEM-FC) 、磷酸燃料电池( Phosphoric Acid Fuel Cell,PAFC) 、碱性燃料电池( Alkaline Fuel Cell,AFC) 、固体氧化物燃料电池( Solid Oxide Fuel Cell,SOFC) 及熔融碳酸盐燃料电池( Molten CarbonateFuel Cell,MCFC) 等。以质子交换膜燃料电池为例,主要部件包括: 膜电极组件( Membrane Elec-trode Assembly,MEA) 、双极板及密封元件等。膜电极组件是电化学反应的核心部件,由阴阳极多孔气体扩散电极和电解质隔膜组成。电解质隔膜两侧分别发生氢氧化反应与氧还原反应,电子通过外电路作功,反应产物为水。额定工作条件下,一节单电池工作电压仅为0.7 V 左右。为了满足一定应用背景的功率需求,燃料电池通常由数百个单电池串联形成燃料电池堆或模块。因此,与其它化学电源一样,燃料电池的均一性非常重要。燃料电池发电原理与原电池类似( 见图1) ,但与原电池和二次电池比较,需要具备一相对复杂的系统,通常包括燃料供应、氧化剂供应、水热管理及电控等子系统,其工作方式与内燃机类似。理论上只要外部不断供给燃料与氧化剂,燃料电池就可以续发电。 图1 PEMFC 基本原理 燃料电池从发明至今已经经历了100 多年的历程。于能源与环境已成为人

氢氧燃料电池

一、氢氧燃料电池 令狐采学 氢氧燃料电池一般是以惰性金属铂(Pt)或石墨做电极材料,负极通入H2,正极通入 O2, 总反应为:2H2 + O2 === 2H2O 电极反应特别要注意电解质,有下列三种情况: 1.电解质是KOH溶液(碱性电解质) 负极发生的反应为:H2 + 2e- === 2H+ ,2H+ + 2OH- === 2H2 O,所以: 负极的电极反应式为:H2 – 2e- + 2OH- === 2H2O; 正极是O2得到电子,即:O2 + 4e- === 2O2- ,O2- 在碱性条件下不能单独存在,只能结合H2O生成OH-即:2O2- + 2H2 O === 4OH- ,因此, 正极的电极反应式为:O2 + H2O + 4e- === 4OH- 。 2.电解质是H2SO4溶液(酸性电解质) 负极的电极反应式为:H2 +2e- === 2H+ 正极是O2得到电子,即:O2 + 4e- === 2O2- ,O2- 在酸性条件下不能单独存在,只能结合H+生成H2O即:O2- + 2 H+ = == H2O,因此 正极的电极反应式为:O2 + 4H+ + 4e- === 2H2O(O2 + 4e- == = 2O2- ,2O2- + 4H+ === 2H2O) 3. 电解质是NaCl溶液(中性电解质)

负极的电极反应式为:H2 +2e- === 2H+ 正极的电极反应式为:O2 + H2O + 4e- === 4OH- 说明: 1.碱性溶液反应物、生成物中均无H+ 2.酸性溶液反应物、生成物中均无OH- 3.中性溶液反应物中无H+ 和OH- 4.水溶液中不能出现O2- 二、甲醇燃料电池 甲醇燃料电池以铂为两极,用碱或酸作为电解质: 1.碱性电解质(KOH溶液为例) 总反应式:2CH4O + 3O2 +4KOH=== 2K2CO3 + 6H2O 正极的电极反应式为:3O2+12e- + 6H20===12OH- 负极的电极反应式为:CH4O -6e-+8OH- === CO32-+ 6H2O 2. 酸性电解质(H2SO4溶液为例) 总反应: 2CH4O + 3O2 === 2CO2 + 4H2O 正极的电极反应式为:3O2+12e-+12H+ === 6H2O 负极的电极反应式为:2CH4O-12e-+2H2O === 12H++ 2CO2说明:乙醇燃料电池与甲醇燃料电池原理基本相同 三、甲烷燃料电池 甲烷燃料电池以多孔镍板为两极,电解质溶液为KOH,生成的CO2还要与KOH反应生成K2CO3,所以总反应为:CH4 + 2 KOH+ 2O2 === K2CO3 + 3H2O。 负极发生的反应:CH4 – 8e- + 8OH- ==CO2 + 6H2O CO2 + 2OH- == CO32- + H2O,

燃料电池的发展现状及研究进展

应用电化学 论文作业题目燃料电池的发展现状及研究进展学院化学与化学工程学院 专业班级制药134班 姓名郭莹莹

摘要 燃料电池是一种清洁高效的能源利用方式,它是一种能够持续将化学能转化为电能的能量转换装置。发展燃料电池对于改善环境和实现能源可持续发展有重要意义。本文介绍了燃料电池的工作原理、分类及燃料电池的优点,详细阐述了燃料电池现在的发展现状和未来研究前景的展望。 关键词:燃料电池转换装置应用发展 1 燃料电池的工作原理及分类 燃料电池( Fuel Cell,FC) 是把燃料中的化学能通过电化学反应直接转换为电能的发电装置。按电解质分类,燃料电池一般包括质子交换膜燃料电池( Proton Exchange Membrane Fuel Cell,PEM-FC) 、磷酸燃料电池( Phosphoric Acid Fuel Cell,PAFC) 、碱性燃料电池( Alkaline Fuel Cell,AFC) 、固体氧化物燃料电池 ( Solid Oxide Fuel Cell,SOFC) 及熔融碳酸盐燃料电池( Molten CarbonateFuel Cell,MCFC) 等。以质子交换膜燃料电池为例,主要部件包括: 膜电极组件( Membrane Elec-trode Assembly, MEA) 、双极板及密封元件等。膜电极组件是电化学反应的核心部件,由阴阳极多孔气体扩散电极和电解质隔膜组成。电解质隔膜两侧分别发生氢氧化反应与氧还原反应,电子通过外电路作功,反应产物为水。额定工作条件下,一节单电池工作电压仅为0.7 V 左右。为了满足一定应用背景的功率需求,燃料电池通常由数百个单电池串联形成燃料电池堆或模块。因此,与其它化学电源一样,燃料电池的均一性非常重要。燃料电池发电原理与原电池类似( 见图1) ,但与原电池和二次 电池比较,需要具备一相对复杂的系统,通常包括燃料供应、氧化剂供应、水热管理及电控等子系统,其工作方式与内燃机类似。理论上只要外部不断供给燃料与氧化剂,燃料电池就可以续发电。 图1 PEMFC 基本原理 燃料电池从发明至今已经经历了 100 多年的历程。于能源与环境已成为人类社会赖以生存的重点问题。近20 年以来,燃料电池这种高效、洁净的能量 转化装置得到了各国政府、开发商及研究机构的普遍重视。燃料电池在交通运输、便携式电源、分散电站、航空及水下潜器等民用与军用领域展现出广阔的应用前景。目前,燃料电池汽车、电站及便携式电源等均处于示范阶段,在商

燃料电池介绍应用论文

摘要燃料电池以其效率高,排放少,质量轻,无污染而深得人们的关注。本文按燃料电池可用电解质的不同来分类,分别对各类燃料电池的原理,结构,优缺点,发展概况进行综述。 关键词燃料电池电解质电池反应电动车用电源 Abstract The fuel battery is a kind of chemical reactor,which switch the chemical energy to electric energy.Its high efficiency,few dischargement,light weight and no pollution draw public attention.In this article the fuel batteries are classified for different electrolytes,structures,advantages,disadvantages and recent development of different fuel batteries are reviewed. Key word fuel battery electrolyte battery reaction dynamoelectric power supply. 燃料电池和普通电池有很大的差异,它实际上是一个化学反应器。是一种把化学能直接转换成电能的装置。燃料电池没有直接的燃烧过程。而燃料从外部不断输入,它就能不断地输出电能,它的反应物通常是氢和氧等燃料,它的副产品一般是无害的水和二氧化碳。 燃料电池的种类很多,按电池所用电物质的不同来分类。燃料电池大体上分为:碱性电解质燃料电池(AFC),高分子电解质燃料电池(PEFC),磷酸型电解质燃料电池(PAEC),熔融碳酸型电解质燃料电池(MCFC)和固体氧化物电解质燃料电池(SOFC)5类。本文按电池工作温度由低到高的顺序,对各类燃料电池的发展概况进行综述。

氢氧燃料电池(完成)

氢氧燃料电池 大千世界,万紫千红,无奇不有!而各种各样的材料正是构成我们这个五彩缤纷的世界的基础,材料是构成所有物质的基本成分,没有材料就不会有物质,没有物质就不会有我们这个丰富多彩的大自然,更不会有人类。 生活中,材料无处不在。各种各样的材料构成的物质使人们的生活变得丰富多彩。为满足人们衣食住行等日常生活的需要,聪明的人类开始从大自然获取多种原材料,经过加工,合成人们所需要的各种各样的物质。如各种各样的时装,食品,建筑,交通工具等无不是材料合成的结晶!到如今,材料已成为社会发展的重要物质基础。20世纪60年代,人们把材料、能源、信息并成为现代技术和现代文明的三大支柱;70年代又把新型材料、信息技术和生物技术列为新技术革命的主要标志。可以说,材料工业是国民经济建设中的重要工业,也是非常重要的研究方向;材料是所有工业的基础,材料技术成为不同工程领域产业化的共性关键技术。当代每一项重大新技术的出现都有赖于新材料的发展。人们已经强烈地认识到材料科学与材料工程对社会发展的作用。无论是专门从事材料研究的科技人员,还是经济学家、金融银行家、企业界巨头以及国家领导人,都密切注意材料研究的动向和发展趋势,以便及时把握时机作出正确决策,在世界经济发展的竞争中占有一席之地。 然而正是由于材料在社会发展中的重要性,使得材料工业的发展突飞猛进!材料工业在解决当今世界所面临的难题中起着无可替代的作用!而当今世界人们所面临的主要难题是能源短缺和环境污染,据有关资料显示,地球上煤,石油,天然气在2100年前都将枯竭,并且化石燃料的燃烧对环境的污染较大!如果这些问题得不到解决,到那时世界经济将面临崩溃,为解决这些问题,在科学家们的不懈努力下,氢燃料电池“应运而生”。 为解决能源短缺、环境污染等问题,开发清洁、高效的新能源和可再生能源已十分紧迫。氢能因燃烧热值高、污染小、资源丰富成为新能源的对象,氢燃料电池作为氢能利用的有效手段,已被美国《时代》周刊评为21 世纪有重要影响的十大技术之一。 氢燃料电池是一种将氢和氧的化学能通过电极反应直接转换成电能的装置。这种装置的最大特点是由于反应过程中不涉及到燃烧,因此其能量转换效率不受"卡诺循环"的限制,能量转换效率高达60%~80%,实际使用效率则是普通内燃机的2~3倍。 氢燃料电池发电的基本原理是电解水的逆反应,把氢和氧分别供给阴极和阳极,氢通过阴极向外扩散和电解质发生反应后,放出电子通过外部的负载到达阳极。电池阳极上的氢在催化剂作用下分解为质子和电子,带阳电荷的质子穿过隔膜到达阴极,带阴电荷的电子则在外部电路运行,从而产生电能。在阴极上的氧离子在催化剂作用下和电子、质子化合反应成水。 具体反应过程为: (1)氢气通过管道或导气板到达阳极; (2)在阳极催化剂的作用下,1个氢分子解离为2个氢离子,即质子,并释放出2个电子,阳极反应为: H2→2H++2e (3)在电池的另一端,氧气(或空气)通过管道或导气板到达阴极,同时,氢离子穿过电解质到达阴极,电子通过外电路也到达阴极;

(完整word版)高中化学必考8个燃料电池的方程式

高中化学需要掌握的8个燃料电池的方程式 一、氢氧燃料电池 氢氧燃料电池一般是以惰性金属铂(Pt)或石墨做电极材料,负极通入H2,正极通入O2,总反应为:2H2 + O2 === 2H2O 电极反应特别要注意电解质,有下列三种情况: 1.电解质是KOH溶液(碱性电解质) 负极发生的反应为:H2 + 2e- === 2H+ ,2H+ + 2OH- === 2H2O,所以: 负极的电极反应式为:H2 – 2e- + 2OH- === 2H2O; 正极是O2得到电子,即:O2 + 4e- === 2O2- ,O2- 在碱性条件下不能单独存在,只能结合H2O生成OH-即:2O2- + 2H2O === 4OH- ,因此, 正极的电极反应式为:O2 + H2O + 4e- === 4OH- 。 2.电解质是H2SO4溶液(酸性电解质) 负极的电极反应式为:H2 +2e- === 2H+ 正极是O2得到电子,即:O2 + 4e- === 2O2- ,O2- 在酸性条件下不能单独存在,只能结合H+生成H2O即:O2- + 2 H+ === H2O,因此 正极的电极反应式为:O2 + 4H+ + 4e- === 2H2O(O2 + 4e- === 2O2- ,2O2- + 4H+ === 2H2O) 3. 电解质是NaCl溶液(中性电解质) 负极的电极反应式为:H2 +2e- === 2H+ 正极的电极反应式为:O2 + H2O + 4e- === 4OH- 说明:1.碱性溶液反应物、生成物中均无H+ 2.酸性溶液反应物、生成物中均无OH- 3.中性溶液反应物中无H+ 和OH- 4.水溶液中不能出现O2- 二、甲醇燃料电池 甲醇燃料电池以铂为两极,用碱或酸作为电解质: 1.碱性电解质(KOH溶液为例) 总反应式:2CH4O + 3O2 +4KOH=== 2K2CO3 + 6H2O 正极的电极反应式为:3O2+12e- + 6H20===12OH-

氢氧燃料电池原理

氢氧燃料电池 总反应:2H2 + O2 =2H2O 负极:H2 - 2e-=2H+ 正极:O2 + 4e- +2H2O=40H- 原理是自发进行氧化还原反应 不是简单的化学反应而是电化学反应。 反应过程: (1)氢气通过管道或导气板到达阳极。 (2)在阳极催化剂的作用下,一个氢分子分解为两个氢离子,并释放出两个电子,阳极反应为H2-->2H+2e- (3) 在电池的另一端,氧气通过管道或导气板到达阴极,同时,氢离子穿过电解质到达阴极,电子通过外电路也到达阴极。 (4)在阴极催化剂的作用下,氧和氢离子与电子发生反应生成水。 在实用中没有以甲烷或乙醇为燃料的碱性燃料电池。原因很简单,甲醇燃料电池正常运行时的排出产物是水和二氧化碳,而二氧化碳是弱酸性气体,会和碱液性电解质反应生成碳酸盐和水。这样,电解质就被燃料电池自己的排出产物所消耗,使得工作性能严重衰减了。因此,以甲烷或乙醇为燃料的燃料电池都是在酸性环境下运行的。 不过若是甲烷燃料电池电极反应式酸性条件下 则为负极CH4-8e-+2H2O=CO2+8H+ 正极O2+4H+4e-=2H2O 燃料电池是一种化学电池,它利用物质发生化学反应时释出的能量,直接将其变换为电能。从这一点看,它和其他化学电池如锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给反应物质——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,现在正发展为直接使用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气)。氢在负极分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达

相关主题
文本预览
相关文档 最新文档