当前位置:文档之家› 氢氧燃料电池-绿色能源开发实作-教案

氢氧燃料电池-绿色能源开发实作-教案

氢氧燃料电池-绿色能源开发实作-教案
氢氧燃料电池-绿色能源开发实作-教案

教学活动实施过程

课程模块二:氢氧燃料电池-绿色能源开发实作

(每周2堂课)

壹、基础实验(一):简易铜蚀雕创作

一、实验目的

利用实验室里常当作电极的铜金属片,藉由氧化还原实验制作创意的铜蚀雕作品

二、实验原理

铜金属活性低,不易氧化,易溶于硝酸及浓硫酸等强酸,铜和硝酸的反应如下:

3 Cu + 8 HNO3(稀)→ 3 Cu(NO3)2+ 2 NO↑ +

4 H2O

Cu + 4 HNO3(浓)→ Cu(NO3)2 + 2 NO2↑ + 2 H2O

利用此原理虽可将铜板制作出不同图案的铜蚀雕作品,但是反应的同时也产生刺激性且有毒的二氧化氮(NO2),所以我们改利用氯化铁溶液与部分裸露在外的铜板进行反应,使其呈现各种不同的铜文字或创意图案。

Cu + Fe3+→ Cu+ + Fe2+E。=0.25V

三、实验器材与试药

器材(每人)

试药(每组)

四、实验步骤

1.准备一块薄铜板3×8cm,先用细砂纸将表面磨光,去除铜锈或其他氧化物。

2.取一张3×8cm的自粘性卡点西得纸在电路板上黏牢,注意两面都需黏贴。

3.用粘胶或喷胶将自己画的创意图案黏贴在卡点西得纸上,并用美工刀将不需要的图案

连同其下的卡点西得纸一起割除,使最底部的铜裸露出来,如图1所示。

4.将雕刻后的铜板浸泡至氯化铁溶液中,静置50~100分钟,时间愈久蚀刻痕愈清晰明显,如图2所示。

5.用塑胶夹取出蚀刻后的铜板,先以清水冲洗,再以卫生纸拭干。

6.均匀喷上一层透明喷漆,即可完成精致的铜蚀雕作品,如图3所示。

图2:学生雕刻后的铜板浸泡至氯

化铁溶液中

图1:学生在卡点西得纸上雕刻图案

图3:学生铜板蚀刻成品

7.想想看:

学生图案设计完后需注意哪些细节,否则美工刀刻出来的图案经由铜蚀后,图案会左右相反喔?

8.延伸探究实验:

除了铜金属以外,还有哪些金属(熔点低的金属较适合)也可以利用其物理及化学性质作艺术创作呢?

【老师与学生心得分享】

1.铜蚀雕制作过程容易上手,但是需注意卡点西得纸需将铜片黏牢,避免脱落,以免造

成裸露出来的部分被氯化铁氧化,图案变成模糊。

2.铜片常应用在传统的电路板上,请问可能的原因为何?

【参考答案】因为铜金属是电的良导体

3.铜金属蚀刻后若未喷透明漆保护,极易在蚀刻处产生绿色的生成物,请问可能的原因

为何?

【参考答案】

铜在干燥空气中稳定,可保持金属光泽。但在潮溼空气中,表面会生成一层铜绿(硷式碳酸铜),分子式:Cu2(OH)2CO3,保护内层的铜不再被氧化。

反应方程式:

2 Cu + O2 + CO2 + H2O → Cu2(OH)2CO3

贰、基础实验(二)化学电池

一、实验目的

本实验利用锌、镍、铜、银四种活性不同的金属及其盐类,任选两种组成电池,总共可

以产生六种化学电池,分别是锌镍电池、锌铜电池、锌银电池、镍铜电池、镍银电池及铜银电池,藉由组成的化学电池了解电池的电压大小与阳极电极的种类有关,而与阴极电极种类无关。 二、实验原理

化学电池(简称电池)的反应与石油、天然气等化石燃料燃烧的过程相似,都是放热的氧化还原反应;在氧化还原反应中,氧化剂本身接受电子,进行还原反应;还原剂本身放出电子,进行氧化反应。若使氧化反应在某一电极进行,而还原反应在另一电极进行,再以盐桥及导线连接电极形成通路,便是化学电池。目前市面上贩售的电池种类繁多,大小形状也不尽相同。电池的种类有抛弃式的干电池、碱性电池、充电式的铅蓄电池、镍氢电池、锂离子电池…等;就外观而言,有形状类似钮扣的电池,此类电池大多为锂电池;也有体积较占空间的铅蓄电池。电池的种类虽然多,但其基本结构原理是相同的,每个电池都有电池槽(一个或数个)以及正负电极(或阴阳极)。 电池的电压大小与电极材质、电解质种类、相关离子浓度以及温度有关,当电解质的浓度或温度改变时,电池的电压就会改变。本实验目的在于测定由不同金属电极所组成

的化学电池电压,因此

本实验利用锌、镍、铜、银四种活性不同的金属及其盐类,任选两种组成电池,总共可以产生六种化学电池,分别是锌镍电池、锌铜电池、锌银电池、镍铜电池、镍银电池及铜银电池。

此四种金属释出电子的倾向大小依次为:锌>镍>铜>银;以铜银电池为例。反应式如下: Cu(s) + 2 Ag +(aq) -→ Cu 2+(aq) + 2 Ag(s) 从上面的反应式中,可以发现反应物是银离子而不是银,因此可以用碳棒取代银棒。 三、实验器材与试药 器材(每组) 试药(每组)

宽2 cm)1片宽2 cm)1片

◎锌片(厚约 0.5 mm,长10 cm,

宽2 cm)1片

※注硝酸银水溶液有腐蚀性,且部分溶液含金属离子,因此实验过程应戴上橡皮手套。

四、实验步骤

A. 三用电表的使用

1. 三用电表可测量电流、电压及电阻,常见的三用电表有指针式及数位式两种(指针式

的面板及功能选择板如图4所示)。

2.使用数位式三用电表测量化学电池电压时,须将功能旋钮转至直流电压档(DCV档)适当的范围(200 mV~1000 mV),使用共享接头(COM)及电压和电阻测量接头(VΩ)(如图E4-2所示)。并将三用电表的正极(红色探棒)及负极(黑色探棒)与电池的电路并联,即红色探棒与电池中的正极(阴极)相接,黑色探棒与电池中的负极(阳极)相接,最后由液晶显示屏读取数值,如图5所示。

数位式三用电表功能选择板

图4:指针式三用电表

图5:数位式三用电表

B. 改变电极材质测量电池电压

1. 用细砂纸轻拭金属片及碳棒,将固体表面之污染物或氧化物磨干净。

2. 将1 M 的KNO 3水溶液装满U 形管,取脱脂棉二团,先用KNO 3溶液浸溼,随后塞在U

形管两端,制成盐桥。

3. 取50 mL 烧杯4个,分别标示为A 、B 、C 、D 。在各杯内倒入溶液15 mL ,并置入电

极,如图6所示。

4 测量锌镍电池电压:将三用电表的红色探棒接触B 杯上的镍电极(正极),并将黑

色探棒接触A 杯上的锌电极(负极),观察三用电表上的读数。

5. 把盐桥的两端分别放入烧杯A 、B 中(如图7所示),重复步骤4,并且记录三用电表的电压读数。使电池连续作用3分钟~5分钟后,再观察三用电表的电压读数变化以及烧杯内的溶液颜色变化。

6. 将探棒接触A 、C 二杯的电极(如图8所示),重复步骤4、5,测量锌铜电池电压。

7. 重复步骤4、5,测量锌银电池电压、镍银电池电压及镍铜电池的电压。

烧杯 溶液(1 M ) 电极

A

硫酸锌 锌片 B 硫酸镍(II) 镍片 C 硫酸铜 铜片 D

硝酸银

碳棒

图6:溶液中置入电极 图7:锌镍电池的简易装置 图8:锌铜电池的简易装置

参、探究实作-氢氧燃料电池

一、实验目的

近年来油价不断飙高,全球能源面临枯竭危机,另一方面化石燃料燃烧产生之废气,如二氧化碳、氮氧化物及燃烧未完全产生的有机化合物等所致的温室效应,造成全球暖化等环境浩劫。世界为达成后京都议定书时代温室气体减量的目标,科技大国纷纷寻求洁净且具经济效益的替代性能源。其中以氢气为燃料的燃料电池(Fuel Cell),具有零污染、高电能转换效率、低噪音及可再生性等特点,已成为为全球寄予厚望的绿色能源。本实验主要是利用日常生活中随手可以取得的器材及废弃不用的手机充电整流器改装成简易氢氧燃料电池,以绿色环保为出发点,利用电解水得到氢气及氧气(化学能转成电能);再由氢气与氧气产生水(电能释放),而形成无污染之氢氧环保电池。藉由简易的实验装置让学生学习氧化还原反应、电解、充电及放电之原理,并加入不同电解质,对氢氧电池之电压、充电效果及持久性做更进一步之探讨。

二、实验原理

1.定义:凡是利用燃料与氧化剂反应而放出电能的电化学装置,均可称为燃料电池。

燃料电池放电后,通常直接补充燃料,而不进行充电。

2.氢燃料电池:

(1) 电极:负极──可用白金;正极──可用白金。

(2) 电解质:可采用质子交换膜,因其耐热及机械性质稳定。

(3) 放电过程:由两片薄的多孔电极构成阳极与阴极,两极之间以固态聚合物隔膜

电解质隔离。

①每片电极的其中一面镀有触媒,以铂

为主成分。

②氢气进入电池后,经阳极触媒分解为

电子与质子。

③电子沿着外部电路流动,供电给驱动

马达。

④质子同时透过隔膜抵达阴极。

⑤阴极侧的触媒则将质子及回流的电子

与空气中的氧结合,而生成水与热。

⑥欲提高电压,则将多组电池集结成电

池组即可。

(4) 电极反应:

①负极:H2(g)→ 2 H+(aq)+2 e-

②正极:1/2 O2(g)+2 e-+2 H+(aq)→ H2O(l)

③总反应:H2(g)+1/2 O2(g)→H2O(l )

(5) 特性:

①以氢燃料电池为动力的汽车,可达零碳排放,较符合环保的要求。

②氢气体积庞大不便贮存,需经低温高压处理以减小其体积。

③需克服三相接触技术困难(气态燃料、液态电解质与固态电极),且以白金或

贵金属为触媒,成本较高。

注:碱性氢氧燃料电池是以覆盖铂或镍的多孔性碳板为电极、30% KOH为电解质,其电池内部的反应式如下:

负极:H2(g)+2 OH-(aq)→ 2 H2O(l )+2 e-

正极:1/2 O2(g)+H2O(l )+2 e-→ 2 OH-(aq)

总反应:H2(g)+1/2 O2(g)→ H2O(l )

○4发电效率比一般的火力发电大。

3. 直接甲醇燃料电池:(补充资料)

(1) 直接甲醇燃料电池也为常见的一种燃料电池,其全反应为:

CH3OH(l)+ 3

2 O2(g)→ CO2(g)+2 H2O(l )

(2) 直接甲醇燃料电池的能量密度比氢燃料电池高出许多,且液态甲醇比氢气方便

贮存。其缺点是反应产物为二氧化碳,较不符合环保概念,且甲醇有毒易燃,有危险性。

三、实验器材与试药

器材(每组)

试药(每组)

四、实验步骤

1. 将手机充电器的圆形插孔剪掉,并将电线分成两条,依下列图示9及图10的方式进行改装成直流电充电装置,当鳄鱼夹与电线连接完成后要用绝缘胶布包裹,避免通电后电线过热,使用者被烫伤。包裹完后再将鳄鱼夹上方的塑胶套套在电线与鳄鱼夹相接的部分,如图10所示。

图9:将手机充电器的圆型插头

剪掉,并将电线分成两条

图10:将中型鳄鱼夹红黑各一与

电线缠接相连

2.宝特瓶盖钻3个孔,孔洞大小以可以穿

过铅笔心为准,并以保丽龙胶粘紧,如图11、及图12所示。

图11:2个孔洞插入笔心,另一

个孔洞是透气孔,防止实验过程

中通电时内部气体太多,而产生

爆裂

图12:两个笔心中间用保丽龙隔

开避免两极接触,当然也将两个

笔心插入泡棉,可以避免电解产

生的氢气及氧气逸散

3.将改装后的充电器与保特瓶装置相连接,进行电解水反应(加入少量电解质如NaOH

帮助导电)得到氢气及氧气,也可以加入少量广用试剂,观察两电极的酸碱度变化,如

图13所示。

图13:改装好的宝特瓶内加入少

许电解质(NaOH)及广用试剂,

并利用改装好的充电器以鳄鱼

夹夹住两支笔心开始电解

4.观察电解时两电极中产生气泡较多的电极为氢气(阴极,负极),气泡少的电极为氧

气(阳极,正极),一开始时电解时间不宜过长(1分钟以内),以免宝特瓶内产生气

体累积太多发生危险,电解完成后,将鳄鱼夹及充电装置卸下,以三用电表测宝特瓶内

的氢氧燃料电池电压,如图14及图15所示。

5.以红色LED 灯测试此氢氧燃料电池是否可以使灯泡发亮并记录发亮时间。

6.更换不同的电解质(NaOH 、H 2SO 4、NaOH )等,重复上述之实验,并记录实验结果 4.与其他组别之燃料电池,以串联或并联方式再次检测,并纪录实验结果。 6.实验注意事项:

(1)强碱电解质如不小心接触,需以大量清水清洗。

(2)装入电解质时,务必将笔心洗净并将保特瓶内气体全清除。

图14:电解时两电极中产生气泡较多的电极为氢气(负极),气泡少的电极为氧气(阳极)

图15:以三用电表测氢氧燃料电池的电压

图16:以红色LED 灯测试此氢氧燃料电池

甲醇制芳烃实验报告doc

甲醇制芳烃实验报告 篇一:化工实训实验报告 吉林化工学院化工过程模拟实训报告 题目:甲醇-水精馏分离过程模拟计算 教学院石油化工学院专业班级化工1302班学生学号1310111218学生姓名何迪指导教师刘艳杰 XX 年12月8日 1、软件功能简介 (1)全面的单元操作:包括气/液,气/液/液,固体系统和用户模型。 (2)将工艺模型与真实的装置数据进行拟合,确保精确的和有效的真实装置模型。 (3) 优化功能:确定装置操作条件,最大化任何规定的目标,如收率、能耗、物流纯度和工艺经济条件。 (4) Design Specification 功能: 自动计算操作条件或设备参数,满足指定的性能目标。 2、已知基础数据及分离任务 (1)已知基础数据 F1:35?C ,101kPa,1080 kg/hr的甲醇(52%w)-水(48%w)。F2:20?C ,150kPa,1000kg/hr 的甲醇(40%w)-水(60%w)。F3:25?C ,120kPa,1420kg/hr 的甲醇(60%w)-水(40%w)。精馏塔进料流量:3000 kg/hr,进料温度60?C,压力150kPa。(2)分离任务 塔顶产品甲醇含量不低于99.9%(w),塔底产品水含量

不低于99.9%(w)。甲醇回收率不低于99.1%,水回收率不低于99.5%。 3、流程叙述 将温度为35 ?C,压力为101kPa,流量为1080 kg/hr 的甲醇(52%w)-水(48%w) 与温度为20 ?C,压力为150kPa,流量为1000 kg/hr的甲醇(40%w)-水(60%w)及温度为25 ?C,压力为120kPa,流量为1420kg/hr的甲醇(60%w)-水(40%w)在混合器M0101中混合。将混合后的物料经分流器S0101分流出3000kg/hr由泵P0101打入换热器E0101,在换热器中将物料加热至60 ?C后,进入精馏塔T0101进行甲醇-水混合液的精馏分离,经精馏后塔顶得到99.9%的甲醇,塔釜得到99.9%的水。流程图见图1所示。 图1 甲醇-水分离流程图 4、模拟计算过程的简述 4.1 模拟的全局设置(1)启动ASPEN 双击桌面的aspen软件快捷方式打开aspen。(2)单位制的选择 在新建页面选择General with Metric Units选项 (3)运行类型的确定 运行类型选择 Flowsheet,确认创建aspen文件。 (4)组分的输入 将本组流程命名为学号18,并且Input Data为METCHE,Output Result为METCHE。

高2020届高2017级高三化学二轮复习小专题训练试题及参考答案燃料电池

2020届届届届届届届届届届届届届 ——届届届届 1.尿素[CO(NH2)2]与NO在碱性条件下可形成燃料电池(如图),电池总反应方程式为2CO(NH2)2+6NO +4NaOH=5N2+2Na2CO3+6H2O。下列说法正确的是() A.甲电极为电池的负极,发生还原反应 B.电池工作时,电子经负载、乙电极、电解质又流向甲电极 C.电池工作一段时间后,乙电极周围溶液酸性增强 D.甲电极的电极反应式为CO(NH2)2?6e?+8OH?=CO32?+N2↑+6H2O 2.以二甲醚(CH3OCH3)酸性燃料电池为电源,电解饱和食盐水制备氯气和烧碱,设计装置如图所示。已 知:a电扱的反应式为O2+4H++4e-=2HO,下列说法不正确的是( ) A.b电极的反应式为CH3OCH3+3H2O?12e?=2CO2↑+12H+ B.试剂A为饱和食盐水,试剂B为NaOH稀溶液 C.阳极生成1 mol气体时,有1mol离子通过离子交换膜 D.阴极生成1 mol气体时,理论上导线中流过2mole?

3.一种熔融碳酸盐燃料电池原理示意如图.下列有关该电池的说法正确的是() A.反应,每消耗1mol CH4转移12mol电子 B.电极A上H2参与的电极反应为:H2+CO32??2e??=H2O+CO2 C.电池工作时,CO32?向电极B移动 D.电极B上发生的电极反应为:O2+2CO2+4e??=2CO32? 某种燃料电池是以甲烷(CH4)和空气为原料,以KOH为电解质溶液构成的原电池。电池的总反应类似甲烷在氧气中的燃烧。下列说法正确的是( ) ①每消耗1molCH4可以向外电路提供8mole- ②CH4在负极发生氧化反应,电极反应式是:CH4 + 10OH- - 8e- = CO32- + 7H2O ③燃料电池把化学能直接转化为电能,而不经过热能这一种中间形式,所以它的能量转化效率高,并且 减少了对环境的污染 ④这种燃料电池要定期更换电解质溶液 A.①② B.①②③④ C.①③④ D.②④ 4.探索二氧化碳在海洋中转移和归宿,是当今海洋科学研究的前沿领域。研究表明,溶于海水的二氧化碳 主要以无机碳形式存在,其中HCO3-占95%。科学家利用下图所示装置从海水中提取CO2,有利于减少环境温室气体含量。下列说法不正确的是( ) A.a室中OH?在电极板上被氧化 B.b室发生反应的离子方程式为:H++HCO3?=CO2↑+H2O C.电路中每有0.2mol电子通过时,就有0.2mol阳离子从c室移至b室 D.若用氢氧燃料电池供电,则电池负极可能发生的反应为:H2+ 2OH??2e?=2H2O

燃料电池实验报告

竭诚为您提供优质文档/双击可除 燃料电池实验报告 篇一:燃料电池综合特性实验报告 燃料电池综合特性实验 【实验背景】燃料电池以氢和氧为燃料,通过电化学反应直接产生电力,能量转换效率高于燃烧燃料的热机。燃料电池的反应生成物为水,对环境无污染,单位体积氢的储能密度远高于现有的其它电池。因此它的应用从最早的宇航等特殊领域,到现在人们积极研究将其应用到电动汽车,手机电池等日常生活的各个方面,各国都投入巨资进行研发。按燃料电池使用的电解质或燃料类型,可将现在和近期可行的燃料电池分为碱性燃料电池,质子交换膜燃料电池,直接甲醇燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池6种主要类型,本实验研究其中的质子交换膜燃料电池。 能源为人类社会发展提供动力,长期依赖矿物能源使我们面临环境污染之害,资源枯竭之困。为了人类社会的持续健康发展,各国都致力于研究开发新型能源。未来的能源系

统中,太阳能将作为主要的一次能源替代目前的煤,石油和天然气,而燃料电池将成为取代汽油,柴油和化学电池的清洁能源。 【摘要】燃料电池尤其是质子交换膜燃料电池(pem)以其高功率密度、高能量转换效率、可低温启动、环境友好等突出优点而受到瞩目。本实验包含太阳能电池发电(光能—电能转换),电解水制取氢气(电能—氢能转换),燃料电池发电(氢能—电能转换)几个环节,形成了完整的能量转换,储存,使用的链条。本实验通过研究燃料电池的工作原理,测量其输出特性,计算燃料电池的最大输出功率及效率并验证法拉第电解定律。测量太阳能电池的特性,做出所测太阳能电池的伏安特性曲线,电池输出功率随输出电压的变化曲线。获取太阳能电池的开路电压,短路电流,最大输出功率等。 【关键词】燃料电池,电解池,太阳能电池 【正文】 一、实验目的: 1、了解燃料电池的工作原理。 2、观察仪器的能量转换过程: 光能→太阳能电池→电能→电解池→氢能(能量储存)→燃料电池→电能 3、测量燃料电池输出特性,做出所测燃料电池的伏安

燃料电池-正负极专题习题

> 燃料电池-巩固加强 )— ·- ? 总反应化学方程式 负极反应正极反应 总反应化学方程式总反应离子方程式: 负极反应正极反应 总反应化学方程式总反应离子方程式负极反应正极反应 总反应化学方程式总反应离子方程式负极反应正极反应 总反应化学方程式总反应离子方程式. 负极反应正极反应 总反应化学方程式总反应离子方程式负极反应正极反应 总反应化学方程式总反应离子方程式、 负极反应正极反应 O2 O2 O2 O2 O2 O2 O2 C2H6 C2H6 ! C H C2H2 C2H5OH C2H5OH C6H6KOH H2SO4 ( H SO H2SO4 H2SO4 KOH KOH

( 1、熔融盐燃料电池因具有高效率而受重视。可用Li 2CO 3和Na 2CO 3熔融盐混合物作电解质,CO 为阳极燃气,空气与CO 2的混合气作为阴极助燃气,制得在650℃下工作的燃料电池。完成有关的电池反应式。 阳极反应式:2CO +2CO 32-=4CO 2+4e - 阴极反应式:___________________________________。 2、(多选)肼(N 2H 4)—空气燃料电池是一种环保型碱性燃料电池,电解质溶液是20%~30%的KOH 溶液。电池总反应为:N 2H 4+O 2=N 2↑+2H 2O 。下列关于该燃料电池工作时的说法正确的是( ) A .负极的电极反应式是:N 2H 4+4OH --4e -=4H 2O +N 2↑ B .正极的电极反应式是:O 2+4H ++4e -=2H 2O C .溶液中阴离子向正极移动 D .溶液中阴离子物质的量基本不变 3、我国首创的以铝—空气—海水电池为能源的新型海水标志灯已研制成功.这种灯以取之不尽的海水为电解质溶液,靠空气中的氧使铝不断氧化而源源产生电流.只要把灯放入海水中,数分钟后就会发出耀眼的闪光,其能量比干电池高20~50倍.试推测此种新型电池可能的基本结构及电极反应式: (1)__________是负极,电极反应式为___________________________. (2)__________是正极,电极反应式为___________________________. 4、某原电池中,电解质溶液为KOH(aq),分别向负极通入C 2H 4、C 2H 2或Al(g),分别向正极通入 O 2或Cl 2.试完成下列问题: (1)当分别通入C 2H 4和O 2时: ①正极反应:______ _______;②负极反应:______ _________; ③电池总反应:_____________________;④溶液pH 的变化:__________ (2)当分别通入C 2H 2和O 2时: ①正极反应:____ ___________;②负极反应:____ ___________; ③电池总反应:_____________________;④溶液pH 的变化:_______________. (3)当分别通入Al(g)和Cl 2时: ①正极反应:_____________ _;②负极反应:_________________________; ③电池总反应:_____________________;④溶液pH 的变化:_______________. 5、据报道,最近摩托罗拉(MOTOROLA )公司研发了一种由甲醇和氧气以及强碱做电解质溶液的新型手机电池,电量是现用镍氢电池和锂电池的10倍,可连续使用1个月充电一次。假定放电过程中,甲醇完全氧化产生的CO 2被充分吸收生成CO 32- (1)该电池反应的总离子方程式为__________________________________________。 (2)甲醇在____极发生反应(填正或负),电池在放电过程中溶液的pH 将________ (填降低或上升、不变);若有16克甲醇蒸气被完全氧化,产生的电能电解足量的CuSO 4溶液,(假设整个过程中能量利用率为80%),则将产生标准状况下的O 2________升。 (3)最近,又有科学家制造出一种固体电解质的燃料电池,其效率更高。一个电极通入空气,另一电极通入汽油蒸气。其中固体电解质是掺杂了Y 2O 3(Y :钇)的ZrO 2(Zr : 总反应化学方程式 总反应离子方程式 负极反应 正极反应 O 2 C 6H 6KOH

燃料电池种类工作原理及结构

燃料电池 燃料电池(FuelC el l)是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置.燃料和空气分别送进燃料电池,电就被奇妙地生产出来。它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。 燃料电池含有阳阴两个电极,分别充满电解液,而两个电极间则为具有渗透性的薄膜所构成.氢气由阳极进入供给燃料,氧气(或空气)由阴极进入电池. 电池经由催化剂的作用,使得阳极的氢原子分解成氢质子(pro to n)与电子(electro n),其中质子进入电解液中,被氧“吸引"到薄膜的另一边,电子经由外电路形成电流后,到达阴极。在阴极催化剂之作用下,氢质子、氧及电子,发生反应形成水分子。这正是水的电解反应的逆过程,因此水是燃料电池唯一的排放物. 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,为一种 "发电机"。 阳极反应 - 阴极反应 总反应 伴随着电池反应, 电池向外输出电能。只要保持氢气和氧气的供给,该燃料电池就会连续不断地产生电能。 燃料电池的分类 1 按燃料电池的运行机理分 根据燃料电池的运行机理的不同,可分为酸性燃料电池和碱性燃料电池.例如磷酸燃料电池(PA FC)和液态氢氧化钾燃料电池(LPH FC)。 2按电解质种类分 根据燃料电池中使用电解质种类的不同,可分为酸性、碱性、熔融盐类或固体电解质的燃料电池。即碱性燃料电池(AFC )、磷酸燃料电池(PAFC )、熔融碳酸盐燃料电池(MCF C)、固体氧化物燃料电池(SOF C)和质子交换膜燃料电池(PEMFC )等。在燃料电池中,磷酸燃料电池(PAFC )、质子交换膜燃料电池(PEMFC )可以冷起动和快起动,可以用作为移动电源,适应燃料电池电动汽车(FCEV)使用的要求,更加具有竞争力。 3按燃料类型分 燃料电池的燃料有氢气、甲醇、甲烷、乙烷、甲苯、丁烯、丁烷等有机燃料和汽油、柴油以及天然气等气体燃料,有机燃料和气体燃料必须经过重整器“重整”为氢气后,才能成为燃料电池的燃料。根据燃料电池使用燃料类型的不同,可分为直接型燃料电池、间接型燃料电池和再生型燃料电池。 4按工作温度分 e H H 222+→+O H O e H 222122→+++O H O H 22222=+

氢氧燃料电池的制作

氢氧燃料电池的制作 燃料电池是一类新型化学电池。氢气、氧气、甲烷等都可以成为它的原料。它具有能量转化率高、无污染、节约金属资源等优点,具有巨大的应用价值。但是,由于这类电池必须用特殊的催化剂,而该类催化剂现在制造困难,价格昂贵,所以,这类电池还不能普及,仅能应用于人造卫星、太空站等高科技领域。我们运用已学过的原电池、电解池知识,在学校科技活动中,我创新制作了可用于演示的氢氧燃料电池,效果很好.现介绍如下: 一.用具和原料 U型管,石墨碳棒,分液漏斗,酒精喷灯,低压直流电源,30%的氢氧化钠溶液(或30%的稀硫酸),橡皮塞(双孔),导线等。 二.制作原理 用多孔碳棒作燃料电池的正、负极,30%的氢氧化钠溶液作电解质溶液。负极吸附氢气,正极吸附氧气。氢氧燃料电池工作时,负极上的氢放出电子,发生氧化反应,正极上的氧得到电子,发生还原反应:负极2H2+4OH-_4e=4H2O 正极O2+2H2O+4e=4OH- 总反应2H2 + O2= 2H2O 三.制作过程 1.多孔碳棒的加工 将石墨碳棒放在酒精灯喷灯上加热除去其中的胶质,并淬火3---4次,即形成多孔碳棒,也就是多孔碳电极。

2.把多孔碳电极、U型管、分液漏斗、橡皮塞(双孔)按图所示组 装;再通过分液漏斗向U型管中注满氢氧化钠溶液,密闭。 3.氢气、氧气的制备 调节低压直流电源的电压到6伏,并把其正、负极分别与图装置中的两个碳棒电极相连接;接通电源,电解氢氧化钠溶液制取氢气、氧气,且制得的氢气与氧气的体积比为2:1.去掉电源,上图所示装置就成为一只氢氧燃料电池。 四.氢氧燃料电池的工作 氢氧燃料电池的正、负极分别与灵敏电流计的正、负极连接,可以看到电流计指针偏转。如果把两个氢氧燃料电池并联,再与发光二极管串联,二极管发光。经实验测定,一只氢氧燃料电池可提供0.1安以上的电流,1.5伏以上的外电压。

氢氧燃料电池性能测试实验报告

氢氧燃料电池性能测试 实验报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

氢氧燃料电池性能测 试实验报告 学号: 姓名:冯铖炼 指导老师:索艳格 一、实验目的 1.了解燃料电池工作原理 2.通过记录电池的放电特性,熟悉燃料电池极化特性 3.研究燃料电池功率和放电电流、燃料浓度的关系 4.熟悉电子负载、直流电源的操作 二、工作原理 氢氧燃料电池以氢气作燃料为还原剂,氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电,在氧电极上由于缺少电子而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。

工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂全部储藏在电池内的装置氢氧燃料电池的反应物都在电池外部它只是提供一个反应的容器 氢气和氧气都可以由电池外提供燃料电池是一种化学电池,它利用物质发生化学反应时释出的能量,直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给反应物质——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,2013年正发展为直接使用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气)。氢在负极分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,所以也可称它为一种"发电机"。 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。在正、负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢—氧燃料电池有酸式和碱式两种: 若电解质溶液是碱、盐溶液则

高二化学燃料电池专题

高二化学燃料电池专题 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

燃料电池专题我在这里给同学们梳理一下燃料电池的原理,主要是解决正负极电极方程式书写的问题。 一、预备知识(如果你必修阶段掌握良好可跳过这一部分) 燃料电池说到底还是原电池,我们在这里先复习下必修2中Cu-Zn原电池的原理。1. 看构造 如上图,原电池主要由Cu片、Zn片、稀H2SO4、导线等构成。 2. 谈现象 Zn片是银白色的,在放电过程中溶解。 Cu片是紫红色的,在放电过程中表面有气泡冒出。 3. 说原理 Zn比Cu金属性强(更活泼),即更容易失去电子,导线连接之后,Zn的电子优先选择沿着导线跑到铜片表面去排队1而不是直接跳到溶液里。 Zn由于失去电子被氧化形成Zn2+,就脱离了Zn片表面溶解在了溶液里,Zn片就不断变薄变细。我们把Zn这一极称为负极,电极方程式是Zn-2e-=Zn2+。 与此同时,另一极Cu的表面由于有电子在那儿排队,而显负电,就会吸引溶液中的阳离子H+向该极移动,这些阳离子获得那些排队的电子生成H2,于是就有气泡冒出。我们把Cu这一极称为正极,电极方程式是2H++2e-=H2↑ 4. 小结 Cu-Zn原电池(稀H2SO4作为电解质) Zn是负极,失去电子,被氧化,电极方程式Zn-2e-=Zn2+。

Cu是正极,H+在其表面得电子,被还原,电极方程式2H++2e-=H2↑。 总反应式是Zn+2H+=Zn2++H2↑ 要小心,不要想当然地认为Zn失去电子则Cu得电子,Cu虽然金属性不强但毕竟仍然是金属,且是电的良导体(家里的电线、电话线、网线),说明了它表面的电子还是很容易移动的,因此它不会自己得电子形成带负电的离子。 1:注意,我这里说电子排队只是形象地打个比方便于理解,给中学生讲课是可以这么讲的,实际上只有当回路接通的时候才会有电子跑到铜片上去。而之所以有这样的一个接通回路就会定向移动应该是电势差U造成的。 二、氢氧燃料电池——最简单的燃料电池 下面是该电池的原理图: 1. 看构造 这个电池由两个惰性电极Pt(金属铂)、导线等构成。左右两半溶液槽用隔膜隔开(允许部分离子通过,如阴离子半透膜只允许阴离子通过,不会完全隔断,否则就行不成闭合回路了)。 2. 谈原理 左右分别有一条导气管,将H2和O2输送到Pt电极附近。由于Pt的特性——如表面多孔,可以吸附气体,所以这些输送进去的气体不会立刻浮出水面,而是附着在Pt电极表面。 我们知道H2跟O2相比,前者是还原性气体,后者是氧化性气体。也就是说前者容易失去电子,后者容易得到电子。于是,跟我们之前Cu-Zn原电池类似就有: H2作负极反应物,失去电子,被氧化,生成H+。但是电极方程式却不一定是H2-2e-=2H+。为什么呢因为电解液的酸碱性不知道。如果电解液为酸性或者中性,这些H+

氢氧燃料电池基础知识集锦

氢氧燃料电池基础知识集锦 氢氧燃料电池是很有发展前途的新的动力电源,一般以氢气、碳、甲醇、硼氢化物、煤气或天然气为燃料,作为负极,用空气中的氧作为正极.和一般电池的主要区别在于一般电池的活性物质是预先放在入的,因而电池容量取决于贮存的活性物质的量;而燃料电池的活性物质(燃料和氧化剂)是在反应的同时源源不断地输入的,因此,这类电池实际上只是一个能量转换装置。 一:氢氧燃料电池特点 这类电池具有转换效率高、容量大、比能量高、功率范围广、不用充电等优点,但由于成本高,系统比较复杂,仅限于一些特殊用途,如飞船、潜艇、军事、电视中转站、灯塔和浮标等方面。 二:氢氧燃料电池的分类 目前氢氧燃料电池可分为离子膜、培根型和石棉膜三类。 1.离子膜氢氧燃料电池:用阳离子交换膜作电解质的酸性燃料电池,现代采用全氟磺酸膜。电池放电时,在氧电极处生成水,通过灯芯将水吸出。这种电池在常温下工作、结构紧凑、重量轻,但离子交换膜内阻较大,放电电流密度小。

2.培根型燃料电池:属碱性电池。氢、氧电极都是双层多孔镍电极(内外层孔径不同),加铂作催化剂。电解质为80%~85%的苛性钾溶液,室温下是固体,在电池工作温度(204~260°C)下为液体。这种电池能量利用率较高,但自耗电大,起动和停机需较长的时间(起动需24小时,停机17小时)。 3.石棉膜燃料电池:也属碱性电池。氢电极由多孔镍片加铂、钯催化剂制成,氧电极是多孔银极片,两电极夹有含35%苛性钾溶液的石棉膜,再以有槽镍片紧压在两极板上作为集流器,构成气室,封装成单体电池。放电时在氢电极一边生成水,可以用循环氢的办法排出,亦可用静态排水法。这种电池的起动时间仅15分钟,并可瞬时停机。比磷酸铁锂电池要更环保。 三:氢氧燃料电池的原理 工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电

碳载铂、钌催化剂对甲醇燃料电池阳极电催化性能的研究实验报告

碳载铂、钌催化剂对甲醇燃料电池阳极电催化性能的研究 学院:化学学院 班级:化学03班 姓名:艾丽莎 学号:33090331

碳载铂、钌催化剂对甲醇燃料电池阳极电催化性能的研究【实验目的】 甲醇燃料电池阳极催化剂的合成及其电化学催化性能的表征,此实验过程设计无机合成、物理化学及电化学等学科方向内容,对同学熟练运用化学实验基本理论、基本方法和操作具有很好的促进作用。燃料电池是一类连续地将燃料氧化过程的化学能直接转换为电能的电化学电池,直接甲醇燃料电池(DMFC)由于其结构简单、操作方便和比能量高等优点,具有十分诱人的应用前景,引起广泛的研究兴趣,已经成为燃料电池领域的研究热点。把相关研究作为实验内容对同学开阔视野,培养科学的思维方式及勇于创新意识具有促进作用。 1. 了解碳载铂与铂钌阳极催化剂的制备方法。 2. 了解甲醇燃料电池的工作原理,掌握催化剂电催化性能的测试方法。 3. 了解甲醇燃料电池阳极电催化反应机理。 【实验原理】 一.什么是燃料电池。 燃料电池(Fuel Cell, 简称FC)发电是继水力、火力和核能发电之后的第四类发电技术。由于它是一种不经过燃烧直接以电化学反应方式将燃料的化学能转化为电能的发电装置,从理论上讲,只要连续供给燃料,燃料电池便能连续发电。但是,与一般电池不同,FC所用的燃料和氧化剂并不是储存在电池内,而是储存在电池外。在这一点上,与内燃机相似。因此,FC又被形象地称为“电化学发电机”。 二.燃料电池的分类。 燃料电池的分类方式有很多种,可依据所用解质性、工作温度燃料电池的分类方式有很多种,可依据所用解质性、工作温度燃料电池的分类方式有很多种,可依据所用解质性、工作温度燃料的种类以及使用方式等进行分。目前广为采纳法是燃料的种类以及使用方式等进行分。目前广为采纳法是依据燃料电池中所用的电解质类型来进行分,即为六燃料: ①碱性燃料电池(AFC)碱性燃料电池采用氢氧化钾溶液作为电解液,电池的工作温度一般在60 -220 ℃之间。 ②质子交换膜燃料电池(PEMFC)质子交换膜燃料电池采用能够传导质子的聚合物膜作为电解质,比如全氟磺酸膜(Nafion 膜),其主链为聚四氟乙烯链,支链上带有磺酸基团,可以传导质子。 ③磷酸燃料电池(PAFC)磷酸燃料电池是目前最为成熟的燃料电池,已经实现了一定规模的商品化。其采用是100%的磷酸作为电解液,其具有稳定性好和腐蚀性低的特点。 ④熔融碳酸盐燃料电池(MCFC)熔融碳酸盐燃料电池是一种中高温燃料电池,其电解质是Li2CO3-Na2CO3或者Li2CO3-K2CO3的混合物熔盐,浸在用LiAlO2制成的多孔膜中,高温时呈熔融状态对碳酸根离子具有很好的传导作用。 ⑤固体氧化物燃料电池(SOFC)其是一种全固体的燃料电池,电解质是固态致密无孔的复合氧化物,最常使用钇掺杂锆简写为YSZ,这样的电解质材料在高温下具有很好的氧离子传导性。 ⑥直接甲醇燃料电池(DMFC)直接甲醇燃料电池是近年来开发起的,用PEM 作为电解质的新型燃料电池。其直接使用液体甲醇作为燃料,大幅度的简化了发电系统和结构。三.甲醇燃料电池(DMFC)的工作原理。 直接以液态或气态甲醇为燃料的FC称为DMFC,直接甲醇燃料电池是质子交换膜燃料电池(PEMFC)的一种变种,它直接使用甲醇而勿需预先重整。甲醇在阳极转换

燃料电池专题

燃料电池专题 1.氢氧燃料电池可以使用在航天飞机上,其反应原理示意图如右图。下列有关氢氧燃料电池的说法正确的是 A.该电池工作时电能转化为化学能 B.该电池中电极a是正极 C.外电路中电子由电极b通过导线流向电极a D.该电池的总反应:2H2+O2=2H2O 2.下图为氢氧燃料电池原理示意图,按照此图的提示,下列叙述不正确的是 A.a电极是负极 B.b电极的电极反应为:4OH-— 4e-= 2H2O + O2↑ C.氢氧燃料电池是一种具有应用前景的绿色电源 D.氢氧燃料电池是一种不需要将还原剂和氧化剂 全部储藏在电池内的新型发电装置 3.据报道,我国拥有完全自主产权的氢氧燃料电池车将在北京奥运会期间为运动员提供腺务。某种氢氧燃料电池的电解液为KOH溶液,下列有关该电池的叙述不正确的是 A.正极反应式为:O2+2H2O+4e-=4OH- B.工作一段时间后,电解液中KOH的物质的量不变 C.该燃料电池的总反应方程式为:2H2+O2=2H2O D.用该电池电解CuCl2溶液,产生2.24 L Cl2(标准状况)时,有0.1 mol电子转移 4.氢氧燃料电池用于航天飞船,电极反应产生的水经冷凝后可作为航天员的饮用水,其电极反应如下:

负极:2H2+4OH—-4e—4H2O 正极:O2+2H2O+4e—4OH— 当得到1.8L饮用水时,电池内转移的电子数约为 A.1.8mol B.3.6mol C.100mol D.200mol 5.航天技术使用氢氧电池具有高能、轻便,不污染优点,氢氧燃料电池有酸式和碱式两种,它们放电时的电池总反应式均可表示为:2H2+O2= 2H2O,酸式氢燃料电池的电解质是酸、其负极反应为:2H2-4e-= 4H+,则正极反应为;碱式氢氧燃料电池的电解质是碱,其正极反应表示为:O2+2H2O+4e-= 4OH-,则负极反应 为:。 6.美国阿波罗宇宙飞船上使用的氢氧燃料电池是一种新型电源,其构造如图所示:a、b 两个电极均由多孔的碳块组成,通人的氢气和氧气由孔隙中逸出,并在电极表面发生电极反应而放电。 (1)该燃料电池发生的总的化学方程式 是:,其电极分别为a 是极,b是极(填正或负),其电极反应分别是:a极:b极: (2)氢氧燃料电池能量转换率高,无污染,最终产物只有水,阿波罗宇宙飞船上的宇航员的生活用水均由燃料电池提供,已知燃料电池发一度电生成396g水,其热化学方程式是2H2(g)+O2(g) ===2H2O(l)+572kJ,则发出一度电时,产生能量kJ,此燃料电池的能量转换率是。 (3)燃料电池的输出电压为1.2V,要使标有1.2V、1.5W的小灯泡连续发光1小时,则共消耗H2的物质的量为mo1. 7.氢氧燃料电池是符合绿色化学理念的新型发电装置。下图为电池示意图,该电池电极表面镀一层细小的铂粉,附气体的能力强,性质稳定,请回答:

高中化学 氢氧燃料电池

氢氧燃料电池 高考频度:★★★★☆ 难易程度:★★★☆☆ 典例在线 下列电池工作时,O 2在正极放电的是 A .锌锰电池 B .氢燃料电池 C .铅蓄电池 D .镍镉电池 【参考答案】B 【试题解析】锌锰电池,正极反应:2MnO 2+2H 2O +2e - ===2MnOOH +2OH - ,MnO 2在正极放电,A 错误。氢燃料电池,正极反应(酸性条件下):O 2+4H + +4e - ===2H 2O ,O 2在正极放电,B 正确。铅蓄电池,正极反应:PbO 2+4H + + +2e -===PbSO 4+2H 2O ,PbO 2在正极放电,C 错误。镍镉电池,正极反应:NiOOH +H 2O +e - ===Ni(OH)2+OH - ,NiOOH 在正极放电,D 错误。 解题必备 1.构造 。 O 2=2H ==2O +22H .电池总反应:2 3.氢氧燃料电池在不同介质中的电极反应式

介质负极反应式正极反应式 酸性2H2-4e-===4H+O2+4H++4e-===2H2O 中性2H2-4e-===4H+O2+2H2O+4e-===4OH- 碱性2H2-4e-+4OH-===4H2O O2+2H2O+4e-===4OH- 学霸推荐 1.氢氧燃料电池用于航天飞机,电极反应产生的水,经冷凝后可作为航天员的饮用水,其电极反应如下: 负极:2H2+4OH--4e-===4H2O;正极:O2+2H2O+4e-===4OH-。当得到1.8 L饮用水时,电池内转移的电子数约为 A.1.8 mol B.3.6 mol C.100 mol D.200 mol 2.甲醇燃料电池(DMFC)可用于笔记本电脑、汽车、遥感通讯设备等,它的一极通入甲醇,一极通入氧气;电解质是质子交换膜,它能传导氢离子(H+)。电池工作时,甲醇被氧化为二氧化碳和水,氧气在电极上的反应是O2+4H++4e-===2H2O。下列叙述中不正确的是 A.负极的反应式为CH3OH+H2O-6e-===CO2↑+6H+ B.电池的总反应式是2CH3OH+3O2===2CO2+4H2O C.电池工作时,H+由正极移向负极 D.电池工作时,电子从通入甲醇的一极流出,经外电路再从通入氧气的一极流入 3.一种新型燃料电池,一极通入空气,另一极通入丁烷气体;电解质是掺杂氧化钇(Y2O3)的氧化锆(ZrO2)晶体,在熔融状态下能传导O2-。下列对该燃料电池说法正确的是 A.在熔融电解质中,O2-由负极移向正极 B.电池的总反应是2C4H10+13O28CO2+10H2O C.通入空气的一极是正极,电极反应为:O2+4e-===2O2- D.通入丁烷的一极是正极,电极反应为:C4H10+26e-+13O2-===4CO2+5H2O 4.H2S废气资源化利用途径之一是回收能量并得到单质硫。反应为:2H2S(g)+O2(g)===S2(s)+2H2O(l) ΔH=-632 kJ·mol-1,如图为质子膜H2S燃料电池的示意图。下列说法正确的是

(完整word版)实验报告5燃料电池电堆测试

《燃料电池电堆测试与分析》实验报告 一.实验目的: 1.掌握PEMFC电堆测试台的基本结构和操作方法; 2.通过实测,掌握电堆极化曲线的测试方法,学会绘制极化曲线、功率曲线等图谱; 3.能将燃料电池电堆的实测性能应用于燃料电池系统的构建上;锻炼运用理论分析、解决实际问题的能力和方法。 二.实验原理: 将所需测量的PEMFC电堆与NBT燃料电池测试系统连接,通过控制平台调节燃料电池的氢气和空气流量,设置负载的电流值(也就是燃料电池电堆的电流值),观察记录电压值和功率值得变化,利用所记录的数据画出燃料电池的i-V和i-P曲线。 三.实验仪器设备和器材 四.测试平台开机顺序测试 1.打开气源,检查氢气、空气(外部供应时)的压力是否正常、去离子水的液位是否正常;室内氢气泄露报警系统是否正常;氢气、空气与水的排放口是否连接妥当,氢气管路的出口必须接于室外。注意测试时的人员与设备的安全。 2.给测试平台上电,380V AC。 3.开启电脑,与设备联机。 4.手动设置适当的氢、空、冷却水温度(注意不应超过80℃)、各流体最低流量、电堆片数、活性面积等参数。 5.设定数据保存路径和文件名,开始记录数据。

6.测试极化曲线。根据电堆所需要氢空流量,手动设置电流,测试极化曲线。 7.实验结束。 五.提前制作电堆运行所需氢气和空气的流量表,如下表所示。 已知条件:电堆片数:19片,单电池活性面积250cm2; 阴/阳极化学计量比:3.5/1.5; 常压 六.绘制电堆的极化曲线和功率密度曲线,需要标明必要的测试条件。

七.绘制上述极化曲线上最大功率时的单片电池电压柱状图,并计算电压的 标准偏差。 学生(签名): 实验日期:2015.5.25

氢氧燃料电池

一、氢氧燃料电池 氢氧燃料电池一般是以惰性金属铂(Pt)或石墨做电极材料,负极通入H2,正极通入O2,总反应为:2H2 + O2 === 2H2O 电极反应特别要注意电解质,有下列三种情况: 1.电解质是KOH溶液(碱性电解质) 负极发生的反应为:H2 + 2e- === 2H+ ,2H+ + 2OH- === 2H2O,所以: 负极的电极反应式为:H2 –2e- + 2OH- === 2H2O; 正极是O2得到电子,即:O2 + 4e- === 2O2- ,O2- 在碱性条件下不能单独存在,只能结合H2O生成OH-即:2O2- + 2H2O === 4OH- ,因此, 正极的电极反应式为:O2 + H2O + 4e- === 4OH- 。 2.电解质是H2SO4溶液(酸性电解质) 负极的电极反应式为:H2 +2e- === 2H+ 正极是O2得到电子,即:O2 + 4e- === 2O2- ,O2- 在酸性条件下不能单独存在,只能结合H+生成H2O即:O2- + 2 H+ === H2O,因此 正极的电极反应式为:O2 + 4H+ + 4e- === 2H2O(O2 + 4e- === 2O2- ,2O2- + 4H + === 2H2O) 3. 电解质是NaCl溶液(中性电解质) 负极的电极反应式为:H2 +2e- === 2H+ 正极的电极反应式为:O2 + H2O + 4e- === 4OH- 说明:1.碱性溶液反应物、生成物中均无H+ 2.酸性溶液反应物、生成物中均无OH- 3.中性溶液反应物中无H+ 和OH- 4.水溶液中不能出现O2- 二、甲醇燃料电池 甲醇燃料电池以铂为两极,用碱或酸作为电解质: 1.碱性电解质(KOH溶液为例) 总反应式:2CH4O + 3O2 +4KOH=== 2K2CO3 + 6H2O 正极的电极反应式为:3O2+12e- + 6H20===12OH- 负极的电极反应式为:CH4O -6e-+8OH- === CO32-+ 6H2O 2. 酸性电解质(H2SO4溶液为例) 总反应: 2CH4O + 3O2 === 2CO2 + 4H2O 正极的电极反应式为:3O2+12e-+12H+ === 6H2O 负极的电极反应式为:2CH4O-12e-+2H2O === 12H++ 2CO2 说明:乙醇燃料电池与甲醇燃料电池原理基本相同 三、甲烷燃料电池 甲烷燃料电池以多孔镍板为两极,电解质溶液为KOH,生成的CO2还要与KOH反应生成K 2CO3,所以总反应为:CH4 + 2KOH+ 2O2 === K2CO3 + 3H2O。

直接甲醇燃料电池实验报告

研究生专业实验报告 实验项目名称:被动式直接甲醇燃料电池学号: 姓名:张薇 指导教师:陈蓉 动力工程学院

被动式直接甲醇燃料电池 一、实验目的 1、了解和掌握被动式空气自呼吸直接甲醇燃料电池(DMFC)的基本工作原理; 2、了解和掌握对燃料电池进行性能测试的基本方法; 3、了解和掌握燃料电池性能评价方法; 4、观察和认识影响燃料电池性能的主要因素。 二、实验意义 燃料电池是一种将燃料的化学能直接转化为电能的能源转化装置,具有环境友好、效率高、工作安静可靠等显着优点,被誉为继核能之后新一代的能源装置。在众多燃料电池种类中,空气自呼吸式直接甲醇燃料电池(DMFC)因具有系统结构简单、能量密度高、环境友好、更换燃料方便、可在常温下工作等优点,成为便携式设备最有前景的可替代电源,是电化学和能源科学领域的研究热点。本实验旨在对被动式空气自呼吸直接甲醇燃料电池进行实验研究,使同学们了解和掌握燃料电池测试的基本方法,加深对燃料电池基本工作原理的认识和理解。 三、实验原理 燃料电池是将燃料的化学能直接转化为电能的能源转化装置。一个典型的直 接甲醇燃料电池的示意图如图1所示。 图1: 直接甲醇燃料电池的典型结构 从图1中可以看出,典型的直接甲醇燃料电池包括阳极扩散层、阴极扩散层、阳极催化剂层、阴极催化剂层、质子交换膜、集流体等部件。在被动式空气自呼吸直接甲醇燃料电池中,电池阳极发生的是甲醇的氧化反应: CH 3OH+H 2 O→CO 2 +6H++6e-,E0=0.046 V (1) 电池阴极发生的是氧气的还原反应: 3/2O 2+6H++6e-→3H 2 O,E0=1.229 V (2) 总反应式为: CH 3OH+3/2O 2 →CO 2 +2H 2 O,△ E=1.183 V (3) 在被动式直接甲醇燃料电池阳极,甲醇水溶液扩散通过阳极扩散层到达阳极催化层,甲醇在阳极催化层被氧化,生成二氧化碳、氢离子和电子,如式(1)所示。氢离子通过质子交换膜迁移到阴极,电子通过外电路传递到阴极;在阴极侧,氧气通过暴露在空气中的阴极扩散层传输至阴极催化层,在电催化剂的作用下,氧气与从阳极迁移过来的质子以及从外电路到达的电子发生还原反应生成水,如式(2)所示。理论上直接甲醇燃料电池的开路电压能达到1.183 V,但实际上DMFC 的开路电压一般只有0.7 V左右,其主要原因是部分燃料(甲醇)在浓度差的作

化学教学论实验报告——氢氧燃料电池的制作

化学教学论实验报告——氢氧燃料电池的制作 化学系2011级化学2班罗晗 10111550218 一、实验方程式、装置: 1、电解水时,选用1mol/L硫酸钠溶液作为电解质溶液,两极发生如下反应: 阳极:2H2O =O2 +4H+ +4e- 阴极:4H2O +4e- =2H2 +4OH- 2、两极吸附满气体后,拆去外电源,使燃料电池放电,两极发生如下反应: 正极:O2 +4H+ +4e- =2H2O 负极:2H2 +4OH- =4H2O +4e- 3、实验装置: 二、实验注意事项: 1、在实验过程中,燃料电池具有正负极,应当正确判断其正负极,防止二极管的电极接反,最终导致其不能发光。发光二极管灯脚有正、负极之分,长脚为正极,短脚为负极。如不能识别,可直接用燃料电池接试,如不发光,说明接反了,交换一下电极即可。 2、由于普通碳棒表面较为光滑,所以在电解过程中难以吸附较多的氢气和氧气,导致发光二极管发光时间较短,实验效果不明显,所以要把普通炭棒置于高温火焰上灼烧到发红,立即投入冷水中使其表面变得粗糙多孔,使其在电解水时可吸附较多的氢、氧气体。 三、实验思考: 1、电解质溶液的种类对最终发光二极管的发光时间有何影响?

答:经过查阅资料得知,电解质溶液的种类对最终发光二极管的发光时间具有较大影响,设计实验分析其影响大小,实验结果如下表: 由此可知,电解质溶液的种类对二极管发光时间具有较大影响,因为不同种溶液电离出的离子种类不同,其最终产生的离子数目也不同,从而导致其导电能力不同,最终的二极管发光时间也就不同了。如上面实验可以看出,硫酸与氢氧化钠的导电能力相似,其电解出的离子数目相近;而硫酸钠电离出的离子出较多,导电能力较强。 2、为何要将碳棒进行淬火?是否淬火次数越多越好? 答:由于普通碳棒表面较为光滑,所以在电解过程中难以吸附较多的氢气和氧气,即最终成为燃料电池所能储存的电能较少,最终的发光二极管发光时间较短,实验效果不明显。而把普通炭棒置于高温火焰上灼烧到发红,立即投入冷水中使其表面变得粗糙多孔,则会使其在电解水时可吸附较多的氢、氧气体,最终储存的电能较多,发光二极管的发光时间也较长。但是并不是淬火次数越多越好,因为淬火次数越多,消耗的炭就越多,则更容易使得碳棒断裂,所以淬火的次数应根据实际情况判断,使得碳棒能负载的气体最多为最佳。 3、燃料电池的工作原理是什么?有什么优缺点? 答:燃料电池是很有发展前途的新的动力电源,一般以氢气、碳、甲醇、硼氢化物、煤气或天然气为燃料,作为负极,用空气中的氧作为正极.和一般电池的主要区别在于一般电池的活性物质是预先放在入的,因而电池容量取决于贮存的活性物质的量;而燃料电池的活性物质(燃料和氧化剂)是在反应的同时源源不断地输入的,因此,这类电池实际上只是一个能量转换装置,这类电池具有转换效

燃料电池综合特性实验报告

燃料电池综合特性实 验论文 作者:宋东辉 学号:03482015010 单位:二十二连二区队A组

燃料电池综合特性实验 一、实验目的: 1.了解燃料电池的工作原理 2.观察仪器的能量转换过程:电能→电解池→氢能(能量储存)→燃料电池→电 能 3.测量燃料电池输出特性,作出所测燃料电池的伏安特性(极化)曲线,电池 输出功率随输出电压的变化曲线。计算燃料电池的最大输出功率及效率 4.测量质子交换膜电解池的特性,验证法拉第电解定律 二、实验原理: 1、燃料电池 质子交换膜燃料电池(如上图)在常温下工作,其基本结构如图1所示。 目前广泛采用的全氟璜酸质子交换膜为固体聚合物薄膜,厚度0.05~0.1mm,它提供氢离子(质子)从阳极到达阴极的通道,而电子或气体不能通过。

膜两边的阳极和阴极由石墨化的碳纸或碳布做成,厚度0.2~0.5mm,导电性能良好,其上的微孔提供气体进入催化层的通道,又称为扩散层。 进入阳极的氢气通过电极上的扩散层到达质子交换膜。氢分子在阳极催化剂的作用下解离为2个氢离子,即质子,并释放出2个电子, 阳极反应为:H2 = 2H++2e (1) 氢离子以水合质子H+(nH2O)的形式,在质子交换膜中从一个璜酸基转移到另一个璜酸基,最后到达阴极,实现质子导电,质子的这种转移导致阳极带负电。 在电池的另一端,氧气或空气通过阴极扩散层到达阴极催化层,在阴极催化层的作用下,氧与氢离子和电子反应生成水, 阴极反应为:O2+4H++4e = 2H2O (2) 阴极反应使阴极缺少电子而带正电,结果在阴阳极间产生电压,在阴阳极间接通外电路,就可以向负载输出电能。 总的化学反应如下:2H2+O2 = 2H2O (3) 2、水的电解 将水电解产生氢气和氧气,与燃料电池中氢气和氧气反应生成水互为逆过程。水电解装置同样因电解质的不同而各异,碱性溶液和质子交换膜是最好的电解质。若以质子交换膜为电解质,可在图1右边电极接电源正极形成电解的阳极,在其上产生氧化反应2H2O = O2+4H++4e。左边电极接电源负极形成电解的阴极,阳极产生的氢离子通过质子交换膜到达阴极后,产生还原反应2H++2e = H2。即在右边电极析出氧,左边电极析出氢。 作燃料电池或作电解器的电极在制造上通常有些差别,燃料电池的电极应利

相关主题
文本预览
相关文档 最新文档