当前位置:文档之家› 关于碳化硅功率器件的调研

关于碳化硅功率器件的调研

关于碳化硅功率器件的调研
关于碳化硅功率器件的调研

关于碳化硅功率器件的调研

前言

以硅器件为基础的电力电子技术,因大功率场效应晶体管(功率MOSFET)和绝缘栅双极晶体管(IGBT)等新型电力电子器件的全面应用而日臻成熟。目前,这些器件的开关性能己随其结构设计和制造工艺的相当完善而接近其由材料特性决定的理论极限,依靠硅器件继续完善和提高电力电子装置与系统性能的潜力已十分有限。

首先,硅低的击穿电场意味着在高压工作时需要采用厚的轻掺杂层,这将引起较大的串联电阻,特别是对单极器件尤其如此。为了减少正向压降,电流密度必须保持在很低的值,因此硅器件的大电流是通过增加硅片面积来实现的。在一定的阻断电压下,正向压降由于载流子在轻掺杂区的存储而降低,这种效应称为结高注入的串联电阻调制效应。然而存储电荷的存储和复合需要时间,从而降低了器件的开关速度,增加了瞬态功率损耗。硅器件由于小的禁带宽度而使在较低的温度下就有较高的本征载流子浓度,高的漏电流会造成热击穿,这限制了器件在高温环境和大功率耗散条件下工作。其它限制是硅的热导率较低。

于是,依靠新材料满足新一代电力电子装置与系统对器件性能的更高要求,早在世纪交替之前就在电力电子学界与技术界形成共识,对碳化硅电力电子器件的研究与开发也随之形成热点。

1 碳化硅材料

以SiC,GaN 为代表的宽禁带半导体材料,是继以硅和砷化镓为代表的第一代&第二代半导体材料之后迅速发展起来的新型半导体材料。表1列出了不同半导体材料的特性对比。从表中可以看出,碳化硅作为一种宽禁带半导体材料,不但击穿电场强度高,还具有电子饱和漂移速度高、热导率高等特点,可以用来制作各种耐高温的高频大功率器件。SiC 由碳原子和硅原子组成,其晶体结构具有同质多型体的特点,在半导体领域最常用的是4H-SiC 和6H-SiC 两种。

碳化硅材料的优异性能使得SiC 电力电子器件与Si 器件相比具有以下突出的性能优势:

表1 不同半导体材料的特性对比

类型

Si GaAs GaN SiC 4H-SiC 6H-SiC 3C-SiC 禁带宽度/eV

1.12 1.42 3.45 3.2 3.0

2.2 击穿电场

(MV/cm )

0.6 0.6 >1 2.2 2.4 2 热导率

(W/cm.k )

1.5 0.5 1.3 4.9 4.9 5 介电常数

11.9 13.1 9 9.7 9.7 9.72 电子饱和漂

移速度(10e7

cm/s )

1.0 1.2

2.2 2 2 2.2 电子迁移率

(cm2/v.s )

1200 6500 1250 1020 600 1000 空穴迁移率

(cm2/v.s ) 420 320 850 120 40 40

⑴SiC电力电子器件具有更低的导通电阻。在击穿电压较低(约50V)时,SiC功率器件的比导通电阻仅有1.12u欧,是Si同类器件的约1/100。在击穿电压较高(约5kV)时,比导通电阻增大到29.5m欧,却是Si同类器件的约1/300。

⑵SiC电力电子器件具有更高的击穿电压。这是因为碳化硅器件的击穿电场高。

⑶SiC电力电子器件的工作频率更高。SiC的饱和电子漂移速率更快,是Si 的2倍。因而SiC电力电子器件的开关速度更快,开关损耗更低,在中大功率应用场合,有望实现Si功率器件难以达到的更高开关频率(>=20kHz)。

⑷SiC电力电子器件具有更低的结-壳热阻。由于SiC的热导率是Si的3倍以上,因而制成的电力电子器件的散热性更好,器件的温度上升更慢。

⑸SiC电力电子器件能够在更高的温度下工作。SiC的禁带宽度是Si的2倍以上,SiC电力电子器件的极限工作温度有望达到600摄氏度以上,远高于Si 器件的115摄氏度,从而器件的冷却系统可大为简化。

⑹SiC电力电子器件抗辐射能力极强。辐射不会导致SiC的电气性能出现明显的衰减,因而在航空领域应用基于SiC电力电子器件的功率变换器可以减轻辐射屏蔽设备的重量,提高了系统的性能。

尽管与Si功率器件相比,SiC电力电子器件具有诸多优势,但目前仍存在不少限制其广泛应用的不利因素,主要有:

⑴产量低,成本高。由于SiC存在微管缺陷,难以生产尺寸较大的SiC晶圆,因而SiC晶圆的成本较高,相应地SiC电力电子器件的价格也远高于Si功率器件。

⑵器件类型和规格有限。目前,成功实现商业化的SiC功率器件包括SBD、BJT、JFET和MOSFET,且这些器件的功率处理能力较小,型号较少。而广泛应用于大功率场合的IGBT和GTO等器件尚处于实验室开发和测试阶段。

⑶缺乏高温封装技术。尽管采用SiC材料制造的管芯能够承受很高的工作温度,但目前的封装技术主要针对Si功率器件,大多低于175摄氏度。封装外壳的工作温度限制了SiC功率器件高温性能的发挥。

2 碳化硅功率二极管

在碳化硅电力电子器件中,碳化硅功率二极管最早实现产业化。一般可分为肖特基二极管(Schottky barrier diode, SBD)、PiN二极管和结势垒控制肖特基二极管(junction barrier Schottky, JBS)三种。在5kV阻断电压以下的范围,碳化硅SBD 具有一定的优势,而对于PiN结二极管,由于其内部的电导调制作用而呈现出较低的导通电阻,使得它更适合制备4~5kV或者以上电压等级的器件。JBS 二极管则结合了肖特基二极管所拥有的出色的开关特性和PiN结二极管所拥有的低漏电流的特点。另外,把JBS二极管结构参数和制造工艺稍作调整就可以形成混合PiN-肖特基结二极管(merged PiN Schottky, MPS)。

碳化硅SBD是最早商业化的碳化硅器件。做为单子器件,它的工作过程中没有电荷储存,因此它的反向恢复电流仅由它的耗尽层结电容造成,其反向恢复电荷以及其反向恢复损耗比Si超快恢复二极管要低一到两个数量级。更重要的是,和它匹配的开关管的开通损耗也可以得到大幅度减少,因此可以提高电路的开关频率。另外,它几乎没有正向恢复电压,因而能够立即导通,不存在双极型器件的开通延时现象。在常温下,其正态导通压降和Si超快恢复器件基本相同,但是由于SiC 肖特基二极管的导通电阻具有正温度系数,这将有利于将多个SiC肖特基二极管并联。在二极管单芯片面积和电流受限的情况下,这可以大幅度提高SiC肖特基

二极管的容量,使它在较大容量中的应用成为可能。器件极大地简化了电路中原有的为了抑制开关损耗和保证安全工作的软开关电路等额外元器件。单极型的器件工作特性给它在高频电力电子电路中的应用提供了巨大的优势,被认为是理想的二极管器件,在高频电力电子领域得到了广泛的应用。

由于SiC开关管的发展相对二极管滞后,当前更普遍的做法是将SiC 二极管与Si基IGBT和MOSFET器件封装在一个模块中以形成大功率开关组合。目前Cree公司、Microsemi公司、Infineon公司、Rohm公司的SiC肖特基二极管用于变频或逆变装置中替换硅基快恢复二极管,显著提高了工作频率和整机效率。中低压SiC肖特基二极管目前已经在高端通讯开关电源、光伏并网逆变器领域上产生较大的影响。

SiC肖特基二极管的发展方向是衬底减薄技术和Trench JBS结构。衬底减薄技术能够有效地减小低压SiC肖特基二极管的导通电阻,增强器件浪涌电流能力,减少器件热阻。同时采用Trench JBS结构和衬底减薄技术,与传统的JBS 二极管相比,正反向特性都得到了改善,不仅增加了电流密度(芯片面积减小50%);也提高了阻断电压(提高150V)和雪崩能力。目前国内已经展开了高压碳化硅二极管的研究,但关于二极管并联模块化的研究较少。

3碳化硅JFET

碳化硅JFET有着高输人阻抗、低噪声和线性度好等特点,是目前发展较快的碳化硅器件之一,并且率先实现了商业化。与MOSFET器件相比,JFET器件不存在栅氧层缺陷造成的可靠性问题和载流子迁移率过低的限制,同时单极性工作特性使其保持了良好的高频工作能力。另外,JFET器件具有更佳的高温工作稳定性和可靠性。碳化硅JFET器件的门极结型结构使得通常JFET的阈值电压大多为负,即常通型器件,这对于电力电子的应用极为不利,无法与目前通用的驱动电路兼容。美国Semisouth公司和Rutgers大学通过引人沟槽注人式或者台面沟槽结构(TI VJFET)的器件工艺,开发出常断工作状态的增强型器件。但是增强型器件往往是在牺牲一定的正向导通电阻特性的情况下形成的,因此常通型(耗尽型)JFET 更容易实现更高功率密度和电流能力,且耗尽型JFET器件可以通过级联的方法实现常断型工作状态。级联的方法是通过串联一个低压的Si基MOSFET来组成一个开关单元,通过控制Si MOSFET 的开关来控制开关单元的开关。级联后的JFET器件的驱动电路与通用的硅基器件驱动电路自然兼容。级联的结构非常适用于在高压高功率场合替代原有的硅IGBT器件,并且直接回避了驱动电路的兼容问题。这种方式,在控制上方便,但增加了MOSFET 的通态损耗与反向恢复特性引起开关损耗的增加,另外,器件中增加的寄生参数引起器件受电压,电流变化率影响变大,限制了SiC 器件高温、高频率性能的发挥。还有一种方式是采用一个高速的电平逻辑转换电路把控制信号电平转换为SiC JFET开关所需要的正(零)电位与负电位。这种方法只需要提供负的驱动电源,对SiC JFET器件本身没有影响,但由于关断负电压过低,对驱动电路的隔离与高速响应有一定的要求。SiC JFET的应用中存在的另一个问题是,由SiC 器件工作时的驱动电压及器件本身的特性参数导致的SiC 器件易产生开关震荡以及由dv/dt 引起的驱动电压变化及开关电流尖峰比硅MOSFET 大得多,这个问题制约着SiC JFET 应用电路中的开关速度的提高。

目前业界对碳化硅JFET研究的热点集中在JFET器件的驱动电路设计和并联模块化等方面。

4 碳化硅MOSFET

碳化硅MOSFET驱动结构极为简单,而且与目前使用的大量驱动电路和芯片兼容,不必做额外的驱动设计,在大部分的应用中可以直接做替换性应用。但是SiC-MOSFET反型层中电子迁移率过低等对于其应用的限制成为了最为关键的问题。目前依然缺乏对于这种问题准确的物理解释和证据,一种广泛接受的模型是基于表面缺陷在能带中引入的陷阱效应,另一方面,高浓度的表面固定电荷造成的库仑散射(Coulomb Scattering)使得载流子迁移率进一步下降。另一个限制载流子迁移率因素是反型层表面不平整度散射(Surface Roughness Scattering ),尤其在更高的栅极电压下,这种散射效应将代替库仑散射占据主导地位。栅氧层的缺陷引出的另一个问题是其本身的长期稳定性问题,包括封装技术在内,这也是限制其工作温度的一大重要障碍,截止目前为止,对于这种器件能否在300摄氏度工作温度下实现可靠、稳定工作依然没有明确的定论。另外在桥臂电路中,上下管之间的串扰问题严重限制了碳化硅MOSFET 性能优势的发挥。

为了降低表面缺陷浓度,提高载流子数量和迁移率,一种最通用的办法是实现生长界面的氮注入,也被称为界面钝化(Interface Passivation ),即在栅氧层生长过程结束后,在富氮环境中进行高温退火。尽管面临栅氧层缺陷问题的制约,但是随着界面钝化工艺的成熟和进步,沟道的迁移率始终在稳步提高。如果沟道问题可以完美的解决,可以预期SiC-MOSFET器件依然将是最具应用前景的下一代器件。

5 碳化硅功率双极器件

用碳化硅可以制造阻断电压很高的双极器件,譬如高压PiN二极管和晶闸管等。随着碳化硅器件研发热潮的掀起,也引起了一些研究者对开发碳化硅BTJ的兴趣,SiC BJT毕竟不像SiC MOSFET那样会遇到氧化层品质严重影响器件特性的问题,开发碳化硅BTJ的主要问题是提高电流增益。碳化硅晶闸管在兼顾开关频率、功率处置能力和高温特性方面最能发挥碳化硅的材料特长,与碳化硅功率MOSFET相比,对3000V以上的阻断电压,其通态电流密度可以高出几个数量级,因而特别适合于交流开关方面的应用。对于直流开关方面的应用,则是碳化硅GTO(门极可关断晶闸管)之所长。

6 碳化硅器件市场供应情况

以美国Cree公司和德国Infineon公司为例,已有大批量的碳化硅肖特基二极管可商用,其额定电压有600V、650V、1200V,1700V四种电压等级,额定电流有从1A到50A不等,具有零反向恢复电流、零正向恢复电压、高频工作、与温度无关的开关特性、正向电压的正温度系数等特点,可应用于开关电源、功率因数校正、电机驱动等方面。其生产销售的碳化硅MOSFET种类较少,有额定电压为1200V,通态电阻为25毫欧到280毫欧不等,额定电流为60A到10A不等和额定电压1700V,通态电阻1欧,额定电流为3A两种。具有高阻断电压与低导通电阻、便于并联,易于驱动、雪崩耐受性强、抗闩锁效应等特点,可应用于太阳能逆变器、开关式电源、高压DC/DC变换器、充电器、电动机、脉冲电源等方面。

总结

由于碳化硅材料的优越性,其应用越来越受到重视,尤其是用SiC功率器件代替Si功率器件正备受瞩目,其研究也在不断进行。目前已进入商用的有SiC 肖特基二极管和SiC MOSFET等,然而碳化硅MOSFET的研究还未完全成熟,像碳化硅IGBT等器件的研究也只是在实验室中,除了器件自身的材料制备和加工工艺等问题外,还有驱动电路的设计、电磁干扰等问题需要解决。

碳化硅功率器件在新能源汽车行业的应用

碳化硅功率器件在新能源汽车行业的应用 随着全球经济和技术的蓬勃发展,能源消耗逐年增加。目前,全球的二氧化碳(CO2)排放中有25%来源于汽车。有报告指出,截至2030年,全球CO2排放量将曾至423亿t。在我国,汽车排放带来的污染已经成为城市大气污染中的主要因素,我国的CO2排放目前已居全球第2,节能减排已成为汽车业发展的重大课题。因此,发展新能源汽车是实现节能减排及我国汽车产业跨越式和可持续发展的必然战略措施。电力驱动系统是影响新能源汽车动力性能、可靠性和成本的关键因素。目前,EV和HEV的电力驱动部分主要由硅(Si)基功率器件组成。随着电动汽车的发展,对电力驱动的小型化和轻量化提出了更高的要求。然而,由于材料限制,传统Si基功率器件在许多方面已逼近甚至达到了其材料的本征极限,如电压阻断能力、正向导通压降、器件开关速度等,尤其在高频和高功率领域更显示出其局限性。因此,各汽车厂商都对新一代碳化硅(SiC)功率器件寄予了厚望,希望通过应用SiC功率器件大幅实现电动汽车逆变器和DC-DC 转换器(为转变输入电压后有效输出固定电压的电压转换器)等驱动系统的小型轻量化。由于SiC器件与Si器件相比,有更高的电流密度。在相同功率等级下,SiC功率模块的体积显著小于Si基绝缘栅双极型晶体管(IGBT)模块。丰田的技

术人员在一场演讲会上公开表达了对SiC器件的期待,他所强调的SiC功率器件的优点之一就是能实现功率模块的小型化。以智能功率模块(Intelligent Power Module,IPM)为例,利用SiC功率器件,其模块体积可缩小至Si基功率模块的1/3~2/3。由于SiC器件的能量损耗只有Si器件的50%,发热量也只有Si基器件的50%;另外,SiC器件还有非常优异的高温稳定性。因此,散热处理也更加容易进行,不但可以显著减小散热器的体积,还可以实现逆变器与马达的一体化。基于上述原因,SiC器件也被美誉为“重环保时代的关键元件”。SiC功率半导体已成为节能、高效、环保的代名词。为此,汽车业界对SiC的期待十分迫切,丰田汽车表示“SiC 具有与汽油发动机同等的重要性”。在输出功率为30kW 的工况下,试制的逆变器体积为0.5L,输出密度为60kW/L,此时功率元件的温度约为180℃。构成逆变器的器件除了SiC功率模块外,还包括驱动SiC功率器件的控制电路、散热片、冷却风扇及电容器等。因此,国内要想在电力电子器件方面摆脱国外束缚,改变我国电力电子技术长期落后的局面,就需要Si基IGBT和新一代SiC电力电子器件双管齐下,共同追赶国外先进技术的脚步。保证在Si基器件不断成熟的情况下,新一代器件技术也与国外的齐头并进。当新一代器件技术普及时,中国就可以站在电子功率器件的高端领域,改写整个电子功率器件全球产业化竞争的格局。

碳化硅电子器件发展分析报告

碳化硅电力电子器件的发展现状分析 目录 1.SiC器件的材料与制造工艺 (2) 1.1 SiC单晶 (2) 1.2 SiC外延 (3) 1.3 SiC器件工艺 (4) 2. SiC二极管实现产业化 (5) 3. SiC JFET器件的产业化发展 (7) 4. SiC MOSFET器件实用化取得突破 (7) 5. SiC IGBT器件 (8) 6. SiC功率双极器件 (9) 7. SiC 功率模块 (10) 8. 国内的发展现状 (11) 9. SiC电力电子器件面对的挑战 (11) 9.1 芯片制造成本过高 (11) 9.2 材料缺陷多,单个芯片电流小 (12) 9.3 器件封装材料与技术有待提高 (12) 10. 小结 (12)

在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN 型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1.SiC器件的材料与制造工艺 1.1 SiC单晶 碳化硅早在1842年就被发现了,但直到1955年,飞利浦(荷兰)实验室的Lely 才开发出生长高品质碳化硅晶体材料的方法。到了1987年,商业化生产的SiC衬底进入市场,进入21世纪后,SiC衬底的商业应用才算全面铺开。碳化硅分为立方相(闪锌矿结构)、六方相(纤锌矿结构)和菱方相3大类共260多种结构,目前只有六方相中的4H-SiC、6H-SiC才有商业价值,美国科锐(Cree)等公司已经批量生产这类衬底。立方相(3C-SiC)还不能获得有商业价值的成品。 SiC单晶生长经历了3个阶段, 即Acheson法、Lely法、改良Lely法。利用SiC 高温升华分解这一特性,可采用升华法即Lely法来生长SiC晶体。升华法是目前商业生产SiC单晶最常用的方法,它是把SiC粉料放在石墨坩埚和多孔石墨管之间,在惰性气体(氩气)环境温度为2 500℃的条件下进行升华生长,可以生成片状SiC晶体。由于Lely法为自发成核生长方法,不容易控制所生长SiC晶体的晶型,且得到的晶体尺寸很小,后来又出现了改良的Lely法。改良的Lely法也被称为采用籽晶的升华法或物理气相输运法 (简称PVT法)。PVT法的优点在于:采用 SiC籽晶控制所生长晶体的晶型,克服了Lely法自发成核生长的缺点,可得到单一晶型的SiC单晶,且可生长较大尺寸的SiC单晶。国际上基本上采用PVT法制备碳化硅单晶。目前能提供4H-SiC晶片的企业主要集中在欧美和日本。其中Cree产量占全球市场的85%以上,占领着SiC晶体生长及相关器件制作研究的前沿。目前,Cree的6英寸SiC晶片已经商品化,可以小批量供货。此外,国内外还有一些初具规模的SiC晶片供应商,年销售量在1万片上下。Cree生产的SiC晶片有80%以上是自己消化的,用于LED衬底材料,所以Cree是全球

第三代半导体面SiC碳化硅器件及其应用

第三代半导体面-SiC(碳化硅)器件及其应用 作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件.因此,SiC器件和各类传感器已逐步成为关键器件之一,发挥着越来超重要的作用. 从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前SiC器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,均为SiO2,这意味着大多数Si器件特别是M帕型器件都能够在Si C上制造出来.尽管只是简单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场.S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC M OSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC 材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能.1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV的4H-SiC肖特基二极管,特征导通电阻为43mΩ?c㎡,这是目前SiC 肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边沿处的电场集中.所以提高肖特基二极管阻断电压的主要方法就是采用不同的边沿阻断结构以减弱边沿处的电场集中.最常采用的边沿阻断结构有3种:深槽阻断、介质阻断和pn结阻断.普放大学采用的方法是硼注入pn结阻断结构,所选用的肖特基接触金属有Ni,Ti.2000年4月Cree和K ansai联合研制出一只击穿电压高达12.3kV的SiC整流器,主要采用了新的外延工艺和改进的器件设计.该器件具有很低的导通电阻,正向导通电压只有4.9 V ,电流密度高,可以达到100A/c㎡,是同类Si器件的5倍多. 1.2 SiC功率器件 由于SIC的击穿电场强度大约为Si的8倍.所以SiC功率器件的特征导通电阻可以做得小到相应Si器件的1/400.常见的功率器件有功率MOSFET、IGBT以及多种MOS控制闸流管等.为了提高器件阻断电压和降低导通电阻,许多优化的器件结构已经被使用.表1给出了

碳化硅电子元器件简介

碳化硅材料的优点 ?高电子饱和速度 (2x Si ) ?高击穿电压 (10x Si ) ?Wide band gap (3x Si ) ?大禁带宽度 (3x Si ) ?高熔点 (2x Si ) ?导通电阻低 ?高频特性好 ?耐高压 ?高温特性好 ?可以超高速开关,大大提高产品效率,减小散热设备面积 ?可以实现设备小型化 (如电动汽车充电器) ?可在高压下稳定工作 (高速列车,电力等) ?可在高温环境下稳定使用 (电动汽车等) 材料 器件 应用

碳化硅器件的耐温特性 GPT SIC DIODES VS SILICON FRD( 600V10A ) Company A Company A GPT

SiC SBD 主要产品 政府项目: SiC BJT: 1200V10A SiC MOS: 1200V40m ?/80m? 碳化硅 BJT/MOS 650V200A/1200V450A 碳化硅混合模块 650V: 3A/4A/5A/6A/8A/10A/20A/30A/50A/80A/100A 1200V: 2A/5A/10A/20A/40A/50A 1700V: 10A/30A 3300V: 0.6A/1A/2A/3A/5A/50A 碳化硅肖特基二极管

产品认证 ISO 9001 认证可靠性试验报告Rohs 认证CE 认证

应用市场 PFC EV Car/Train Traction UPS Solar Inverter ? 耐高温 ?使用碳化硅器件使得光伏逆变器输出功率从10kW 提升至40kW ,但是碳化硅器件的高温特性不需要更大体积的散热片系统,从而避免额外增加系统体积和重量。 ? 高开关效率 更高工作频率下使用碳化硅开关器件大大减小每千瓦输出功率所要求的的电容体积。 ? 低传导损耗 ?碳化硅器件可加倍电流输送。同样芯片面积的碳化硅器件即可承担硅器件输出功率的4倍以上。

碳化硅功率器件的发展现状及其在电力系统中的应用展望

碳化硅功率器件的发展现状及其在电力系统中的应用展望 摘要:碳化硅作为一种宽禁带材料,具有高击穿场强、高饱和电子漂移速率、高热导率等优点,可以实现高压、大功率、高频、高温应用的新型功率半导体器件。该文对碳化硅功率半导体器件的最新发展进行回顾,包括碳化硅功率二极管、MOSFET、IGBT,并对其在电力系统的应用现状与前景进行展望。 关键词:碳化硅;功率器件;电力系统 1 引言 理想的半导体功率器件,应当具有这样的静态和动态特性:在阻断状态,能承受高电压;在导通状态,具有高的电流密度和低的导通压降;在开关状态和转换时,具有短的开、关时间,能承受高的d i/d t 和d u/d t,具有低的开关损耗,并具有全控功能。半个多世纪以来(自20世纪50年代硅晶闸管的问世),半导体功率器件的研究工作者为实现上述理想的器件做出了不懈的努力,并已取得了世人瞩目的成就。各类硅基功率半导体器件(功率二极管、VDMOS、IGBT、IGCT等)被成功制造和应用,促使各种新型大功率装置成功地应用于各种工业电源、电机驱动、电力牵引、电能质量控制、可再生能源发电、分布式发电、国防和前沿科学技术等领域。 然而由于在电压、功率耐量等方面的限制,这些硅基大功率器件在现代高性能电力电子装置中(要求具有变流、变频和调相能力;快速的响应性能~ms;利用极小的功率控制极大功率;变流器体积小、重量轻等)不得不采用器件串、并联技术和复杂的电路拓扑来达到实际应用的要求,导致装置的故障率和成本大大增加,制约了现代电力系统的进一步发展。 近年来,作为新型的宽禁带半导体材料——碳化硅(SiC),因其出色的物理及电特性,正越来越受到产业界的广泛关注。碳化硅功率器件的重要优势在于具有高压(达数万伏)、高温(大于500℃)特性,突破了硅基功率器件电压(数kV)和温度(小于150℃)限制所导致的严重系统局限性。随着碳化硅材料技术的进步,各种碳化硅功率器件被研发出来,如碳化硅功率二极管、MOSFET、IGBT等,由于受成本、产量以及可靠性的影响,碳化硅功率器件率先在低压领域实现了产业化,目前的商业产品电压等级在600~1700V。近两年来,随着技术的进步,高压碳化硅器件已经问世,如19.5kV的碳化硅二极管[1],10kV的碳化硅MOSFET[2]和13~15kV[3-4]碳化硅IGBT等,并持续在替代传统硅基功率器件的道路上取得进步。这些碳化硅功率器件的成功研发带来了半导体功率器件性能的飞跃提升,引发了

碳化硅让功率器件更加高效

碳化硅让功率器件更加高效 尽管坠落的陨石非常罕见,但作为外太空的一种天然矿物质(似乎不是非常罕见),碳化硅(SiC)通常被人们看作是一种复合物质,此物质是美国发明家爱德华·古德 里奇·艾奇逊于19世纪90年代发现的。爱德华·古德里奇·艾奇逊在此之前离开了托马斯·爱迪生(白炽灯先驱)的团队,并从事人造金刚石的开发工作。正是在此过 程中,当使用碳弧光灯对铁碗中的粘土和焦炭混合物进行加热时,他注意到了一些闪耀的蓝色晶体。后来他获得了许多专利,并首次将超硬晶体硅与碳的化合物作为产品(如砂纸、研磨和切割工具)中的磨料应用于我们的生活中,且在之后将该物质应用于防弹背心、汽车制动器和火箭发动机、发光二极管(早在1907年,世界 首根发光二极管,您能相信吗)以及功率半导体中。 为什么碳化硅可应用于功率半导体中?主要原因是它的能带隙较宽,这决定了需要多少能量来使电子在SiC材料上的能带之间进行跳变,使其载流。三个电子伏周围的宽带隙意味着热量、辐射和其他外部因素将不会对其性能产生破坏性影响。 因此,碳化硅是在这些特性方面(例如允许运行温度和辐射暴露)优于硅的材料,并且在高电压情况下绝缘击穿电场强度方面也拥有有利的性能;高电子速度意味着可以在较高频率下使用该材料;用于散热的高导热性为其提供了可在功率器件中使用的较大潜能。 或者更简单地说,可保证小型设计中高温下的更高效率和更少损失。因此,为什么不普及碳化硅的应用呢?我们想说,在不久以后——当在一些应用过程中阻碍商业化的晶体缺陷问题被持续解决之后、生产效率改善之后,瑞萨电子公司将在一段时间内生产肖特基势垒二极管。碳化硅功率场效应晶体管(SiCPowerMOSFET)和 绝缘栅双极晶体管(IGBT)已经面临SiC和二氧化硅接口方面的额外挑战,但是,在反复对这些问题进行广泛调查之后,情况日益得到了改善,由于持续开发SiC-MOSFET,已经可以使用瑞萨电子的混合器件,并将容易使用的传统硅MOSFET 与大规模导通电阻改进相结合,使其具有更高效率,同时也增加了约26%的效率,我们的混合IGBT将SiC二极管嵌入到IGBT包内,节省了传统需要的大约50%的PCB空间,前提是还应考虑由于减少的热损失而导致散热器更小。 除了大量SiC元件供应商的晶体生产产量以及工艺效率提高之外,市场因素在引领碳化硅电力技术(尤其是在效率方面)方面也发挥了一定作用。在一些应用中(例如空调和太阳能阵列),对于有效功率变换的需求非常强,并且功率切换效率和逆变电路由立法以及客户态度所支配。 出于这种考虑,瑞萨电子开发了在功率变换及其他此类应用中使用的碳化硅肖特基势垒二极管(SBD),以确保更快转换速度以及更低运行电压。

第三代半导体面SiC碳化硅器件及其应用修订稿

第三代半导体面S i C碳化硅器件及其应用 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

第三代半导体面-S i C(碳化硅)器件及其应用 作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件.因此,SiC器件和各类传感器已逐步成为关键器件之一,发挥着越来超重要的作用.从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前Si C器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,均为SiO2,这意味着大多数Si器件特别是M帕型器件都能够在SiC上制造出来.尽管只是简单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场. S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC MOSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能. 1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV的4H-SiC肖特基二极管,特征导通电阻为43mΩc㎡,这是目前SiC肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边沿处的电场集中.所以提高肖特基二极管阻断电压的主要方法就是采用不同的边沿阻断结构以减弱边沿处的电场集中.最常采用的边沿阻断结构有3种:深槽阻断、介质阻断和pn结阻断.普放大学采用的方法是硼注入pn结阻断结构,所选用的肖特基接触金属有Ni,Ti.2000年4月Cree和Kansai联合研制出一只击穿电压高达12.3kV的SiC整流器,主要采用了新的外延工艺和改进的器件设计.该器件具有很低的导通电阻,正向导通电压只有 V ,电流密度高,可以达到100A/c㎡,是同类Si器件的5倍多. SiC功率器件由于SIC的击穿电场强度大约为Si的8倍.所以SiC功率器件的特征导通电阻可以做得小到相应S i器件的1/400.常见的功率器件有功率MOSFET、IGBT以及多种MOS控制闸流管等.为

碳化硅电力电子器件的发展现状分析

碳化硅电力电子器件的发展现状分析在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1. SiC二极管实现产业化 SiC电力电子器件中,SiC二极管最先实现产业化。2001年德国Infineon公司率先推出SiC二极管产品,美国Cree和意法半导体等厂商也紧随其后推出了SiC二极管产品。在日本,罗姆、新日本无线及瑞萨电子等投产了SiC二极管。很多企业在开发肖特基势垒二极管(SBD)和JBS结构二极管。目前,SiC二极管已经存在600V~1700V电压等级和50A电流等级的产品。 SiC 肖特基二极管能提供近乎理想的动态性能。做为单子器件,它的工作过程中没有电荷储存,因此它的反向恢复电流仅由它的耗尽层结电容造成,其反向恢复电荷以及其反向恢复损耗比Si超快恢复二极管要低一到两个数量级。更重要的是,和它匹配的开关管的开通损耗也可以得到大幅度减少,因此提高电路的开关频率。另外,它几乎没有正向恢复电压,因而能够立即导通,不存在双极型器件的开通延时现象。在常温下,其正态导通压降和Si

电力电子中的碳化硅SiC

电力电子中的碳化硅SiC SiC in Power Electronics Volker Demuth, Head of Product Management Component, SEMIKRON Germany 据预测,采用SiC的功率模块将进入诸如可再生能源、UPS电源、驱动器和汽车等应用。风电和牵引应用可能会随之而来。到2021年,SiC功率器件市场总额预计将上升到10亿美元 [1]。在某些市场,如太阳能,SiC器件已投入运行,尽管事实上这些模块的价格仍然比常规硅器件高。是什么使这种材料具有足够的吸引力,即使价格更高也心甘情愿地被接受?首先,作为宽禁带材料,SiC提供了功率半导体器件的新设计方法。传统功率硅技术中,I GBT开关被用于高于600V的电压,并且硅PIN-续流二极管是最先进的。硅功率器件的设计与软开关特性造成相当大的功率损耗。有了SiC的宽禁带,可设计阻断电压高达15kV的高压MOSFET,同时动态损耗非常小。有了SiC,传统的软关断硅二极管可由肖特基二极管取代,并带来非常低的开关损耗。作为一个额外的优势,SiC具有比硅高3倍的热传导率。连同低功率损耗,SiC是提高功率模块中功率密度的一种理想材料。目前可用的设计是SiC混合模块(IGBT和SiC肖特基二极管)和全SiC模块。 SiC混合模块 SiC混合模块中,传统IGBT与SiC肖特基二极管一起开关。虽然SiC器件的主要优势是与低动态损耗相关,但首先讨论SiC肖特基二极管的静态损耗。通常情况下,SiC器件的静态损耗似乎比传统的硅器件更高。图1.a显示了传统软开关600V赛米控CAL HD续流二极管的正向压降V f,为低开关损耗而优化的快速硅二极管和SiC肖特基二极管,所有的额定电流为10 A。 图1.a中:25℃和150℃下不同续流二极管的正向电流与正向压降。对比了10A的SiC肖特基二极管,传统的软开关硅二极管(CAL H D)和快速硅二极管(硅快速)。1.b:同一二极管的正向压降和电流密度(正向电流除以芯片面积)。 在10A的额定电流下,硅续流二极管展现出最低的正向压降,SiC肖特基二极管的V f更高,而快速硅二极管展现出最高的正向压降。正向电压与温度之间的关联差别很大:快速硅二极管具有负的温度系数,150°C下的V f比2 5°C下的V f低。对于12A以上的电流,CAL的温度系数为正,SiC肖特基二极管即使电流为4A时,温度系数也为正。由于二极管通常并联以实现大功率器件,需要具有正温度系数以避免并联二极管中的电流不平衡和运行温度不

第三代半导体面 SiC 碳化硅 器件及其应用

第三代半导体面-S i C(碳化硅)器件及其应用作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件.因此,SiC器件和各类传感器已逐步成为关键器件之一,发挥着越来超重要的作用. 从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC 材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前SiC器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC 材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,均为SiO2,这意味着大多数Si器件特别是M帕型器件都能够在SiC上制造出来.尽管只是简

单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场.S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、Si C射频功率晶体管以及SiC MOSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以 提高SiC器件的功能和性能. 1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV的4H-SiC肖特基二极管,特征导通电阻为43mΩ?c㎡,这是目前SiC肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边沿处的 电场集中.所以提高肖特基二极管阻断电压的主要方法就是采用不同的边沿阻断结构以减弱边沿处的电场集中.最常采用的边沿阻断结构有3种:深槽阻断、介质阻断和pn结阻断.普放大学采用的方法是硼注入pn结阻断结构,所选用的肖特基接触金属有Ni,Ti.2000年4月Cree和Kansai联合研制

碳化硅功率器件可靠性综述 (1)

碳化硅功率MOSFET可靠性综述 陈思哲 1.碳化硅功率器件的提出 过去的几十年间,电力电子器件在结构设计,工艺流程以及材料品质等方面取得了长足的进步。然而,与此同时,技术的进步也使得传统硅基器件在许多方面已逼近甚至达到了其材料的本证极限,如电压阻断能力,正向导通压降,器件开关速度等。近二十年里,这样的事实和随之而来的紧迫感使得电力电子技术人员不断寻求一种新的方法,以获得更为优异的器件特性,更高的功率密度以及更低的系统能耗。其中,人们最为期待是使用宽禁带半导体材料代替硅制备功率器件[1]。 相比于其他宽禁带半导体材料(如GaN等),碳化硅(SiC)所具有的一个先天优势是可以形成自然的氧化层(SiO2),这使得碳化硅器件可轻易的继承在硅器件中已广泛使用的金属-氧化物-半导体(MOS)结构以及相关技术。目前,以碳化硅为基底电力电子功率器件研究方兴未艾。相比于传统的硅材料,碳化硅材料具有的优势包括:10倍以上的电场承受能力,3倍左右的禁带宽度,以及大于3倍的导热系数等。极高的电场承受能力使得碳化硅功率器件具有很薄的衬底和较高的掺杂浓度,更大的禁带宽度使得它能够工作在更高的温度下并有强的抗辐射能力。而碳化硅材料的高导热系数(4.9℃/W)则意味着更为迅速的热量耗散,即器件可以承受更高的功率密度和工作温度。不过,虽然使用碳化硅材料制备电力电子功率器件前景广阔,相关器件的可靠性,尤其是长期工作的可靠性一直是人们关注的重点。 本篇文章主要讨论碳化硅器件,特别是碳化硅功率MOSFET的可靠性以及相关问题。功率MOSFET是一种使用金属-氧化物-半导体结构控制器件表面电流通断的一种电力电子器件,具有开关速度快,驱动简单等特点,目前已广泛应用于中低压电力变换装置中。而若改用碳化硅材料,则可使制得的MOSFET器件阻断电压大幅提升,并保持较低的导通阻抗,从而有望取代目前占领中高压市场的IGBT器件。然而,值得注意的是,虽然碳化硅展现了出众的电学和物理学特性,但相关器件在设计和制备中出现的一系列问题是我们无法回避的。尽管大部分可归咎于材料和器件工艺的不成熟,并能够通过长期的研究加以解决,另一些可能是使用这种材料所带来的根本性缺陷。在下文中,作者将针对这些问题展开讨论。

SiC肖特基二极管调查报告解析

SiC结势垒肖特基二极管总结报告 何东(B140900200)肖凡(B140900208)于佳琪(B140900204) 一、SiC JBS器件的发展现状 1. 宽禁带半导体材料的优势 当前,随着微电子器件向低功耗、高耐压、高可靠性方向的发展,对半导体材料的要求也逐渐提高。微电子器件越来越多的应用在高温、高辐照、高频和大功率等特殊环境。为了满足微电子器件在耐高温和抗辐照等领域的应用,需要研发新的半导体材料,从而最大限度地提高微电子器件性能。传统的硅器件和砷化镓器件限制了装置和系统性能的提高。以碳化硅(SiC)和氮化镓(GaN)为代表的第三代半导体材料,由于材料本身的宽禁带宽度和高临界击穿电场等优点成为制作耐高温、高功率和抗辐照等电子器件的理想的半导体材料[1]。目前研究的SiC基器件有高温和功率SiC器件、微波和高频SiC器件、SiC光电器件、抗辐照器件等[2]。 SiC材料的临界击穿场强是Si材料的10倍,SiC的禁带宽度和热导率均是Si材料的3倍,本征载流子的浓度也只有硅材料的十分之一。这些优异的物理特性使SiC材料制成的半导体功率器件在高频、高温、大功率及高辐照等环境下有很高的优势。SiC在不同的环境下能形成不同的晶体结构,现在常用的有3C-SiC、 4H-SiC、6H-SiC三种晶体结构。4H-SiC材料以其较高的禁带宽度和空穴迁移率,较低的本征载流子浓度成为制造半导体器件的主流材料[3-4]。 具备以上优异的物理特性的4H-SiC材料主要有以下应用: (1)利用其优异的热导率特性,在器件封装及温度方面的要求低,4H-SiC 器件适合应用在卫星、航空和航天探测、石油以及地热钻井探测、汽车发动机等需要耐高温的环境中。 (2)利用其宽禁带宽度和高化学稳定性,在高频和抗辐照等领域,4H-SiC 器件具有不可替代的作用,因为它可以抵御强大的射线辐射,在核战或强电磁干扰中的耐受能力远远超过硅基器件。 (3)利用其高的饱和速度和临界击穿场强,4H-SiC是1~10 GHz范围的大功率微波放大器的理想应用材料,高频和微波4H-SiC器件在军用雷达、通信和广

宽禁带功率MOSFET半导体器件的研究进展

宽禁带功率MOSFET半导体器件的研究进展半个世纪以来,功率半导体器件得到长足发展,极大地促进了电力电子技术的进步,而功率半导体器件的发展主要基于整个微电子领域的基石——硅材料。19世纪80年代以来,硅材料本身的物理特性对硅基功率器件性能的限制被认识得越来越清晰。 实现低导通电阻的方法是提高材料的临界击穿电场,也就是选择宽禁带的半导体材料。根据更符合实际应用,以及综合考虑功率器件的导通损耗、开关损耗和芯片面积等因素的估算,碳化硅、氮化镓和金刚石功率器件大大降低了损耗和器件面积,新型宽禁带半导体材料将引发功率器件的巨大进步。 同时,以碳化硅、氮化镓和金刚石为代表的宽禁带半导体材料具有较大的电子饱和速度,可以应用于射频器件领域。碳化硅和金刚石具有较高的热导率,适用于对需要耗散较大功率并且半导体芯片热阻是系统热阻一个重要组成部分的大功率应用领域。 基于材料的优越性能,宽禁带半导体功率器件受到广泛关注和深入研究。由于其器件性能的优势基本来源于材料本身,所以宽禁带半导体材料的研究是新型功率器件研究首先要面临的挑战。 2.碳化硅功率器件 碳化硅SiC、氮化镓GaN和金刚石是典型的宽禁带半导体材料。基于碳化硅材料的功率器件经过了长时间研究,已经具有较高的成熟度和可靠性。2004年,Cree公司成功研发微管密度低于10cm-2的高质量3英寸4H-SiC材料,并投放市场。2007年,该公司又推出了4英寸零微管密度的4H-SiC材料,可用于制作大尺寸的高功率器件。 目前Cree公司、II-VI公司、Dow Corning公司和Nippon Steel已经批量生产4英寸碳化硅晶圆。2010年业界发布了6英寸的碳化硅晶圆。150mm的晶圆毫无疑问会降低碳化硅器件制造成本,并且为4H-SiC功率器件的发展提供坚实基础。 2.1 碳化硅功率二极管

采用碳化硅器件的高效率光伏逆变器研究_潘三博

第33卷 第4期 2011-4(下) 【131】 收稿日期:2010-12-05 基金项目:河南省科技厅科技发展计划项目(102102210212) 作者简介:潘三博(1974-),男,湖北孝感人,博士后,研究方向为电力电子技术及其应用。 0 引言 随着能源的枯竭与应对温室效益的需要,光伏等可再生能源的应用日趋重要。为更加高效地利用新能源,光伏逆变器的技术发展趋势是提高效率,减小体积与重量,提高可靠性。而碳化硅半导体器件具有禁带宽、耐压高、通态电阻低、漏电流小、开关速度高、电流密度高、耐高温等优点,这决定了它在高可靠性、高频率、高效率的应用场合是理想的下一代电力电子器件[1]。近年来,国内外对碳化硅结型场效应功率晶体管在光伏逆变器的应用开展了探索性的研究[2]。 本文首先讨论了碳化硅结型场效应功率器件驱动电路特性与驱动波形。然后对碳化硅光伏逆变器的损耗进行了理论分析与计算,最后通过样机实验测试,对比了分别采用碳化硅新型器件与常规的硅IGBT 模块的光伏逆变器的效率。结果验证了采用碳化硅器件的光伏逆变器能有效提高逆变器的效率,并且提高开关频率,这对于发展体积小、重量轻、效率高的下一代光伏逆变器具有积极的影响。 1 器件的工作特性和效率分析 图1为光伏逆变器主电路,其中开关器件J1~J6均采用碳化硅结型场效应功率晶体管。光伏逆变器的一个重要指标就是效率,逆变器的损耗主要分为导通损耗、关断损耗与开关损耗。碳化硅新型器件的漏电流较小,器件的关断损耗通 常可以忽略,一般只分析导通损耗与开关损耗。下面从碳化硅器件的使用及逆变器损耗方面进行研究。 1.1 碳化硅器件的工作特性 图1 采用碳化硅器件的光伏逆变器主电路图 图2为碳化硅结型场效应功率晶体管的驱动电路简图。碳化硅结型场效应是“常通”型器件[3],即,不加栅极电压时,器件是开通状态, 栅极加负压才能使得器件关断,这就需要一个电平转换电路,把从控制器来的控制信号5V 高电平信号转化为0V,来开通碳化硅结型场效应功率晶体管。把从控制器来的0V 低电平信号转化为-24V,来有效关断碳化硅结型场效应功率晶体管。同时,因为碳化硅器件的开关速度很快,达到40kv/μs,所以要用高速光耦作为隔离元件。为快速驱动器件的开通与关断,采用了图2中T r1与T r2的图腾柱输出,使器件最大驱动电流能力达到6A。选择合适的输出阻抗可以减小器件高速开关所带来的震 采用碳化硅器件的高效率光伏逆变器研究 Research of high ef ? ciency solar inverter using SiC devices 潘三博,郝夏斐 PAN San-bo, HAO Xia-fei (安阳师范学院,安阳 455002) 摘 要: 采用新型碳化硅结型场效应功率晶体管的光伏逆变器与采用硅IGBT模块的传统光伏逆变器相 比,具有开关频率高、体积小、效率高的特点。本文对桥式碳化硅模块的驱动,以及以碳化硅器件组成的单相光伏逆变器的开关特性、开关损耗以及效率进行了理论分析与实验研究。通过实验样机的测试,验证了方案的有效性与优越性。 关键词: 碳化硅;结型场效应晶体管;光伏;逆变器 中图分类号:TN615 文献标识码:A 文章编号:1009-0134(2011)4(下)-0131-03Doi: 10.3969/j.issn.1009-0134.2011.4(下).38

碳化硅MOSFET反向导通特性建模研究

第37卷第10期2018年10月 电工电能新技术 Advanced Technology of Electrical Engineering and Energy Vol.37,No.10Oct.2018 收稿日期:2018-02-27 基金项目:高速磁浮牵引供电及控制系统关键技术研究及装备研制项目(2016YFB1200602-20) 作者简介:周志达(1991-),男,广东籍,博士研究生,研究方向为宽禁带半导体在电力电子与电力传动中的应用; 葛琼璇(1967-),女,江西籍,研究员,博士,研究方向为大功率变流器及高性能电机牵引控制技术三 碳化硅MOSFET 反向导通特性建模研究 周志达1,2,葛琼璇1,赵一鲁1,杨一博1,2 (1.中国科学院电力电子与电气驱动重点实验室,中国科学院电工研究所,北京100190; 2.中国科学院大学,北京100049)摘要:碳化硅宽禁带半导体器件因其损耗小二开关时间短以及温度特性稳定等诸多优点在中小功率变换器得到广泛关注三对比Si IGBT ,SiC MOSFET 的反向导通(第三象限运行)压降更低二损耗更小二载流能力更高,在电机驱动二移相DC /DC 变换器以及同步整流器中应用更有优势三首先研究了SiC MOSFET 反向导通机理及其外特性随温度变化规律,提出了一种适用于不同封装二不同型号的反向导通建模方法,实现仅需数据手册即可快速建立包含不同结温特性的行为模型,仿真结果验证了提出的建模方法对分立元件和功率模块的准确性和有效性三关键词:碳化硅MOSFET ;反向导通;通用行为模型 DOI :10.12067/ATEEE1802039一一一文章编号:1003-3076(2018)10-0010-07一一一中图分类号:TN32 1一引言 电力电子开关器件的电气性能通常用额定功率 容量和最大工作频率的乘积表征[1],自硅基半导体器件得到规模应用的五十多年来,目前器件电气性能在 109~1010W 四Hz 之间,已经接近材料极限[1,2]三与硅基材料相比,化合物半导体碳化硅材料制成的宽禁带开关器件具有耐压等级高二导通电阻小二高频损耗低和温度特性稳定等诸多优点三在器件商业化初期主要应用于小功率开关电源二模块化光伏发电等领域,替代了Si MOSFET 分立元件,系统效率得到提升,功率器件数目进一步减少[3]三随着1700V /300A 和1200V /300A 功率模块量产,SiC MOSFET 逐渐替代Si IGBT 应用于轨道交通[4-6]二电动汽车[7]二数据中心供电系统[8-10]等大功率场合,系统功率密度二运行效率以及器件损耗均有不同程度的改善三 MOSFET 作为单极型器件,其沟道本身可正反向导通电流,加上其内部寄生二极管,可实现反向稳态导通二死区时间换流以及PWM 调制变换的需求;而双极型IGBT 器件必须反并联二极管才可实现反向导通,导通压降和损耗较高,载流能力较低三另一方面,MOSFET 反向导通机理对比IGBT 的反并联二 极管导通复杂,随着沟道反型层的不同状态以及寄生二极管两端施加电压大小,可能存在二极管独立导通二沟道独立导通以及沟道和二极管并联导通3种情况三 SiC MOSFET 作为新型化合物半导体器件,其 沟道导通电阻二器件阈值电压的温度特性与Si MOSFET 有很大差别[11],内部寄生二极管由于MOS 界面缺陷导致阈值电压高,导通电阻大,目前应用中普遍反并联SiC 肖特基势垒二极管(Schottky Barrier Diode,SBD)[12]以旁路性能较差的寄生二极管,但这种全SiC 组合器件不仅提升了系统成本,反向导通过程也变得更加复杂三 目前SiC 器件成本仍然较高,器件迭代速度较快,研究器件反向导通机理能更好地评估反并联SBD 的必要性,对反向导通特性的建模可用于预测系统性能二体积以及效率等关键指标三文献[13]提出的经典的SiC MOSFET 行为建模方法,采用Pspice Level 1模型[14]做沟道内核,在大电流正向导通特性精度较差且无法对反向导通特性独立建模三文献[15]基于经典EKV (Enz Krummenacher Vittoz)模 型,采用统一的沟道电流表达式描述沟道在弱二中二强三种不同反型层的特性三但沟道正反向导通模型

关于碳化硅功率器件的调研

关于碳化硅功率器件的调研 前言 以硅器件为基础的电力电子技术,因大功率场效应晶体管(功率MOSFET)和绝缘栅双极晶体管(IGBT)等新型电力电子器件的全面应用而日臻成熟。目前,这些器件的开关性能己随其结构设计和制造工艺的相当完善而接近其由材料特性决定的理论极限,依靠硅器件继续完善和提高电力电子装置与系统性能的潜力已十分有限。 首先,硅低的击穿电场意味着在高压工作时需要采用厚的轻掺杂层,这将引起较大的串联电阻,特别是对单极器件尤其如此。为了减少正向压降,电流密度必须保持在很低的值,因此硅器件的大电流是通过增加硅片面积来实现的。在一定的阻断电压下,正向压降由于载流子在轻掺杂区的存储而降低,这种效应称为结高注入的串联电阻调制效应。然而存储电荷的存储和复合需要时间,从而降低了器件的开关速度,增加了瞬态功率损耗。硅器件由于小的禁带宽度而使在较低的温度下就有较高的本征载流子浓度,高的漏电流会造成热击穿,这限制了器件在高温环境和大功率耗散条件下工作。其它限制是硅的热导率较低。 于是,依靠新材料满足新一代电力电子装置与系统对器件性能的更高要求,早在世纪交替之前就在电力电子学界与技术界形成共识,对碳化硅电力电子器件的研究与开发也随之形成热点。 1 碳化硅材料 以SiC,GaN 为代表的宽禁带半导体材料,是继以硅和砷化镓为代表的第一代&第二代半导体材料之后迅速发展起来的新型半导体材料。表1列出了不同半导体材料的特性对比。从表中可以看出,碳化硅作为一种宽禁带半导体材料,不但击穿电场强度高,还具有电子饱和漂移速度高、热导率高等特点,可以用来制作各种耐高温的高频大功率器件。SiC 由碳原子和硅原子组成,其晶体结构具有同质多型体的特点,在半导体领域最常用的是4H-SiC 和6H-SiC 两种。 碳化硅材料的优异性能使得SiC 电力电子器件与Si 器件相比具有以下突出的性能优势: 表1 不同半导体材料的特性对比 类型 Si GaAs GaN SiC 4H-SiC 6H-SiC 3C-SiC 禁带宽度/eV 1.12 1.42 3.45 3.2 3.0 2.2 击穿电场 (MV/cm ) 0.6 0.6 >1 2.2 2.4 2 热导率 (W/cm.k ) 1.5 0.5 1.3 4.9 4.9 5 介电常数 11.9 13.1 9 9.7 9.7 9.72 电子饱和漂 移速度(10e7 cm/s ) 1.0 1.2 2.2 2 2 2.2 电子迁移率 (cm2/v.s ) 1200 6500 1250 1020 600 1000 空穴迁移率 (cm2/v.s ) 420 320 850 120 40 40

相关主题
文本预览
相关文档 最新文档