当前位置:文档之家› 碳化硅让功率器件更加高效

碳化硅让功率器件更加高效

碳化硅让功率器件更加高效
碳化硅让功率器件更加高效

碳化硅让功率器件更加高效

尽管坠落的陨石非常罕见,但作为外太空的一种天然矿物质(似乎不是非常罕见),碳化硅(SiC)通常被人们看作是一种复合物质,此物质是美国发明家爱德华·古德

里奇·艾奇逊于19世纪90年代发现的。爱德华·古德里奇·艾奇逊在此之前离开了托马斯·爱迪生(白炽灯先驱)的团队,并从事人造金刚石的开发工作。正是在此过

程中,当使用碳弧光灯对铁碗中的粘土和焦炭混合物进行加热时,他注意到了一些闪耀的蓝色晶体。后来他获得了许多专利,并首次将超硬晶体硅与碳的化合物作为产品(如砂纸、研磨和切割工具)中的磨料应用于我们的生活中,且在之后将该物质应用于防弹背心、汽车制动器和火箭发动机、发光二极管(早在1907年,世界

首根发光二极管,您能相信吗)以及功率半导体中。

为什么碳化硅可应用于功率半导体中?主要原因是它的能带隙较宽,这决定了需要多少能量来使电子在SiC材料上的能带之间进行跳变,使其载流。三个电子伏周围的宽带隙意味着热量、辐射和其他外部因素将不会对其性能产生破坏性影响。

因此,碳化硅是在这些特性方面(例如允许运行温度和辐射暴露)优于硅的材料,并且在高电压情况下绝缘击穿电场强度方面也拥有有利的性能;高电子速度意味着可以在较高频率下使用该材料;用于散热的高导热性为其提供了可在功率器件中使用的较大潜能。

或者更简单地说,可保证小型设计中高温下的更高效率和更少损失。因此,为什么不普及碳化硅的应用呢?我们想说,在不久以后——当在一些应用过程中阻碍商业化的晶体缺陷问题被持续解决之后、生产效率改善之后,瑞萨电子公司将在一段时间内生产肖特基势垒二极管。碳化硅功率场效应晶体管(SiCPowerMOSFET)和

绝缘栅双极晶体管(IGBT)已经面临SiC和二氧化硅接口方面的额外挑战,但是,在反复对这些问题进行广泛调查之后,情况日益得到了改善,由于持续开发SiC-MOSFET,已经可以使用瑞萨电子的混合器件,并将容易使用的传统硅MOSFET

与大规模导通电阻改进相结合,使其具有更高效率,同时也增加了约26%的效率,我们的混合IGBT将SiC二极管嵌入到IGBT包内,节省了传统需要的大约50%的PCB空间,前提是还应考虑由于减少的热损失而导致散热器更小。

除了大量SiC元件供应商的晶体生产产量以及工艺效率提高之外,市场因素在引领碳化硅电力技术(尤其是在效率方面)方面也发挥了一定作用。在一些应用中(例如空调和太阳能阵列),对于有效功率变换的需求非常强,并且功率切换效率和逆变电路由立法以及客户态度所支配。

出于这种考虑,瑞萨电子开发了在功率变换及其他此类应用中使用的碳化硅肖特基势垒二极管(SBD),以确保更快转换速度以及更低运行电压。

可以看到SiCSBD(如瑞萨RJS6005TDPP)的第一个优点是切换速度,这使得与传统产品相比,SiCSBD的切换功率损失降低了40%。

当将二极管从打开切换至关闭时,规定的正向电流通过它之后,由于连接位置处积聚了少量载流,反向电流将会出现。从打开切换至关闭后恢复至规定电流值所需的时间为反向恢复时间。

SiCSBD拥有的反向恢复时间为15纳秒,这比同等硅快约40%。(注意这是在

IF=15A、di/dt=300A/us条件下测量的标准值)。反过来,与硅产品相比,此更快的切换速度也使得功率损失减少了40%到60%。使用者也获得了更简单的EMI控制电路设计这一优点,进一步减少了成本、PCB空间,并缩短了进入市场时间。

碳化硅器件中显示的减少切换损失也通过为设计师提供在更高频率下运行的选项,保证了进一步的效率增加。另一方面,使用配备有IGBT并且频率降低的二极管将进一步减少热损失,从而为进一步减小散热器尺寸提供了机会。

研发者还探讨了电压下降,并且当将SiC与硅进行比较时,这一点同样让人印象深刻。SiCSBD(例如瑞萨RJS6005TDPP)的正向电压额定值仅为1.5V,这比现有硅

快速触发二极管的正向电压额定值小。此外,温度对这一特性的依赖性较小,这就意味着即使在高温下运行时也能达到稳定的正向电压,而反过来意味着可以采取较少的散热措施,即再次减少了系统成本。

瑞萨RJS6005TDPP使用等同于行业标准TO-220的包装,并且它还具有兼容的管脚,使得其可以轻易取代传统二极管。瑞萨产品可以使用一排电流小于等于30A、且它们的电压容差目前为600V此后将为1200V的二极管。

图1给出了目前可以使用的瑞萨器件。

图1:碳化硅二极管(RJS60系列)阵列

这些仅仅是碳化硅进入电子器件生产领域的开始。市场研究表明,SiC半导体器件市场于2012和2022年之间开始以约38%的复合年增长率进行增长。因此,虽然目前碳化硅可能仅占功率器件的约1%,但所有碳化硅期间将很快充斥整个市场。

碳化硅功率器件在新能源汽车行业的应用

碳化硅功率器件在新能源汽车行业的应用 随着全球经济和技术的蓬勃发展,能源消耗逐年增加。目前,全球的二氧化碳(CO2)排放中有25%来源于汽车。有报告指出,截至2030年,全球CO2排放量将曾至423亿t。在我国,汽车排放带来的污染已经成为城市大气污染中的主要因素,我国的CO2排放目前已居全球第2,节能减排已成为汽车业发展的重大课题。因此,发展新能源汽车是实现节能减排及我国汽车产业跨越式和可持续发展的必然战略措施。电力驱动系统是影响新能源汽车动力性能、可靠性和成本的关键因素。目前,EV和HEV的电力驱动部分主要由硅(Si)基功率器件组成。随着电动汽车的发展,对电力驱动的小型化和轻量化提出了更高的要求。然而,由于材料限制,传统Si基功率器件在许多方面已逼近甚至达到了其材料的本征极限,如电压阻断能力、正向导通压降、器件开关速度等,尤其在高频和高功率领域更显示出其局限性。因此,各汽车厂商都对新一代碳化硅(SiC)功率器件寄予了厚望,希望通过应用SiC功率器件大幅实现电动汽车逆变器和DC-DC 转换器(为转变输入电压后有效输出固定电压的电压转换器)等驱动系统的小型轻量化。由于SiC器件与Si器件相比,有更高的电流密度。在相同功率等级下,SiC功率模块的体积显著小于Si基绝缘栅双极型晶体管(IGBT)模块。丰田的技

术人员在一场演讲会上公开表达了对SiC器件的期待,他所强调的SiC功率器件的优点之一就是能实现功率模块的小型化。以智能功率模块(Intelligent Power Module,IPM)为例,利用SiC功率器件,其模块体积可缩小至Si基功率模块的1/3~2/3。由于SiC器件的能量损耗只有Si器件的50%,发热量也只有Si基器件的50%;另外,SiC器件还有非常优异的高温稳定性。因此,散热处理也更加容易进行,不但可以显著减小散热器的体积,还可以实现逆变器与马达的一体化。基于上述原因,SiC器件也被美誉为“重环保时代的关键元件”。SiC功率半导体已成为节能、高效、环保的代名词。为此,汽车业界对SiC的期待十分迫切,丰田汽车表示“SiC 具有与汽油发动机同等的重要性”。在输出功率为30kW 的工况下,试制的逆变器体积为0.5L,输出密度为60kW/L,此时功率元件的温度约为180℃。构成逆变器的器件除了SiC功率模块外,还包括驱动SiC功率器件的控制电路、散热片、冷却风扇及电容器等。因此,国内要想在电力电子器件方面摆脱国外束缚,改变我国电力电子技术长期落后的局面,就需要Si基IGBT和新一代SiC电力电子器件双管齐下,共同追赶国外先进技术的脚步。保证在Si基器件不断成熟的情况下,新一代器件技术也与国外的齐头并进。当新一代器件技术普及时,中国就可以站在电子功率器件的高端领域,改写整个电子功率器件全球产业化竞争的格局。

碳化硅电子器件发展分析报告

碳化硅电力电子器件的发展现状分析 目录 1.SiC器件的材料与制造工艺 (2) 1.1 SiC单晶 (2) 1.2 SiC外延 (3) 1.3 SiC器件工艺 (4) 2. SiC二极管实现产业化 (5) 3. SiC JFET器件的产业化发展 (7) 4. SiC MOSFET器件实用化取得突破 (7) 5. SiC IGBT器件 (8) 6. SiC功率双极器件 (9) 7. SiC 功率模块 (10) 8. 国内的发展现状 (11) 9. SiC电力电子器件面对的挑战 (11) 9.1 芯片制造成本过高 (11) 9.2 材料缺陷多,单个芯片电流小 (12) 9.3 器件封装材料与技术有待提高 (12) 10. 小结 (12)

在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN 型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1.SiC器件的材料与制造工艺 1.1 SiC单晶 碳化硅早在1842年就被发现了,但直到1955年,飞利浦(荷兰)实验室的Lely 才开发出生长高品质碳化硅晶体材料的方法。到了1987年,商业化生产的SiC衬底进入市场,进入21世纪后,SiC衬底的商业应用才算全面铺开。碳化硅分为立方相(闪锌矿结构)、六方相(纤锌矿结构)和菱方相3大类共260多种结构,目前只有六方相中的4H-SiC、6H-SiC才有商业价值,美国科锐(Cree)等公司已经批量生产这类衬底。立方相(3C-SiC)还不能获得有商业价值的成品。 SiC单晶生长经历了3个阶段, 即Acheson法、Lely法、改良Lely法。利用SiC 高温升华分解这一特性,可采用升华法即Lely法来生长SiC晶体。升华法是目前商业生产SiC单晶最常用的方法,它是把SiC粉料放在石墨坩埚和多孔石墨管之间,在惰性气体(氩气)环境温度为2 500℃的条件下进行升华生长,可以生成片状SiC晶体。由于Lely法为自发成核生长方法,不容易控制所生长SiC晶体的晶型,且得到的晶体尺寸很小,后来又出现了改良的Lely法。改良的Lely法也被称为采用籽晶的升华法或物理气相输运法 (简称PVT法)。PVT法的优点在于:采用 SiC籽晶控制所生长晶体的晶型,克服了Lely法自发成核生长的缺点,可得到单一晶型的SiC单晶,且可生长较大尺寸的SiC单晶。国际上基本上采用PVT法制备碳化硅单晶。目前能提供4H-SiC晶片的企业主要集中在欧美和日本。其中Cree产量占全球市场的85%以上,占领着SiC晶体生长及相关器件制作研究的前沿。目前,Cree的6英寸SiC晶片已经商品化,可以小批量供货。此外,国内外还有一些初具规模的SiC晶片供应商,年销售量在1万片上下。Cree生产的SiC晶片有80%以上是自己消化的,用于LED衬底材料,所以Cree是全球

第三代半导体面SiC碳化硅器件及其应用

第三代半导体面-SiC(碳化硅)器件及其应用 作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件.因此,SiC器件和各类传感器已逐步成为关键器件之一,发挥着越来超重要的作用. 从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前SiC器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,均为SiO2,这意味着大多数Si器件特别是M帕型器件都能够在Si C上制造出来.尽管只是简单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场.S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC M OSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC 材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能.1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV的4H-SiC肖特基二极管,特征导通电阻为43mΩ?c㎡,这是目前SiC 肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边沿处的电场集中.所以提高肖特基二极管阻断电压的主要方法就是采用不同的边沿阻断结构以减弱边沿处的电场集中.最常采用的边沿阻断结构有3种:深槽阻断、介质阻断和pn结阻断.普放大学采用的方法是硼注入pn结阻断结构,所选用的肖特基接触金属有Ni,Ti.2000年4月Cree和K ansai联合研制出一只击穿电压高达12.3kV的SiC整流器,主要采用了新的外延工艺和改进的器件设计.该器件具有很低的导通电阻,正向导通电压只有4.9 V ,电流密度高,可以达到100A/c㎡,是同类Si器件的5倍多. 1.2 SiC功率器件 由于SIC的击穿电场强度大约为Si的8倍.所以SiC功率器件的特征导通电阻可以做得小到相应Si器件的1/400.常见的功率器件有功率MOSFET、IGBT以及多种MOS控制闸流管等.为了提高器件阻断电压和降低导通电阻,许多优化的器件结构已经被使用.表1给出了

功率场效应管原理

功率场效应晶体管(MOSFET)原理 功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。 一、电力场效应管的结构和工作原理 电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。在电力电子装置中,主要应用N沟道增强型。 电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。 电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。电气符号,如图1(b)所示。

电力场效应晶体管有3个端子:漏极D、源极S和栅极G。当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。如果在栅极和源极之间加一正向电压U GS,并且使U GS大于或等于管子的开启电压U T,则管子开通,在漏、源极间流过电流I D。U GS超过U T越大,导电能力越强,漏极电流越大。 二、电力场效应管的静态特性和主要参数 Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。{{分页}} 1、静态特性 (1)输出特性 输出特性即是漏极的伏安特性。特性曲线,如图2(b)所示。由图所见,输出特性分为截止、饱和与非饱和3个区域。这里饱和、非饱和的概念与GTR不同。饱和是指漏极电流I D不随漏源电压U DS的增加而增加,也就是基本保持不变;非饱和是指地U CS 一定时,I D随U DS增加呈线性关系变化。 (2)转移特性

MOS功率与选型

品牌: 美国的IR,型号前缀IRF;日本的TOSHIBA; NXP,ST(意法),NS(国半),UTC,仙童,Vishay。 MOS管选型指南. xls

关于MOS选型 第一步:选用N沟道还是P沟道 低压侧开关选N-MOS,高压侧开关选P-MOS 根据电路要求选择确定VDS,VDS要大于干线电压或总线电压。这样才能提供足够的保护,使MOS管不会失效。 第二步:确定额定电流 额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOS管能承受这个额定电流,即使在系统产生尖峰电流时。 MOS管并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOS 管在“导通”时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显著变化。器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RD S(ON)就会越高。 第三步:确定热要求 器件的结温等于最大环境温度加上热阻与功率耗散的乘积(结温=最大环境温度+[热阻×功率耗散])。根据这个方程可解出系统的最大功率耗散,即按定义相等于I2×RDS(ON)。第四步:决定开关性能

选择MOS管的最后一步是决定MOS管的开关性能。影响开关性能的参数有很多,但最重要的是栅极/漏极、栅极/源极及漏极/源极电容。这些电容会在器件中产生开关损耗,因为在每次开关时都要对它们充电。MOS管的开关速度因此被降低,器件效率也下降。 详细的MOS管的选型可以参考资料3

MOS管正确选择的步骤 正确选择MOS管是很重要的一个环节,MOS管选择不好有可能影响到整个电路的效率和成本,了解不同的MOS管部件的细微差别及不同开关电路中的应力能够帮助工程师避免诸多问题,下面我们来学习下MOS管的正确的选择方法。 第一步:选用N沟道还是P沟道 为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOS管。在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。当MOS管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOS 管,这也是出于对电压驱动的考虑。 要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。下一步是确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOS管不会失效。就选择MOS管而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。知道MOS管能承受的最大电压会随温度而变化这点十分重要。设计人员必须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。设计工程师需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V。 第二步:确定额定电流 第二步是选择MOS管的额定电流。视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOS管能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。在连续导通模式下,MOS管处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。 选好额定电流后,还必须计算导通损耗。在实际情况下,MOS管并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOS管在“导通”时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显著变化。器件的功率耗损可由Iload2&TImes;RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。对系统设计人员来说,这就是取决于系统电压而需要折中权衡的地方。对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。注意RDS(ON)电阻会随着电流轻微上升。关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。 技术对器件的特性有着重大影响,因为有些技术在提高最大VDS时往往会使RDS(ON)

碳化硅电子元器件简介

碳化硅材料的优点 ?高电子饱和速度 (2x Si ) ?高击穿电压 (10x Si ) ?Wide band gap (3x Si ) ?大禁带宽度 (3x Si ) ?高熔点 (2x Si ) ?导通电阻低 ?高频特性好 ?耐高压 ?高温特性好 ?可以超高速开关,大大提高产品效率,减小散热设备面积 ?可以实现设备小型化 (如电动汽车充电器) ?可在高压下稳定工作 (高速列车,电力等) ?可在高温环境下稳定使用 (电动汽车等) 材料 器件 应用

碳化硅器件的耐温特性 GPT SIC DIODES VS SILICON FRD( 600V10A ) Company A Company A GPT

SiC SBD 主要产品 政府项目: SiC BJT: 1200V10A SiC MOS: 1200V40m ?/80m? 碳化硅 BJT/MOS 650V200A/1200V450A 碳化硅混合模块 650V: 3A/4A/5A/6A/8A/10A/20A/30A/50A/80A/100A 1200V: 2A/5A/10A/20A/40A/50A 1700V: 10A/30A 3300V: 0.6A/1A/2A/3A/5A/50A 碳化硅肖特基二极管

产品认证 ISO 9001 认证可靠性试验报告Rohs 认证CE 认证

应用市场 PFC EV Car/Train Traction UPS Solar Inverter ? 耐高温 ?使用碳化硅器件使得光伏逆变器输出功率从10kW 提升至40kW ,但是碳化硅器件的高温特性不需要更大体积的散热片系统,从而避免额外增加系统体积和重量。 ? 高开关效率 更高工作频率下使用碳化硅开关器件大大减小每千瓦输出功率所要求的的电容体积。 ? 低传导损耗 ?碳化硅器件可加倍电流输送。同样芯片面积的碳化硅器件即可承担硅器件输出功率的4倍以上。

功率半导体器件在我国的发展现状

功率半导体器件在我国的发展现状 MOSFET是由P极、N极、G栅极、S源极和D漏级组成。它的导通跟阻断都由电压控制,电流可以双向流过,其优点是开关速度很高,通常在几十纳秒到几百纳秒,开关损耗小,适用于各类开关电源。但它也有缺点,那就是在高压环境下压降很高,随着电压的上升,电阻变大,传导损耗很高。 随着电子电力领域的发展,IGBT出现了。它是由BJT和MOS组成的复合式半导体,兼具二者的优点,都是通过电压驱动进行导通的。IGBT克服了MOS的缺点,拥有高输入阻抗和低导通压降的特点。因此,其广泛应用于开关电源、电车、交流电机等领域。 如今,各个行业的发展几乎电子化,对功率半导体器件的需求越来越大,不过现在功率半导体器件主要由欧美国家和地区提供。我国又是全球需求量最大的国家,自给率仅有10%,严重依赖进口。功率半导体器件的生产制造要求特别严格,需要具备完整的晶圆厂、芯片制造厂、封装厂等产业链环节。国内企业的技术跟资金条件暂时还无法满足。 从市场格局来看,全球功率半导体市场中,海外龙头企业占据主导地位。我国功率半导体器件的生产制造还需要付出很大的努力。制造功率半导体器件有着严格的要求,每一道工序都需要精心控制。最后的成品仍需要经过专业仪器的测试才能上市。这也是为半导体器件生产厂家降低生产成本,提高经济效益的体现。没有经过测试的半导体器件一旦哪方面不及格,则需要重新返工制造,将会增加了企业的生产成本。

深圳威宇佳公司是国内知名的功率半导体检测专家,专门生产制造简便易用、高精度的设备,让操作人员轻松上手操作,省力更省心。如生产的IGBT动态参数测试设备、PIM&单管IGBT 专用动态设备、IGBT静态参数测试设备、功率半导体测试平台等,均是经过经验丰富的技术人员精心打磨出来的,设备高可靠性、高效率,已在市场上应用超过10年,历经了超过500万只模块/DBC的测试考验。

碳化硅功率器件的发展现状及其在电力系统中的应用展望

碳化硅功率器件的发展现状及其在电力系统中的应用展望 摘要:碳化硅作为一种宽禁带材料,具有高击穿场强、高饱和电子漂移速率、高热导率等优点,可以实现高压、大功率、高频、高温应用的新型功率半导体器件。该文对碳化硅功率半导体器件的最新发展进行回顾,包括碳化硅功率二极管、MOSFET、IGBT,并对其在电力系统的应用现状与前景进行展望。 关键词:碳化硅;功率器件;电力系统 1 引言 理想的半导体功率器件,应当具有这样的静态和动态特性:在阻断状态,能承受高电压;在导通状态,具有高的电流密度和低的导通压降;在开关状态和转换时,具有短的开、关时间,能承受高的d i/d t 和d u/d t,具有低的开关损耗,并具有全控功能。半个多世纪以来(自20世纪50年代硅晶闸管的问世),半导体功率器件的研究工作者为实现上述理想的器件做出了不懈的努力,并已取得了世人瞩目的成就。各类硅基功率半导体器件(功率二极管、VDMOS、IGBT、IGCT等)被成功制造和应用,促使各种新型大功率装置成功地应用于各种工业电源、电机驱动、电力牵引、电能质量控制、可再生能源发电、分布式发电、国防和前沿科学技术等领域。 然而由于在电压、功率耐量等方面的限制,这些硅基大功率器件在现代高性能电力电子装置中(要求具有变流、变频和调相能力;快速的响应性能~ms;利用极小的功率控制极大功率;变流器体积小、重量轻等)不得不采用器件串、并联技术和复杂的电路拓扑来达到实际应用的要求,导致装置的故障率和成本大大增加,制约了现代电力系统的进一步发展。 近年来,作为新型的宽禁带半导体材料——碳化硅(SiC),因其出色的物理及电特性,正越来越受到产业界的广泛关注。碳化硅功率器件的重要优势在于具有高压(达数万伏)、高温(大于500℃)特性,突破了硅基功率器件电压(数kV)和温度(小于150℃)限制所导致的严重系统局限性。随着碳化硅材料技术的进步,各种碳化硅功率器件被研发出来,如碳化硅功率二极管、MOSFET、IGBT等,由于受成本、产量以及可靠性的影响,碳化硅功率器件率先在低压领域实现了产业化,目前的商业产品电压等级在600~1700V。近两年来,随着技术的进步,高压碳化硅器件已经问世,如19.5kV的碳化硅二极管[1],10kV的碳化硅MOSFET[2]和13~15kV[3-4]碳化硅IGBT等,并持续在替代传统硅基功率器件的道路上取得进步。这些碳化硅功率器件的成功研发带来了半导体功率器件性能的飞跃提升,引发了

碳化硅让功率器件更加高效

碳化硅让功率器件更加高效 尽管坠落的陨石非常罕见,但作为外太空的一种天然矿物质(似乎不是非常罕见),碳化硅(SiC)通常被人们看作是一种复合物质,此物质是美国发明家爱德华·古德 里奇·艾奇逊于19世纪90年代发现的。爱德华·古德里奇·艾奇逊在此之前离开了托马斯·爱迪生(白炽灯先驱)的团队,并从事人造金刚石的开发工作。正是在此过 程中,当使用碳弧光灯对铁碗中的粘土和焦炭混合物进行加热时,他注意到了一些闪耀的蓝色晶体。后来他获得了许多专利,并首次将超硬晶体硅与碳的化合物作为产品(如砂纸、研磨和切割工具)中的磨料应用于我们的生活中,且在之后将该物质应用于防弹背心、汽车制动器和火箭发动机、发光二极管(早在1907年,世界 首根发光二极管,您能相信吗)以及功率半导体中。 为什么碳化硅可应用于功率半导体中?主要原因是它的能带隙较宽,这决定了需要多少能量来使电子在SiC材料上的能带之间进行跳变,使其载流。三个电子伏周围的宽带隙意味着热量、辐射和其他外部因素将不会对其性能产生破坏性影响。 因此,碳化硅是在这些特性方面(例如允许运行温度和辐射暴露)优于硅的材料,并且在高电压情况下绝缘击穿电场强度方面也拥有有利的性能;高电子速度意味着可以在较高频率下使用该材料;用于散热的高导热性为其提供了可在功率器件中使用的较大潜能。 或者更简单地说,可保证小型设计中高温下的更高效率和更少损失。因此,为什么不普及碳化硅的应用呢?我们想说,在不久以后——当在一些应用过程中阻碍商业化的晶体缺陷问题被持续解决之后、生产效率改善之后,瑞萨电子公司将在一段时间内生产肖特基势垒二极管。碳化硅功率场效应晶体管(SiCPowerMOSFET)和 绝缘栅双极晶体管(IGBT)已经面临SiC和二氧化硅接口方面的额外挑战,但是,在反复对这些问题进行广泛调查之后,情况日益得到了改善,由于持续开发SiC-MOSFET,已经可以使用瑞萨电子的混合器件,并将容易使用的传统硅MOSFET 与大规模导通电阻改进相结合,使其具有更高效率,同时也增加了约26%的效率,我们的混合IGBT将SiC二极管嵌入到IGBT包内,节省了传统需要的大约50%的PCB空间,前提是还应考虑由于减少的热损失而导致散热器更小。 除了大量SiC元件供应商的晶体生产产量以及工艺效率提高之外,市场因素在引领碳化硅电力技术(尤其是在效率方面)方面也发挥了一定作用。在一些应用中(例如空调和太阳能阵列),对于有效功率变换的需求非常强,并且功率切换效率和逆变电路由立法以及客户态度所支配。 出于这种考虑,瑞萨电子开发了在功率变换及其他此类应用中使用的碳化硅肖特基势垒二极管(SBD),以确保更快转换速度以及更低运行电压。

2017年功率半导体器件行业分析报告

2017年功率半导体器件行业分析报告 2017年11月

目录 一、功率半导体器件,电力控制的核心器件 (4) 1、功率半导体器件的作用 (4) 2、功率半导体器件市场分析 (8) 二、下游需求旺盛,功率半导体器件交货期延长 (10) 三、常见的功率半导体器件 (11) 1、MOSFET (11) 2、IGBT (13) 四、国内功率半导体进口替代进行时 (19) 1、捷捷微电:具备晶闸管自主设计和制造能力,进口替代空间大 (19) 2、扬杰科技:积极布局SiC宽禁带功率半导体器件 (21) 3、士兰微:国家大基金入股,8寸线如期试产 (22) 4、华微电子:第六代IGBT产品研发成功 (23)

功率半导体器件可以用来控制电路通断,从而实现电力的整流、逆变、变频等变换。一般将额定电流超过1A 的半导体器件归类为功率半导体器件,这类器件的阻断电压分布在几伏到上万伏。常见的功率半导体器件有金属氧化物半导体场效应管(MOSFET)、绝缘栅双极晶体管芯片(IGBT)及模块等。 半导体功率器件广泛应用于汽车、家电、光伏、风电、轨交等领域,渗透进了人们生活的方方面面。从2016年下半年开始,功率半导体器件行情回暖,需求持续旺盛,但是受限于产能,原厂交货周期开始延长。一般来说MOSFET、整流管和晶闸管的交货周期是8周左右,但现在部分MOSFET、整流管和晶闸管交期已被延长到24至30周。 我国的功率半导体器件的起步虽然较晚,但是市场规模增长迅速。从2011年的1386亿元增长到2016年的2088亿元,年均复合增速达8.53%,已经成为全球最大的功率半导体市场之一。但是我国的功率半导体生产厂商与国际巨头相比还有较大差距。目前全球主要的功率半导体厂商均为英飞凌、德仪、STM、恩智浦等国外企业。国内功率半导体器件需要大量进口,如IGBT 有90%依赖进口,因此进口替代空间巨大。 为推动我国半导体产业的发展,2014年国家成立了千亿规模的国家集成电路产业投资基金(简称“大基金”)。由于从本质上讲,功率半导体器件与集成电路(IC)芯片非常类似,它们都由PN结、双极型晶体管、MOS 结构构成,因此两者的理论基础相同,大多数工艺也相同。因此大基金的设立也有利于功率半导体器件的发展。2016

怎样去选择好逆变器功率器件

怎样去选择好逆变器功率器件 逆变器的主功率元件的选择至关重要,目前使用较多的功率元件有达林顿功率晶体管(GTR),功率场效应管(MOSFET),绝缘栅晶体管(IGBT)和可关断晶闸管(GTO)等。在小容量低压系统中使用较多的器件为MOSFET,因为MOSFET 具有较低的通态压降和较高的开关频率;在高压中容量系统中一般均采用IGBT模块,这是因为MOSFET随着电压的升高其通态电阻也随之增大,而IGBT 在中容量系统中占有较大的优势;而在特大容量(100KVA以上)系统中,一般均采用GTO作为功率元件。 ⑴ 功率器件的分类: ① GTR电力晶体管(Giant Transistor): GTR功率晶体管即双极型晶体管(bipolar transistor),所谓双极型是指其电流由电子和空穴两种载流子形成的。一般采用达林顿复合结构。它的优点是:高电流密度和低饱和电压。它的缺点即MOSFET的优点(见下)。 ② MOSFET (Metal Oxide Semiconductor Field Effect Tyansistor) 功率场效应模块(金属氧化物场效应管):其优点是: η开关速度快:功率MOSFET又称VDMOS,是一种多子导电器件,参加导电的是多数载流子,没有少子存储现象,所以无固有存储时间,其开关速度仅取决于极间寄生电容,故开关时间极短(小于50-100ns),因而具有更高的工作频率(可达100KHz以上)。 η驱动功率小:功率MOSFET是一种电压型控制器件,即通断均由栅极电压控制。完全开通一个功率MOSFET仅需要10-20毫微秒库仑的电荷,例如一个1安培、10毫微秒宽的方波脉冲,完全开通一个功率MOSFET仅需要10毫微秒的时间。另外还需注意的是在特定的下降时间内关断器件无需负栅脉冲。由于栅极与器件主体是电隔离的,因此功率增益高,所需要的驱动功率很小,驱动电路简单。η安全工作区域(SOA)宽:功率MOSFET无二次击穿现象,因此其SOA较同功率的GTR双极性晶体管大,且更稳定耐用,工作可靠性高。 η过载能力强:功率MOSFET开启电压(阀值电压)一般为2-6v,因此具有很高的噪声容限和抗干扰能力。 η并联容易:功率MOSFET的通态电阻具有正稳定系数(即通态电阻随结温升高而增加),因而在多管并联时易于均流,对扩大整机容量有利。 η功率MOSFET具有较好的线性,且对温度不敏感。因此开环增益高,放大器级数相对可减少。 η器件参数一致性较好,批量生产离散率低。 功率MOSFET的缺点:导通电阻大,且随温度升高而增大。υ ⑵ 功率MOSFET的主要参数特性: ① 漏源击穿电压(V) V(BR)DSS :是在UGS =0时漏极和源极所能承受的最大电压,它是结温的正温度系数函数。 ② 漏极额定电流ID :ID 是流过漏极的最大的连续电流,它主要受器件工作温度的限制。一般生产厂家给出的漏极额定电流是器件外壳温度Tc=25℃时的值,所以在选择器件时要考虑充分的裕度,防止在器件温度升高时漏极额定电流降低而损坏器件。

第三代半导体面SiC碳化硅器件及其应用修订稿

第三代半导体面S i C碳化硅器件及其应用 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

第三代半导体面-S i C(碳化硅)器件及其应用 作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件.因此,SiC器件和各类传感器已逐步成为关键器件之一,发挥着越来超重要的作用.从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前Si C器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,均为SiO2,这意味着大多数Si器件特别是M帕型器件都能够在SiC上制造出来.尽管只是简单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场. S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC MOSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能. 1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV的4H-SiC肖特基二极管,特征导通电阻为43mΩc㎡,这是目前SiC肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边沿处的电场集中.所以提高肖特基二极管阻断电压的主要方法就是采用不同的边沿阻断结构以减弱边沿处的电场集中.最常采用的边沿阻断结构有3种:深槽阻断、介质阻断和pn结阻断.普放大学采用的方法是硼注入pn结阻断结构,所选用的肖特基接触金属有Ni,Ti.2000年4月Cree和Kansai联合研制出一只击穿电压高达12.3kV的SiC整流器,主要采用了新的外延工艺和改进的器件设计.该器件具有很低的导通电阻,正向导通电压只有 V ,电流密度高,可以达到100A/c㎡,是同类Si器件的5倍多. SiC功率器件由于SIC的击穿电场强度大约为Si的8倍.所以SiC功率器件的特征导通电阻可以做得小到相应S i器件的1/400.常见的功率器件有功率MOSFET、IGBT以及多种MOS控制闸流管等.为

功率二极管结构和工作原理

功率二极管结构和工作原理 在本征半导体中掺入P型和N型杂质,其交界处就形成了PN结,在PN结的两端引出两个电极,并在外面装上管壳,就成为半导体二极管。如果一杂质半导体和金属形成整流接触,并在两端引出两个电极,则成为肖特基二极管。 二极管的结构和工作原理: PN结的形成及二极管的单向导电性描述如下: 如下图1所示,对于一块纯净的半导体,如果它的一侧是P区,另一侧为N区,则在P区和N区之间形成一交界面。N区的多子(电子)向P区运动,P区的多子(空穴)向N区运动,这种由于浓度差异而引起的运动称为“扩散运动”。扩散到P区的电子不断地与空穴复合,同时P区的空穴向N区扩散,并与N区中的电子复合。交界面两侧多子复合的结果就出现了由不能移动的带电离子组成的“空间电荷区”。N区一侧出现正离子区,P区一侧出现负离子区,正负离子在交界面两侧形成一个内电场。这个内电场对多子的扩散运动起阻碍作用的同时,又有利于N区的少子(空穴)进入P区,P区的少子(电子)进入N区,这种在内电场作用下少子的运动称为“漂移运动”。扩散运动有助于内电场的加强,内电场的加强将阻碍多子的扩散,而有助于少子的漂移,少子漂移运动的加强又将削弱内电场,又有助于多子的扩散,最终扩散运动和漂移运动必在一定温度下达到动态平衡。即在单位时间内P区扩散到N区的空穴数量等于由P区漂移到N区的自由电子数量,形成彼此大小相等,方向相反的漂移电流和扩散电流,交界面的总电流为零。在动态平衡时,交界面两侧缺少载流子的区域称为“耗尽层“,这就形成了PN结。

如图2所示,当PN结处于正偏,即P区接电源正端,N区接电源负端时,外加电场与PN 结内电场方向相反,内电场被削弱,耗尽层变宽,打破了PN结的平衡状态,使扩散占优势。多子形成的扩散电流通过回路形成很大的正向电流,此时PN结呈现的正向电阻很小,称为“正向导逋”。当PN结上流过的正向电流较小时,二极管的电阻主要是作为基片的低掺杂N区的欧姆电阻,其阻值较高且为常量,因而管压降随正向电流的上升而增加;当PN结上流过的正向电流较大时,注入并积累在低掺杂N区的少子空穴浓度将很大,为了维持半导体电中性条件,其多子浓度也相应大幅度增加,使得其电阻率明显下降,也就是电导率大大增加,这就是电导调制效应。电导调制效应使得PN结在正向电流较大时压降仍然很低,维持在1V左右,所以正向偏置的PN结表现为低阻态,为保护PN结,通常要在回路中串联一个限流电阻。

电力电子中的碳化硅SiC

电力电子中的碳化硅SiC SiC in Power Electronics Volker Demuth, Head of Product Management Component, SEMIKRON Germany 据预测,采用SiC的功率模块将进入诸如可再生能源、UPS电源、驱动器和汽车等应用。风电和牵引应用可能会随之而来。到2021年,SiC功率器件市场总额预计将上升到10亿美元 [1]。在某些市场,如太阳能,SiC器件已投入运行,尽管事实上这些模块的价格仍然比常规硅器件高。是什么使这种材料具有足够的吸引力,即使价格更高也心甘情愿地被接受?首先,作为宽禁带材料,SiC提供了功率半导体器件的新设计方法。传统功率硅技术中,I GBT开关被用于高于600V的电压,并且硅PIN-续流二极管是最先进的。硅功率器件的设计与软开关特性造成相当大的功率损耗。有了SiC的宽禁带,可设计阻断电压高达15kV的高压MOSFET,同时动态损耗非常小。有了SiC,传统的软关断硅二极管可由肖特基二极管取代,并带来非常低的开关损耗。作为一个额外的优势,SiC具有比硅高3倍的热传导率。连同低功率损耗,SiC是提高功率模块中功率密度的一种理想材料。目前可用的设计是SiC混合模块(IGBT和SiC肖特基二极管)和全SiC模块。 SiC混合模块 SiC混合模块中,传统IGBT与SiC肖特基二极管一起开关。虽然SiC器件的主要优势是与低动态损耗相关,但首先讨论SiC肖特基二极管的静态损耗。通常情况下,SiC器件的静态损耗似乎比传统的硅器件更高。图1.a显示了传统软开关600V赛米控CAL HD续流二极管的正向压降V f,为低开关损耗而优化的快速硅二极管和SiC肖特基二极管,所有的额定电流为10 A。 图1.a中:25℃和150℃下不同续流二极管的正向电流与正向压降。对比了10A的SiC肖特基二极管,传统的软开关硅二极管(CAL H D)和快速硅二极管(硅快速)。1.b:同一二极管的正向压降和电流密度(正向电流除以芯片面积)。 在10A的额定电流下,硅续流二极管展现出最低的正向压降,SiC肖特基二极管的V f更高,而快速硅二极管展现出最高的正向压降。正向电压与温度之间的关联差别很大:快速硅二极管具有负的温度系数,150°C下的V f比2 5°C下的V f低。对于12A以上的电流,CAL的温度系数为正,SiC肖特基二极管即使电流为4A时,温度系数也为正。由于二极管通常并联以实现大功率器件,需要具有正温度系数以避免并联二极管中的电流不平衡和运行温度不

散热器的选型与计算

散热器的选型与计算 以7805为例说明问题. 设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出. 正确的设计法是: 首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-Ta)/Pd Tjmax :芯组最大结温150℃ Ta :环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率-输出功率 ={24×0.75+(-24)×(-0.25)}-9.8×0.25×2 =5.5℃/W

总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d:散热器厚度cm A:散热器面积cm2 C:修正因子取1 按现有散热器考虑,d=1.0A=17.6×7+17.6×1×13 算得散热器热阻RQd-a=4.1℃/W, 散热器选择及散热计算 目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿式封装,这主要是可便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散热

碳化硅电力电子器件的发展现状分析

碳化硅电力电子器件的发展现状分析在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1. SiC二极管实现产业化 SiC电力电子器件中,SiC二极管最先实现产业化。2001年德国Infineon公司率先推出SiC二极管产品,美国Cree和意法半导体等厂商也紧随其后推出了SiC二极管产品。在日本,罗姆、新日本无线及瑞萨电子等投产了SiC二极管。很多企业在开发肖特基势垒二极管(SBD)和JBS结构二极管。目前,SiC二极管已经存在600V~1700V电压等级和50A电流等级的产品。 SiC 肖特基二极管能提供近乎理想的动态性能。做为单子器件,它的工作过程中没有电荷储存,因此它的反向恢复电流仅由它的耗尽层结电容造成,其反向恢复电荷以及其反向恢复损耗比Si超快恢复二极管要低一到两个数量级。更重要的是,和它匹配的开关管的开通损耗也可以得到大幅度减少,因此提高电路的开关频率。另外,它几乎没有正向恢复电压,因而能够立即导通,不存在双极型器件的开通延时现象。在常温下,其正态导通压降和Si

相关主题
文本预览
相关文档 最新文档