当前位置:文档之家› 一种用于激光二极管阵列快慢轴同时准直的新型准直器

一种用于激光二极管阵列快慢轴同时准直的新型准直器

一种用于激光二极管阵列快慢轴同时准直的新型准直器
一种用于激光二极管阵列快慢轴同时准直的新型准直器

激光二极管的特性

激光二极管的特性 1、伏安特性 半导体激光器是半导体二极管,具有单向导电性,其伏安特性与二极管相同。反向电阻大于正向电阻,可以通过用万用表测正反向电阻确定半导体激光二极管的极性及检查它的PN结好坏。但在测量时必须用1k以下的档,用大量程档时,激光器二极管的电流太大,容易烧坏。 2、P—I特性 激光二极管的出射光功率P与注入电流I的关系曲线称为P-I 曲线。 注入电流小于阈值电流I th时,激光器的输 出功率P很小,为自发辐射的荧光,荧光的输 出功率随注入电流的增加而缓慢增加。 注入电流大于Ith时,输出功率P随注入 电流的增加而急剧增加,这时P—I曲线基本上 是线性的。当I再增大时,P—I曲线开始弯曲呈非线性,这是由于随着注入电流的增大,使结温上升,导致P增加的速度减慢。 判断阈值电流的方法:在P—I特性曲线中,激光输出段曲线的向下延长线与电流轴的交点为激光二极管的阈值电流。 3、光谱特性

激光二极管的发射光谱由两个因素决定:谐振腔的参数,有源介质的增益曲线。 腔长L确定纵模间隔,宽W和高H决定横模性质。如果W和H 足够小,将只有单横模TEM00存在。 多模激光二极管在其中心波长附近呈现出多个峰值的光谱输出。单纵模激光器只有一个峰值。 工作在阈值以上的1mm腔长的增益导引LD的典型发射光谱 激光二极管是单模或多模还与泵浦电流有关。折射率导引LD,在泵浦电流较小、输出光功率较小时为多模输出;在电流较大、输出光功率较大时则变为单模输出。而增益导引LD,即使在高电流工作

下仍为多模。 折射率导引激光器光谱随光功率的变化发射光谱随注入电流而变化。IIt 发射激光,光谱突然变窄。因此,从激光二极管发射光谱图上可以确定阈值电流。当注入电流低于阈值电流时光谱很宽,当注入电流达到阈值电流时,光谱突然变窄,出现明显的峰值,此时的电流就是阈值电流。 IIt 激光辐射

半导体激光器光束准直技术研究

半导体激光器光束准直技术研究 摘要:相较于其他激光器,半导体具有结构简单、功耗低、操作方便等优点, 且目前已广泛应用于激光领域,例如:激光通信、激光测距等。基于半导体激光 器的基本结构,在垂直于结平面方向上,它发出的光束的发射角大小大约为30o;而在平行于结平面方向上,它的发射角大约为10o。正是由于两者的发射角相差 太大,所以半导体激光器在应用过程中,利用特殊的光学系统对其输出光束进行 准直是非常有必要的。 本文开篇部分主要介绍了半导体激光器的发展现状和准直意义,中间部分主 要讲述了半导体激光器的基本原理与结构分类,最后大概介绍了一些半导体激光 器光束准直方法。 关键词:半导体激光束;准直;整形 一、半导体激光器的发展现状和准直意义 半导体激光器从二十世纪六十年代开始发展,较其他激光器落后几年,如今 半导体激光器的技术已相当成熟。二十世纪七十年代开始,人们重点研究了半导 体激光器的动态特性,使其主要朝着两个方面发展,其一是功率型激光器,主要 以提高光功率为主;其二是信息型激光器,主要以传递信息为主。近年来,人们 也研发出了高功率半导体激光器,其指的是脉冲输出功率在5W以上,且连续输 出功率在100mW以上。二十世纪九十年代,在泵浦固体激光器的作用下,高功 率半导体激光器的研发取得了实质性进展,主要指半导体激光器的连续输出功率 可以达到5W~30W左右,得到了很大的提高。现在,高功率半导体激光器在国内 外的发展已相当白热化,其中国外商品化的大功率半导体激光二极管阵列已达到 千瓦级别,而国内的样品器件要稍微落后一点,但也已达到了600W。 现如今,半导体激光器已广泛应用于各行各业,但是在应用过程中,出现了 一些问题,主要是由于半导体激光器的波导结构造成的。这些问题主要表现在三 个方面:其一,半导体激光束在快轴方向和慢轴方向的发射角之间相差太大,其 中在慢轴方向的发射角大概在10o左右,而在快轴方向上的发射角甚至可以达到60o左右;其二,半导体激光器具有固有像散,即半导体激光器在慢轴和快轴两 个方向上的束腰不在同一地方;其三,半导体激光器的远场的光斑为椭圆形的。 基于这些特点,在那些条件较高的领域,几乎都要利用特殊的光学系统对输出光 束进行准直。 二、半导体激光器的基本原理与结构分类 半导体激光器是利用半导体中的电子光跃迁导致光子受激辐射从而产生的光 振荡器和光放大器的统称。 受激辐射是指若入射光的能量满足式(2-1)且大于带隙能量Eg时,则导带 中的电子将发生跃迁以及价带中的空穴将发生光子辐射。而自发辐射是指没有入 射光的光子发射。式(2-1)如下, (2-1) 其中,h是普朗克常量,是角频率。 假如系统具有数量较多的电子,那么在热平衡状态下,低能级的电子数小于 高能级的电子数,即电子的能量分布是服从费米-狄拉克分布的,所以基本来讲, 光还是被吸收的。半导体激光束发挥作用主要依靠的是激光辐射,而激光作用的 基本原理就是光放大,其是靠系统的能量分布产生反转而形成的净的光辐射产生的。对于半导体激光器来说,其与别的激光器的基本原理是无本质差别的,且阈

光纤准直器的结构与参数

?光纤准直器是光无源器件中的一个重要的组件,在光通信系统中有着非常普遍的应用。 它是由单模尾纤和准直透镜组成,具有低插入损耗,高回波损耗,工作距离长,宽带宽,高 稳定性,高可靠性,小光束发散角,体积小和重量轻等特点。可将光纤端面出射的发散光束变换为平行光束,或者将平行光束会聚并高效率耦合入光纤,是制作多种光学器件的基础器件,因此被广泛应用于光束准直,光束耦合,光隔离器,光衰减器,光开关,环行器, MM,密集波分复用器ES之中。 目录 ?光纤准直器的结构与参数 ?光纤准直器的原理 ?光纤准直器的优点 ?光纤准直器的装配 光纤准直器的结构与参数 ?光纤准直器的结构参数如图5 所示,因光纤头端面的8 度斜角,造成输出光束与准直器轴线存在夹角θ,称为点精度。图6 所示为两准直器的理想耦合情况,二者的输出光场完全重合,其间距为准直器的工作距离Zw。准直器输出高斯光束的束腰距离其端面Zw/2,束腰直径为2ωt,而高斯光束的发散角与其束腰直径成反比关系。到此我们介绍了光纤准直器的三个主要参数:工作距离、点精度和光斑尺寸。 光纤准直器的原理 ?光纤准直器的基本原理是,将光纤端面置于准直透镜的焦点处,使光束得到准直,然后在焦点附近轻微调节光纤端面位置,得到所需工作距离,因此准直器的工作距离与光纤头和透镜的间距L相关。光纤准直器的设计方法是,根据实际需求确定准直器的工作距离,依据高斯光束传输理论,确定光纤头和透镜间距L并计算光斑尺寸,然后依据光线理论计算准直器的点精度。 光纤准直器的优点 ?低插损、高回损、尺寸小 工作距离长、宽带宽

高稳定性、高可靠性 光纤准直器的装配 (1)采用斜端面插针耦合,可大大提高光纤准直器的回波损耗,当斜面倾角为8°01%增 透膜时,光纤准直器的时,光纤准直器的自聚焦透镜后端面镀反射率为0.回波损耗可达 60dB。采用斜端面插针耦合,主要是为了满足器件高回波损耗的求,角度越大,准直器的回波损耗越大。但插针的端面角度越大,准直器的插入损耗就会越大(要求是:插入损耗越小越好,回波损耗越大越好),这和准直器要求的低插入损耗矛盾,对于准直器插入损耗而言,透镜和毛细管是垂直端面最为理想。因此本文采用8°是针对环行器在这种互相制约关系下的一个折中。视应用场合不同其端面斜角可做成6°、8°、9°、11°或任何角度。 (2)透镜与光纤毛细管端面的间隙也主要是和器件高回波损耗有关,为了达到器件高回 波损耗的要求,其间隙一般大于200μm,当间隙大于200μm,器件的回波损耗值近似达到理论上最大值。但透镜和毛细管端面的间隙越大,同时会造成准直器的插入损耗增大,这又是一对矛盾,根据准直器图纸的精度要求,其间隙是0.385mm,这同时能满足高回波损耗的距离要求,也能使其插入损耗达到要求。准直器的插入损耗和回波损耗相比较而言,回波损耗更容易保证,因此在准直器装配时,以其插入损耗为检测依据,就是这个道理。

激光二极管光束整形技术

文章编号:100123806(2003)0420357205激光二极管光束整形技术 郭明秀1 沈冠群2 陆雨田1 (1中国科学院上海光学精密机械研究所,上海,201800) (2上海市激光技术所,上海,200233) 摘要:阐述了对LD 输出光束进行整形的必要性。在国内首次对目前常用的一些典型的光束整形技术的整形原理、关键技术及整形效果进行了分析、比较和评价。 关键词:激光二极管;激光二极管阵列;光束整形;拉格朗日不变量中图分类号:TN24814 文献标识码:A The technology of laser diode beam shaping Guo M i ngxi u 1,S hen Guanqun 2,L u Y utian 1 (1Shanghai Institute of Optics and Fine Mechanics ,the Chinese Academy of Science ,Shanghai ,201800) (2Shanghai Institute of Laser Technology ,Shanghai ,200233) Abstract :This paper introduces the necessity of beam shaping for LDA beam.S ome typical beam shaping methods ’shaping principles ,key techniques and shaping effects are areanalyzed ,compared and assessed for the first time.K ey w ords :laser diode (LD );laser diode array (LDA );beam shaping ;Lagrange invariant 作者简介:郭明秀,女,1975年11月出生。硕士。现从事半导体泵浦固体激光器及半导体激光器光束整形的研究工作。 收稿日期:2002212219;收到修改稿日期:2003201222 引 言 激光二极管LD (laser diode )及其阵列LDA (laser diode array )的主要特点是高效、稳定、结构简单,可制成小体积全固化器件。广泛应用于LD 泵浦的固体激光器、光纤激光器、材料处理、医药、航空航天等各个领域。 LD 由于其特殊的工作原理,其光束质量在垂直与平行于p 2n 结两个方向上相差很大。通常把垂直于p 2n 结方向称为快方向,平行于p 2n 结方向称为慢方向。快方向上的光束接近衍射极限(M 2≈1),发散角大;而慢方向上的光束质量则极差(M 2>1000),发散角小。正是由于这两个方向上的光束质量的极不均衡性使得LD 应用起来比较困难。而且这样的快慢两个方向上光束质量相差很大的光束无法用一般的光学系统直接改善而达到高功率密度输出。因此,LD 要获得更广泛的应用,必须采用光束整形方法,解决光束质量差、功率密度低的问题。 1 光束整形技术的原理、关键技术 1.1 LDA 光束整形技术的原理 假设d 为光源的尺寸,θ为其发散角,n 为所在 介质的折射率,一个光源无论经过什么样的光学成 像系统的变换,乘积L =d × θ×n 始终保持不变,称之为拉格朗日不变量。光束质量的评价一般采用M 2来表征,但通常也可采用拉格朗日不变量来表征。由于通常的光学成像系统不能改变光束的拉格朗日不变量,因此,必须将LD 光束分割、旋转、重排,即光束整形,把慢方向上的拉格朗日不变量减小,同时使快方向上的拉格朗日不变量增加,达到均衡拉格朗日不变量,提高光束质量的目的 。 图1 LDA 光束重组的几种结果 图1表示光束重排的几种结果(P 1~P 4)[1]。 CSA 是LDA 发光区排列方式。采用按微镜分割时,LDA 的发光区排列可看成像CS 一样,即在光束 第27卷 第4期 2003年8月 激 光 技 术 LASER TECHNOLO GY Vol.27,No.4August ,2003

存储器那点事(一)常见存储器分类

存储器那点事(一)常见存储器分类 前言 注:本文中所谈到的器主要是指磁盘阵列,通过SAN/NAS/iSCSI等接口与主机相连,虽然说SAN交换机、物理带库、磁带机和光盘塔也属于存储的范畴,但不在本文讨论范围内。 存储器,或者称作存储阵列,是当今业界一个比较Fashion的词,见过不少这个圈子里的公司为了提高档次,会主动往存储行业靠,经常自我标榜“哥所在的集成公司是高科技,不仅搬箱子,哥还做存储”,“哥公司自己生产具有完全知识产权的存储器”…(当然现在再这么说有点out了,现在流行自我标榜“哥公司现在做云计算高科技呢”)。 当然,这个圈子里面的人在和身边朋友自我介绍是做存储这个高科技行业时,也经常碰到另外一种情况,“哥们你们那边250G的盘多少钱一块啊,你们卖U盘么”… 那么存储器究竟该如何定义呢在我看来,二十多年前Sun公司提出了“就是计算机”的理念,对于整个IT行业发生了翻天覆地的变化,那么我们也完全可以说“存储也是计算机”。存储是什么呢,对,存储也是计算机。 2000年前的存储器,多是作为主机的附属品出现的,记得97年本人在做系统员时,看到厂商在调试几套HP 9000和SUN小型机,几个集成商的将一个个磁盘塞进一个独立架子里面(后来才知道那叫磁盘柜),一边塞进去还一边说:“哥们千万注意啊,这玩意叫磁盘阵列,贼贵,一块磁盘顶一台夏利呢”。我们当时大吃一惊,高科技啊,一块小铁片竟然顶得上大街上一辆出租车(其实当时也不过是给个JBOD+软件RAID,现在想想,真叫暴利啊)… 而且当时安装磁盘阵列也是看起来很高深的一件事情,不同于主机UNIX操作系统要插入光盘,输入命令、不断回车,磁盘阵列的安装往往是在主机安装完后再导入一

光纤准直器原理

3) 而且, q 1 q 0 l , q 2 q 3 l w /2, q 0 i 2 w01 if 1, q 3 i 2 w 02 2 if 2。 一 . 模型 光纤准直器通过透镜能实现将从发散角较大 (束腰小) 的光束转换为发散角 较小(束腰大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们 将从光纤中的出射光束认为是基模高斯光束;光纤准直器基本模型如下: 其中, q i ( i=0,1,2,3 )为高斯光束的 q 参数,q 参数定义为: 图 1 中, q i (i=0,1,2,3 )分别表示光纤端面,透镜入射面,透镜出射面,和出 射光束的束腰处的 q 参数,而w 01和 w 02分别表示透镜变换前后的束腰; l 表示光 纤端面与透镜间隔, l w 为准直器的设计工作距离。 二 . 理论分析 根据 ABCD 理论,高斯光束 q 参数经透镜变换后, Aq 1 B q2 Cq 1 D , 光纤准直器原理 曾孝奇 11 qz Rz i w 2z , 1) 2 , w z w 0 1 2 w 2)

这样,我们可以得到经过透镜后的束腰大小: AD BC w 02 w 01 2 Cl D 2 Cf 1 工作距离: 2 l 2 Al B Cl D ACf 12 , ( 5) l w 2 2 2 , ( 5) w Cl D 2 Cf 1 2 方程( 5)是关于 l 的二次方程,为使得 l 有实根,方程( 5)的判别式应该不小 于零,从而我们可以得到: AD BC 2ACf 1 , w 2 , C 2 f 1 方程( 6)表示准直器的工作距离有上限,就是一个最大工作距离 2D l wmax AD BC 2ACf 1 / C 2 f 1 。此时,我们得到: l f 1 D 。 C 分析:不论对于何 种透镜, 准直器的出射光斑和工作距离都取决于透镜的传 输矩阵 ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的 距离 l 有关, 也就是说,对于给定的入射光束和给定的透镜, 我们可以通过在透 镜焦距附近改变 l 来实现不同的工作距离。 在实际制作准直器当中, 我们正是通 过这种方法来实现不同的工作距离的。 进一步地, 如果我们需要定量计算准直器的出射束腰和工作距离, 需要具体 知道不同透镜的 ABCD 系数。对于 G Lens (自聚焦透镜,通常为 0.23P ),它的 ABCD 矩阵为: 1 cos AL 1 sin AL n o A , ( 7) n o Asin AL cos AL 其中,n 0 透镜的透镜的轴线折射率, L 为透镜的中心厚度, A 为透镜的聚焦常数。 由于G Lens 的ABCD 系数取决于 n 0,L 和 A ,因而,适当选择这些参数,同样能 改变准直器的出射光斑大小和工作距离。 对于 C lens ( 厚透镜 ) ,它的传输矩阵为: 4) 6) C A D B

光纤准直器的分析和比较

文章来源: https://www.doczj.com/doc/8016880801.html,/schemes/scheme-27.htm 在自由空间型的光无源器件(如光隔离器、光环形器、光开关等)中,输入和输出光纤端面必须间隔一定距离,以便在光路中插入一些光学元件,从而实现器件功能。从光纤输出的高斯光束(实际为近高斯光束,可以高斯光束近似处理),束腰半径较小而发散角较大,两根光纤之间的直接耦合损耗对其间距极其敏感,光纤准直器扮演这样一种功能,将从光纤输出的光准直为腰斑较大而发散角较小的光束,以增加对轴向间距的容差,如图 4 所示,从图 2(c)(d)亦可看出准直器对轴向容差的改善。 光纤准直器的结构和参数 光纤准直器的结构参数如图 5 所示,因光纤头端面的 8 度斜角,造成输出光束与准直器轴线存在夹角θ,称为点精度。图 6 所示为两准直器的理想耦合情况,二者的输出光场完全重合,其间距为准直器的工作距离Zw。准直器输出高斯光束的束腰距离其端面Zw/2,束腰直径为 2ωt,而高斯光束的发散角与其束腰直径成反比关系。到此我们介绍了光纤准直器的三个主要参数:工作距离、点精度和光斑尺寸。 光纤准直器的设计方法 光纤准直器的基本原理是,将光纤端面置于准直透镜的焦点处,使光束得到准直,然后在焦点附近轻微调节光纤端面位置,得到所需工作距离,因此准直器的工作距离与光纤头和透镜的间距 L相关。光纤准直器的设计方法是,根据实际需求确定准直器的工作距离,依据高斯光束传输理论,确定光纤头和透镜间距 L并计算光斑尺寸,然后依据光线理论计算准直器的点精度。具体设计步骤如下: a) 确定所需工作距离Zw; b) 列出从光纤端面至输出光束束腰位置的近轴光线传输矩阵; 下面以 Grin-Lens准直器为例:

半导体激光器输出特性的影响因素

半导体激光器输出特性的影响因素 半导体激光器是一类非常重要的激光器,在光通信、光存储等很多领域都有广泛的应用。下面我将探讨半导体激光器的波长、光谱、光功率、激光束的空间分布等四个方面的输出特性,并分析影响这些输出特性的主要因素。 1. 波长 半导体激光器的发射波长是由导带的电子跃迁到价带时所释放出的能量决定的,这个能量近似等于禁带宽度Eg(eV)。 hf=Eg f(Hz)和λ(μm)分别为发射光的频率和波长 且c=3×108m/s ,h=6.628×10?34J ·s ,leV=1.60×10?19J 得 决定半导体激光器输出光波长的主要因素是半导体材料和温度。 不同半导体材料有不同的禁带宽度Eg ,因而有不同的发射波长λ:GaAlAs-GaAs 材料适用于0.85μm 波段,InGaAsP-InP 材料适用于1.3~1.55μm 波段。 温度的升高会使半导体的禁带宽度变小,导致波长变大。 2. 光功率 半导体激光器的输出光功率 其中I 为激光器的驱动电流,P th 为激光器的阈值功率;I th 为激光器的阈值电流;ηd 为外微分量子效率;hf 为光子能量;e 为电子电荷。 hf 、e 为常数,Pth 很小可忽略。由此可知,输出光功率主要取决于驱动电流I 、阈值电流I th 以及外微分量子效率ηd 。驱动电流是可随意调节的,因此这里主要讨论后两者。除此之外,温度也是影响光功率的重要因素。 1)阈值电流 半导体激光器的输出光功率通常用P-I 曲线表示。当外加正向电流达到某一数值时,输出光功率急剧增加,这时将产生激光振荡,这个电流称为阈值电流,用I th 表示。当激励电流II th 时,有源区不仅有粒子数反转,而且达到了谐振条件,受激辐射为主,输出功率急剧增加,发出的是激光,此时P-I 曲线是线性变化的。对于激光器来说,要求阈值电流越小越好。 阈值电流主要与下列影响因素有关: a) 晶体的掺杂浓度越大,阈值电流越小。 b) 谐振腔的损耗越小,阈值电流越小。 c) 与半导体材料结型有关,异质结阈值电流比同质结小得多。 d) 温度越高,阈值电流越大。 2)外微分量子效率 ) (th d th I I e hf P P -+=ηλ c =f

红外线激光准直器

红外线激光准直器 Laser marking-off equipment (gy)可广泛用于各种板材切割成型机、石材机械、木工机械、金属锯床、包装机械的对刀、放线。能产生一条清晰明请打零贰玖捌捌柒贰陆柒柒叁亮的红线、体积小巧、方便调节、易于安装、稳定可靠。能较大幅度的提高工作效率。我们还可以提供电源内置一体式激光辅助定位灯,使客户的使用更加方便。 The equipment is wide applies to various boards cutting machine, stone material machine, woodcutting machine, metal sawing machine, packaging machine collimated. It can emit a clear red light, and has small body with easy adjusted and set up and also safe stability. It can improve working efficiency highly. We can offer a unity series laser marking-off equipment with power supply inside for using easier. 输出波长:635nm 650nm 输出功率:635nm 10~30mw 650nm 20~150mw 工作电压:5V DC 工作电流:≤450mA 光束发散度:0.1~1.5mrad 出光张角:10o~135o 光线直径:≤0.5mm @0.5m;≤1.0mm @3.0m;≤1.5mm @6.0m; 直线度:≤1.0mm @6.0m 光学透镜:光学镀膜玻璃或塑胶透镜 尺寸:Φ16×55mm;Φ16×65mm;Φ16×80mm;Φ22×85mm;Φ26×110mm(可定制) 尺寸:Φ45×210mm;Φ60×210mm(电源内置一体式) 工作温度:-10~75℃ 储存温度:-40~85℃ 使用寿命:连续使用大于8000小时 附件:专用电源工业支架 激光等级:Ⅲb Output wavelength: 635nm 650nm Output power: 635nm 10~30mw 650nm 20~150mw Operating voltage: 5V DC Operating current: ≤450mA Beam divergence: 0.1~1.5mrad Fan angle: 10o~135o Beam diameter: ≤0.5mm @0.5m;≤1.0mm @3.0m;≤1.5mm @6.0m; L ine degree:≤1.0mm @6.0m Optics: coated glass lens or plastic lens Size: Φ16×55mm;Φ16×65mm;Φ16×80mm;Φ22×85mm;Φ26×110mm(made as requirement; Φ45×210mm;Φ60×210mm(power supply inside series)

光纤准直器原理

(5) 一. 模型 光纤准直器通过透镜能实现将从发散角较大(束腰小)的光束转换为发散角较小(束腰 大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们将从光纤中的出射光束 认为是基模高斯光束;光纤准直器基本模型如下: 图1光纤准直器原理示意图 其中,q i (i=0,1,2,3)为高斯光束的q 参数,q 参数定义为: i i ; (i ) q z R z 1 2 ? w z 丄2 2 2 f “ z 上 w 0 R z z , w z Wo .〔 一 , f 7 (2) z \ f 图1中,q i (i=0,1,2,3)分别表示光纤端面,透镜入射面,透镜出射面,和出射光束的束腰 处的q 参数,而w oi 和W 02分别表示透镜变换前后的束腰;I 表示光纤端面与透镜间隔,l w 为 准直器的设计工作距离。 二. 理论分析 根据ABCD 理论,高斯光束q 参数经透镜变换后, 工作距离: 2 Al B Cl D ACf i 光纤准直器原理 曾孝奇 q 2 Aq i Cq i (3) 2 而且, q i q o 1 , q 2 q 3 I w /2 , q o i if i , q 3 2 ? W 02 i - if 2。 这样,我们可以得到经过透镜后的束腰大小: W 02 (4) W oi

2 严, Cf i Cl D 2 (5)

方程(5)是关于I 的二次方程,为使得I 有实根,方程(5)的判别式应该不小于零,从而 我们可以得到: AD BC 2ACf i C 2f i 方程(6)表示准直器的工作距离有上限,就是一个最大工作距离 I wmax AD BC 2ACf i /C 2f i o 此时,我们得至U : I f 1 -。 C 分析:不论对于何种透镜,准直器的出射光斑和工作距离都取决于透镜的传输矩阵 ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的距离 I 有关,也就 是说,对于 给定的入射光束和给定的透镜,我们可以通过在透镜焦距附近改变 I 来实现不同 的工作距离。在实际制作准直器当中,我们正是通过这种方法来实现不同的工作距离的。 进一步地,如果我们需要定量计算准直器的出射束腰和工作距离,需要具体知道不同透 镜的ABCD 系数。对于G Lens (自聚焦透镜,通常为0.23P ),它的ABCD 矩阵为: A C B cos JAL — si n VAL D n -A , (7) n o J A s in UAL cos JAL 其中,n 。透镜的透镜的轴线折射 率, L 为透镜的中心厚度,、A 为透镜的聚焦常数。由于G Lens 的ABCD 系数取决于n o ,L 和.A ,因而,适当选择这些参数,同样能改变准直器的出射光 斑大小和工作距离。 对于C Iens (厚透镜),它的传输矩阵为: A C 三. 实例分析 本小组采用C lens 已制作的一些准直器, 曲率半径R=1.2mm ,透镜长度L=2.5mm ,C lens 采用SF11材料,在1550nm 处折射率 n=1.744742另外,从单模光纤SMF28出射的光斑半径为 w °1 5 口m 。这样,根据以上理论 分析,我们容易得到出射光在不同位置的光斑大小,并且,我们将理论计算值与 Beamsca n 得到的测量值比较,如下表: (6) 门 o (8) C lens 参数如下:

半导体激光器pi特性测试实验

太原理工大学现代科技学院 课程实验报告 专业班级 学号 姓名 指导教师

实验名称 半导体激光器P-I 特性测试实验 同组人 专业班级 学号 姓名 成绩 一、 实验目的 1. 学习半导体激光器发光原理和光纤通信中激光光源工作原理 2. 了解半导体激光器平均输出光功率与注入驱动电流的关系 3. 掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法 二、 实验仪器 1. ZY12OFCom13BG 型光纤通信原理实验箱 1台 2. 光功率计 1台 3. FC/PC-FC/PC 单模光跳线 1根 4. 万用表 1台 5. 连接导线 20根 三、 实验原理 半导体激光二极管(LD )或简称半导体激光器,它通过受激辐射发光,(处于高能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射。所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。)是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。 P-I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,I th 对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比(测试方法见实验四)大, ……………………………………装………………………………………订…………………………………………线………………………………………

光纤准直器原理

光纤准直器原理 曾孝奇 一. 模型 光纤准直器通过透镜能实现将从发散角较大(束腰小)的光束转换为发散角较小(束腰大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们将从光纤中的出射光束认为是基模高斯光束;光纤准直器基本模型如下: 图1 光纤准直器原理示意图 其中,i q (i=0,1,2,3)为高斯光束的q 参数,q 参数定义为: ()()() z w i z R z q 211πλ -=, (1) ()z f z z R 2 +=,()2 01??? ? ??+=f z w z w ,λπ2 0w f =; (2) 图1中,i q (i=0,1,2,3)分别表示光纤端面,透镜入射面,透镜出射面,和出射光束的束腰处的q 参数,而01w 和02w 分别表示透镜变换前后的束腰;l 表示光纤端面与透镜间隔,l w 为准直器的设计工作距离。 二. 理论分析 根据ABCD 理论,高斯光束q 参数经透镜变换后, D Cq B Aq q ++= 112, (3) 而且,l q q +=01,2/32w l q q -=,12 010if w i q ==λπ,22 023if w i q ==λ π。

这样,我们可以得到经过透镜后的束腰大小: () () 2 12 01 02Cf D Cl BC AD w w ++-=, (4) 工作距离: ()()()()2 12212 Cf D Cl ACf D Cl B Al l w +++++-=, (5) 方程(5)是关于l 的二次方程,为使得l 有实根,方程(5)的判别式应该不小于零,从而我们可以得到: 1 2 1 2f C ACf BC AD l w --≤ , (6) 方程(6)表示准直器的工作距离有上限,就是一个最大工作距离 ()() 121max /2f C ACf BC AD l w --=。此时,我们得到:C D f l - =1。 分析:不论对于何种透镜,准直器的出射光斑和工作距离都取决于透镜的传输矩阵ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的距离l 有关,也就是说,对于给定的入射光束和给定的透镜,我们可以通过在透镜焦距附近改变l 来实现不同的工作距离。在实际制作准直器当中,我们正是通过这种方法来实现不同的工作距离的。 进一步地,如果我们需要定量计算准直器的出射束腰和工作距离,需要具体知道不同透镜的ABCD 系数。对于G Lens (自聚焦透镜,通常为0.23P ),它的ABCD 矩阵为: () () () () ?? ? ? ???? ?? -=??????L A L A A n L A A n L A D C B A o o cos sin sin 1 cos , (7) 其中,0n 透镜的透镜的轴线折射率,L 为透镜的中心厚度,A 为透镜的聚焦常数。由于G Lens 的ABCD 系数取决于0n ,L 和A ,因而,适当选择这些参数,同样能改变准直器的出射光斑大小和工作距离。 对于 C lens(厚透镜),它的传输矩阵为:

激光器QBH接头及准直系统

激光器Q B H接头及准 直系统 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

上图为IPG高功率光纤激光器输出端,OBH。OBH的型号为国际标准型号,由于其本身具备一些电气特性,并且输出的激光为发散光,故需要与准直系统配套使用,把QBH插入准直系统即可,所有的准直系统制造商都有IPG的QBH的型号,结构,及电气原理。国内厂商还不具备制造与QBH连接的准直系统的能力。我们的客户也不需要清楚QBH的核心构造,只需知道QBH是比较方便插拔的一种光纤输出端子就好。 上图为准直器,collimator。此准直器为IPG总部提供给我们北京公司的,也是IPG外购的,IPG自己并不生产准直器。大部分情况下准直系统都是和切割头或焊接头一起配送给客户的,切割头或焊接头制造商都具备生产准直器的能力,而且不同生产厂商有各自的设计理念,客户只需要向制造商提出要求,比如:我希望准直后的光斑直径是多少就可以,至于细节问题,这些制造商也不会提供。 这是把QBH插入到collimator中,它的输出光是平行光,客户可以根据用途要求供应商提供相应的准直器。用此准直器输出的光斑大小大约为10毫米。 我们根据这个准直器自己做了个简易切割头,这个切割头极其简单,故不适合工业应用。 这是Lasermech生产的切割头。带高度传感装置,自带电机。 此部分为准直系统。 此切割头为德国Precitec公司生产的切割头,用户应该很清楚,这家做的切割头是世界最好的,这款为专门为光纤激光准备的切割头。 这部分是与QBH连接的准直系统。 综上所述,客户可根据不同需求(对光斑大小的要求不同)寻找切割头或焊接头生产厂家,向这些生产厂家提出要求,至于QBH的尺寸则不需要过多了解,只需知道QBH是标准接头就好。总之准直系统必须要采购(个人意见)。我们可以提供现有的一套供实验用,但需要经过公司领导同意,而且也未必符合客户的需求。

光纤准直器原理

光纤准直器原理 曾孝奇 一. 模型 光纤准直器通过透镜能实现将从发散角较大(束腰小)的光束转换为发散角较小(束腰大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们将从光纤中的出射光束认为是基模高斯光束;光纤准直器基本模型如下: 图1 光纤准直器原理示意图 其中,i q (i=0,1,2,3)为高斯光束的q 参数,q 参数定义为: ()()() z w i z R z q 211πλ-=, (1) ()z f z z R 2 +=,()201???? ??+=f z w z w ,λπ2 0w f =; (2) 图1中,i q (i=0,1,2,3)分别表示光纤端面,透镜入射面,透镜出射面,和出射光束的束腰处的q 参数,而01w 和02w 分别表示透镜变换前后的束腰;l 表示光纤端面与透镜间隔,l w 为准直器的设计工作距离。 二. 理论分析 根据ABCD 理论,高斯光束q 参数经透镜变换后, D Cq B Aq q ++=112, (3) 而且,l q q +=01,2/32w l q q -=,12010if w i q ==λπ,22023if w i q ==λ π。

这样,我们可以得到经过透镜后的束腰大小: ()()2120102Cf D Cl BC AD w w ++-=, (4) 工作距离: ()()()()2 12212Cf D Cl ACf D Cl B Al l w +++++-=, (5) 方程(5)是关于l 的二次方程,为使得l 有实根,方程(5)的判别式应该不小于零,从而我们可以得到: 1 212f C ACf BC AD l w --≤, (6) 方程(6)表示准直器的工作距离有上限,就是一个最大工作距离 ()()121max /2f C ACf BC AD l w --=。此时,我们得到:C D f l -=1。 分析:不论对于何种透镜,准直器的出射光斑和工作距离都取决于透镜的传输矩阵ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的距离l 有关,也就是说,对于给定的入射光束和给定的透镜,我们可以通过在透镜焦距附近改变l 来实现不同的工作距离。在实际制作准直器当中,我们正是通过这种方法来实现不同的工作距离的。 进一步地,如果我们需要定量计算准直器的出射束腰和工作距离,需要具体知道不同透镜的ABCD 系数。对于G Lens (自聚焦透镜,通常为0.23P ),它的ABCD 矩阵为: ()()()() ??????????-=??????L A L A A n L A A n L A D C B A o o cos sin sin 1cos , (7) 其中,0n 透镜的透镜的轴线折射率,L 为透镜的中心厚度,A 为透镜的聚焦常数。由于G Lens 的ABCD 系数取决于0n ,L 和A ,因而,适当选择这些参数,同样能改变准直器的出射光斑大小和工作距离。 对于 C lens(厚透镜),它的传输矩阵为:

激光二极管光束整形技术讲解

文章编号:100123806(20030420357205激光二极管光束整形技术 郭明秀1沈冠群2陆雨田1 (1中国科学院上海光学精密机械研究所,上海,201800(2上海市激光技术所,上海,200233 摘要:阐述了对LD 输出光束进行整形的必要性。在国内首次对目前常用的一些典型的光束整形技术的整形原理、关键技术及整形效果进行了分析、比较和评价。 关键词:激光二极管;激光二极管阵列;光束整形;拉格朗日不变量中图分类 号:TN24814文献标识码:A The technology of laser diode beam shaping Guo M i ngxi u 1,S hen Guanqun 2,L u Y utian 1 (1Shanghai Institute of Optics and Fine Mechanics ,the Chinese Academy of Science ,Shanghai ,201800 (2Shanghai Institute of Laser Technology ,Shanghai ,200233 Abstract :This paper introduces the necessity of beam shaping for LDA beam.S ome typical beam shaping methods ’shaping principles ,key techniques and shaping effects are areanalyzed ,compared and assessed for the first time.K ey w ords :laser diode (LD ;laser diode array (LDA ;beam shaping ;Lagrange invariant 作者简介:郭明秀,女,1975年11月出生。硕士。现从事半导体泵浦固体激光器及半导体激光器光束整形的研究工作。

光纤准直器原理

光纤准直器原理 曾孝奇 一. 模型 光纤准直器通过透镜能实现将从发散角较大(束腰小)的光束转换为发散角较小(束腰大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们将从光纤中的出射光束认为是基模高斯光束;光纤准直器基本模型如下: 图1 光纤准直器原理示意图 其中,i q (i=0,1,2,3)为高斯光束的q 参数,q 参数定义为: ()()() z w i z R z q 211πλ-=, (1) ()z f z z R 2 +=,()201???? ??+=f z w z w ,λπ2 0w f =; (2) 图1中,i q (i=0,1,2,3)分别表示光纤端面,透镜入射面,透镜出射面,和出射光束的束腰处的q 参数,而01w 和02w 分别表示透镜变换前后的束腰;l 表示光纤端面与透镜间隔,l w 为准直器的设计工作距离。 二. 理论分析 根据ABCD 理论,高斯光束q 参数经透镜变换后, D Cq B Aq q ++=112, (3)

而且,l q q +=01,2/32w l q q -=,12010if w i q ==λπ,22023if w i q ==λ π。 这样,我们可以得到经过透镜后的束腰大小: ()()2120102Cf D Cl BC AD w w ++-=, (4) 工作距离: ()()()()2 12212Cf D Cl ACf D Cl B Al l w +++++-=, (5) 方程(5)是关于l 的二次方程,为使得l 有实根,方程(5)的判别式应该不小于零,从而我们可以得到: 1 212f C ACf BC AD l w --≤, (6) 方程(6)表示准直器的工作距离有上限,就是一个最大工作距离 ()()121max /2f C ACf BC AD l w --=。此时,我们得到:C D f l -=1。 分析:不论对于何种透镜,准直器的出射光斑和工作距离都取决于透镜的传输矩阵ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的距离l 有关,也就是说,对于给定的入射光束和给定的透镜,我们可以通过在透镜焦距附近改变l 来实现不同的工作距离。在实际制作准直器当中,我们正是通过这种方法来实现不同的工作距离的。 进一步地,如果我们需要定量计算准直器的出射束腰和工作距离,需要具体知道不同透镜的ABCD 系数。对于G Lens (自聚焦透镜,通常为0.23P ),它的ABCD 矩阵为: ()()()() ??????????-=??????L A L A A n L A A n L A D C B A o o cos sin sin 1cos , (7)

基于ZEMAX的半导体激光准直仿真设计

引言 半导体激光器( laser diode,LD) 以其体积小效率高易于集成可高速直接调制等优点,被广泛用于激光雷达激光测量激光照明激光制导激光打印以及高密度信息记录与读取等领域。但是半导体激光器发射的激光光束具有在垂直和平行于结平面两个方向发散角不同光斑形状不规则( 如一般是椭圆型或长条型) 存在固有像散等缺点,这使得半导体激光3 维扫描成像雷达的测程测距精度大大受影响,为了适用于远距离空间激光测距,必须对半导体激光发散光束进行准直。作者主要采用椭圆面柱透镜,对905nm 的半导体激光做准直整形处理,使得激光的发散角尽可能的小,接收物体表面的激光光斑尽可能的小,而且规则,从而达到提高测程和测距精度的目的。 1.理论分析及计算 采用OSARM 公司的型号为SPL LL90 _3 的半导体激光器查看使用说明书得到: SPL LL90_3 型号的半导体激光器在弧矢( 平行于结平面) 方向上的发散 角= 15°,在子午( 垂直于结平面) 方向上的发散角= 30°,整个激光器的峰值功率为70W半导体激光器有源区只有约0. 1 m ~0. 2 m 的厚度,可以近似看作沿慢轴方向的线光源根据半导体激光束两个方向的发散角不同的特点,采用两个互相垂直的柱透镜组分别对两个方向的光束进行准直,选用的两个柱面镜面型为椭圆面如图 1 所示,半导体激光器发出的子午光线先经过母线平行于激光束慢轴方向的柱透镜后变成准平行光束( 平行光束不可能实现) 由于第 2 个柱透镜M2对于子午光线的发散角无影响,可看作平板玻璃图2 显示弧矢光线经过第1 个透镜M1 时,光束会发生偏移,但不会影响光束的发散角,在经过第 2 个柱透镜时,弧矢光也同样得到准直,输出准平行光。

相关主题
文本预览
相关文档 最新文档