当前位置:文档之家› 激光二极管光束整形技术讲解

激光二极管光束整形技术讲解

激光二极管光束整形技术讲解
激光二极管光束整形技术讲解

文章编号:100123806(20030420357205激光二极管光束整形技术

郭明秀1沈冠群2陆雨田1

(1中国科学院上海光学精密机械研究所,上海,201800(2上海市激光技术所,上海,200233

摘要:阐述了对LD 输出光束进行整形的必要性。在国内首次对目前常用的一些典型的光束整形技术的整形原理、关键技术及整形效果进行了分析、比较和评价。

关键词:激光二极管;激光二极管阵列;光束整形;拉格朗日不变量中图分类

号:TN24814文献标识码:A

The technology of laser diode beam shaping

Guo M i ngxi u 1,S hen Guanqun 2,L u Y utian 1

(1Shanghai Institute of Optics and Fine Mechanics ,the Chinese Academy of Science ,Shanghai ,201800

(2Shanghai Institute of Laser Technology ,Shanghai ,200233

Abstract :This paper introduces the necessity of beam shaping for LDA beam.S ome typical beam shaping methods ’shaping principles ,key techniques and shaping effects are areanalyzed ,compared and assessed for the first time.K ey w ords :laser diode (LD ;laser diode array (LDA ;beam shaping ;Lagrange invariant

作者简介:郭明秀,女,1975年11月出生。硕士。现从事半导体泵浦固体激光器及半导体激光器光束整形的研究工作。

收稿日期:2002212219;收到修改稿日期:2003201222

引言

激光二极管LD (laser diode 及其阵列LDA (laser diode array 的主要特点是高效、稳定、结构简单,可制成小体积全固化器件。广泛应用于LD 泵浦的固体激光器、光纤激光器、材料处理、医药、航空航天等各个领域。

LD 由于其特殊的工作原理,其光束质量在垂直与平行于p 2n 结两个方向上相差很大。通常把垂直于p 2n 结方向称为快方向,平行于p 2n 结方向称为慢方向。快方向上的光束接近衍射极限(M 2≈1,发散角大;而慢方向上的光束质量则极差(M

2>1000,发散角小。正是由于这两个方向上的光束质量的极不均衡性使得LD 应用起来比较困难。而且这样的快慢两个方向上光束质量相差很大的光束无法用一般的光学系统直接改善而达到高功率密度输出。因此,LD 要获得更广泛的应用,必须采用光束整形方法,解决光束质量差、功率密度低的问题。

1光束整形技术的原理、关键技术

1.1LDA 光束整形技术的原理

假设d 为光源的尺寸,θ为其发散角,n 为所在

介质的折射率,一个光源无论经过什么样的光学成

像系统的变换,乘积L =d ×

θ×n 始终保持不变,称之为拉格朗日不变量。光束质量的评价一般采用M 2来表征,但通常也可采用拉格朗日不变量来表征。由于通常的光学成像系统不能改变光束的拉格朗日不变量,因此,必须将LD 光束分割、旋转、重排,即光束整形,把慢方向上的拉格朗日不变量减小,同时使快方向上的拉格朗日不变量增加,达到均衡拉格朗日不变量,提高光束质量的目的

图1LDA 光束重组的几种结果

图1表示光束重排的几种结果(P 1~P 4[1]。

CSA 是LDA 发光区排列方式。采用按微镜分割时,LDA 的发光区排列可看成像CS 一样,即在光束

第27卷第4期

2003年8月

激光技术

LASER TECHNOLO GY

Vol.27,No.4August ,2003

分割中不用考虑节数、结间距PH ,光束分割数不受LDA 节数的限制,因此,可形成光束重排方式P 2且能像P 1一样地提高光束质量,这种分割使得光束整形器易于制作且成本低。1.2关键技术

光束快方向的准直和慢方向上光束质量的提高是整个光束整形的关键所在。快方向上的发散角一般采用微柱透镜来调整,但由于发散角极大,用来准直的微柱透镜要求数值孔径比较大,几何尺寸很小。制造一种性能好的微柱透镜在加工、设计、安装上都具有较高的难度。降低慢方向上的拉格朗日不变量主要是由光束整形器实现的。

2主要的光束整形技术

2.1光纤转换器(line 2to 2bundle converting

f iber[2]

最简单的光束整形技术当属光纤转换器,瑞士伯尔尼大学(University of Berne 应用物理所的Zbinden 等人在LDA 端面泵浦的Nd ∶Y L F 调Q 激光器中采用了这一技术。其原理如图2,采用光纤阵列将光束按LDA 横模进行分割,将光纤在靠近LD

的一端排成线阵列,另一端则人为排成束状。

图2光纤转换器的原理图

该种方案中提高耦合效率的方法主要有:(1在

光纤转换器的输入端连续排列光纤;(2光纤转换器输入和输出端面镀AR 膜;(3先用微柱透镜将LDA 的快方向进行准直再耦合进光纤,这样得到的光束空间发散均匀。另外可通过面阵列或将单个LDA 的光纤转换器的输出端面再捆绑在一起达到高功率的目的,但是这样并不能提高泵浦光的亮度。2.2渐变折射率透镜(GRIN 阵列整形[3]

GRIN 透镜阵列整形技术是由日本钢铁公司的Yamaguchi 等人发明的。采用GRIN 透镜阵列将光

束按照LDA 节分割准直,然后聚焦。如图3,该方法没有重排子光束,但是它通过透镜阵列对每个LDA 结分别准直而提高了LDA 的填充因子,结果是慢方向的拉格朗日不变量减少了,即光束质量得到了提高,但是快慢两个方向的光束质量相差还是

较大,最后得到的光束分布不均匀,整形效果不太明

显。但由于这种方法较早提出了按照

LDA 节分割准直的思想而受到重视。

图3渐变折射率透镜阵列整形技术

2.3多棱镜阵列(multiprism array[4]

多棱镜阵列也是日本钢铁公司的Yamaguchi 等

人发明的。其原理如图4,采用多棱镜阵列将光束按照LDA 节分割,旋转重排,

达到改善光束质量的目的。

图4旋转重排原理图

多棱镜阵列如图5所示,使用时把LDA 结与小

棱镜一一对应。这些棱镜将每条子光束旋转90°,从第1

个棱镜入射的光束在相邻的第2个棱镜出

图5多棱镜列阵排列图

853激光技术2003年8月

射,故棱镜数目比LDA 结多2个。单个斜棱镜的作用如图6所示。两个平行面π1和π2是全等的底角为45°的等腰梯形,两个平行面σ2和ρ以及面σ1和

σ3都是锐内角为tan

-1(1/2的平行四边形。面π1和π2与面ρ和σ2垂直,σ1,σ2和σ33个面互成60°,面π1与σ1,π2与σ3分别成45°

的夹角。光束与π1成0°入射,依次分别在σ1,σ2和σ3上反射,被旋转90°后,从π2面垂直出射

图6单个斜棱镜作用示意图

同GRIN 阵列相比,多棱镜阵列中4个附加光学面和3个反射面的存在降低了耦合效率。但是由于均衡了快慢方向的拉格朗日不变量,其功率密度提高了大约18倍。

2.4双反射镜整形技术(t w o 2mirror beam 2shaping

technique[5]

英国Southampton 大学光电研究中心的Clark 2son 等人提出了采用两个高反平面镜来实现快慢两

个方向上光束质量因子的均衡,而亮度只略微降低。它将光束按照镜间错位距离分割,分段重排,加工和调整都比较简便。

其工作原理如图7所示,整形装置结构很简单,把两面高反射率的镜子很近(相距d 地平行放置,且在x ′和y ′方向上相互错开一些,这样每个镜子都有一小部分未被对方挡住而形成了光束整形的入射和出射孔。平面镜表面垂直于图所在平面。假设1束在x 2z 面和y 2z 面的激光以与x ′2z ′面和y ′2z ′面成θx ′和θy ′斜入射到反射镜B 未被挡住的部分。把入射光束看作相邻的一系列子光束组成,其中,光束1从A 的上部和B 的旁边穿过,没有改变传播方向地出射。光束2从A 上部穿过后碰到B 上,

入射到B 上并被B 反射到A 上,光束2紧随光束1后入射到A 上,沿光束1的方向出射且合并于光束1中,其它

光束同样经数次反射后沿光束1的方向出射,比光束1略低一些。该整形器实际上就是将入射光束分割成子光束并改变子光束的方向和位置使它们互相重叠出射。可通过调节d ,θx ′,θy ′

而达到均衡M x 2和M y 2目的

图7平面镜整形技术

这种方法能有效地除掉LDA 两个相邻节之间

的死区,可以提高亮度。亮度的提高依赖于发光区的宽度和死区宽度的比率。但是由于非发光区造成光束质量M x 2变大和由于光纤透镜准直过程中的削波损耗造成M y 2变大,以及光束在整形器中传播时相邻光束某些部分发生了重叠,从每个节出来的光束传播到焦点的光程有些差别等原因,对亮度的

提高有一定影响。

2.5阶梯反射镜整形(a pair of step 2mirrors[6]

德国夫朗和费激光技术所的杜可明等人发明的阶梯镜是一种有效平衡两个方向光束质量的方法。

采用阶梯反射镜将光束按照镜面尺寸分割,旋转重排。

该整形装置是由两组完全相同的阶梯反射镜构成,每组都由N 个高反射率表面组成,如图8所示。第1组阶梯镜每个镜面都绕慢轴倾斜45°,相邻的镜面在沿光束传播方向上相距一常数d (等于单个镜面的宽度。第2组阶梯镜与之类似,且两组阶梯镜的镜子都一一相对。当准直光束入射到第1组阶梯镜反射面上时,会被这些镜面沿慢轴分割为N 份,每个子光束经过第2微型阶梯反射镜,再被反射到快轴方向上。原本是一条线状的光束就在同一高度上沿慢轴方向被重新排列为平行的N 条子光束。整形结果光场分布为一正方形光斑,在光传播方向上光场分布接近均匀分布

图8阶梯反射镜原理图

减少阶梯镜宽度,增加重组光束的填充因子可

9

53第27卷第4期郭明秀激光二极管光束整形技术

提高聚焦光的亮度。这种方法能得到两个方向光束质量相差很小的高效的光束。系统结构紧凑坚固,阶梯镜对调整和“smile ”不敏感,整个系统机械元件易于集成,不需要昂贵的元件,灵活性好。2.6微片棱镜堆线光束整形器[7]

中科院上海光机所的陆雨田等人提出了微片棱镜堆整形技术,加工和调整非常简单,为国内唯一能够依据自主知识产权提供大功率LDA 单光纤耦合输出模块的单位。该方法采用微片棱镜堆将光束按照微片的宽度分割,旋转重排,最后所得光斑类似于图2中的P 3和P 4。

微片棱镜堆由许多片很薄的等腰三角棱镜组成,如图9所示。每个薄片都绕自己的一条底棱旋转45°,然后将它们依次排列在一起。平行于底棱的入射光线在σ1

上折射后进入棱镜,接着在底面σ2上产生全内反射后传向σ3面,并经折射后从σ3出射。分布在与σ2面夹角为θ的平面内入射的光

束,经过底面σ2的反射将被旋转2θ,分布在与σ2

面夹角为-θ平面内。绕底棱旋转45°的薄棱镜片正好把入射光束旋转90°,变成沿垂直面分布的光束出射。因此,微片棱镜堆可以把入射光束分割成许多小段,并使原来沿水平方向分布的每一小段都在其原来的位置上旋转90°,并沿竖直方向分布并在同一高度上排成一行,改变了两个方向上的拉格朗日不变量

图9微片棱镜堆示意图

利用微片棱镜堆整形专利技术,已经研制成功

808nm 和940nm 的单光纤(600

μm/900μm 耦合输出大功率半导体激光泵浦源模块,总体耦合效率不低于50%,价格低于国外同类商品。2.7棱镜组折反射光束整形方法[1]

美国的Apollo Instruments 公司最近提出了几种高效的光束整形方法,其中一些还创造了亮度的最高记录。其整形思想利用由棱镜组组成的光束整形器中的棱镜组的折反射将LDA 光束在慢方向上按照微镜尺寸分成许多段后在快方向重排,结果光

束的拉格朗日不变量在慢方向上被减小n 倍,而快

方向上增加n 倍,原理如图6。该方法重排光斑较好,能大大提高LDA 光束质量,易于实现,结构调整简单,微镜数不受LDA 节数限制。

其中,一种典型的方法是通过两组棱镜来分割和重排LDA 光束。第1组n 个棱镜用来将LDA 光束在慢方向分割成n 部分后,第2组n 个棱镜用来在快方向上将分割后的n 部分光束重排列。棱镜组把LDA 的出射光束沿慢方向分割,并沿快方向重新排列,从而改善了拉格朗日不变量。既用到了棱镜的反射也用到了折射特性。如图10,两组棱镜中,各片棱镜以斜边为基准,依次按一定间距错位放置,光束在不同位置被截成一段段的。第1个棱镜组把出射光束沿慢方向分割成一组光束段,这组光束从棱镜组斜边入射,入射表面的线光源与棱镜组的内表面成一定的角度,在各片棱镜中反射两次后从斜边出射,并沿着慢轴方向被分成很多段,由于棱镜片有错位,所以出射光束段也顺次产生错位。然后出射光进入第2个棱镜组,被重新排列输出。结果从LDA 出射的光被整形成一个光斑,两个方向上的拉格朗日不变量相近。用两组光楔(或折射棱镜进行光束分割和重排也可得到与P 5一样的光斑

图10两组棱镜光束整形

这种方法只要将每一片棱镜对准一个发光源,

就可消除LDA 不连续对光束质量的影响,比较成功地解决了光束整形的质量问题。

3各种整形方法的发展过程及比较

在LD 的大部分应用中,LD 都和光纤或光纤束

耦合成一体,其一是光纤柔软易弯曲,激光可以方便灵活地通入到窄小空间;其二是光纤耦合可以改善输出光束的质量,同时采用多光纤集束使输出功率得到相对于单管数十倍的提高,且光束传输过程中发散对称性不变。其耦合方式有两种:(1将阵列中发出的光输入光纤阵列中,然后并束;(2先将LDA 发出的光束用专门的整形器整形,使得快慢两个方向光束质量接近,然后耦合到一根光纤里。

最典型、最简单的光束整形方法是用柱面透镜把LDA 光束聚焦进光纤束中,然后将光纤束排成圆

063激光技术2003年8月

形通过单光纤输出。因为从LDA 出射光的模式与光纤的模式无法匹配以及光纤阵列的填充因子受限,这种耦合技术得不到高亮度的光,但因其简单、易操作,所以仍然是一种很常用的光束整形技术。

另一种简单的改善LDA 光束形状的方法是使用面阵列。这是一种可替代光纤束的方法,成本很低。将若干个带有准直透镜的LDA 叠加在一起,用一个柱透镜将慢方向的发散角进行准直,再用一个普通照相用的透镜聚焦。面阵列在快方向上拉格朗日不变量增加了,而慢方向却没变,因此,最后光束形状离圆形还差得很远。此外,发光区之间的热沉占据了一定的空间,从而限制了光亮度。

目前所采用的显著提高光束质量最有效的整形方法是用较复杂的光束整形器对光束分割旋转重排,融合了整形和准直两部分,重排后易被聚焦成圆点。目前,国内外竞相开展了LDA 光束整形技术的研究,陆续提出了一些较好的整形方法。国外已能

够将大功率LDA 耦合进400

μm 的光纤,整体效率达到70%以上,商品化的光纤(600

μm 耦合输出大功率LDA 模块的整体效率可达50%以上;而国内

由于技术、材料、工艺基础等多方面的原因,这方面的技术相对落后一些,已能将大功率LDA 耦合进600

μm 的光纤,整体效率大于50%。表1对各种整形方法做了一个简单的比较。

表1各种整形方法比较整形方法

效率

光斑

优点

缺点

光纤转换器

62%(未耦合进光纤0.9mm

简单、易操作

得不到高亮度的光渐变折射率透镜阵列整形86%

较早提出按LDA 节准直思想

光束质量不均衡多棱镜阵列整形76%(未耦合进光纤200μm 较早提出光束切割旋转重排列整形思想光学面太多增加了

加工调整难度双反射镜整形75%(未耦合进光纤100μm 能有效地除掉LDA 非发光区,可提高亮度加工调整难度大阶梯反射镜整形71%400μm 系统易于集成,不需

昂贵的元件,调整要求低阶梯镜表面加工较难微片棱镜堆线光束整形器>50%600μm 填补了国内空白效率偏低棱镜组折反射光束整形

>70%

600

μm 重排列光斑较好,亮度高

加工调整难度大

4结论

过去,从LD 出射的光不能在高功率密度条件

下被非常精确地聚焦,这就限制了LD 的一些应用。随着光束整形技术的提出,可以预见今后LD 应用有更广阔的前景。

参考

[1]Wang Zh J ,Gheen A Z ,Wang Y et al .Optical coupling system for

a high 2power diode 2pumped solid state laser.U S Patent ,6,377,410.2002204223.

[2]Graf Th ,Balmer J E.Opt Lett ,1993,18(16:1317~1319.[3]Yamaguchi S ,Imai

H.IEEE J Q E ,1992,28(4:1101~1105.[4]Yamaguchi S ,K obayashi T ,Saito Y et

al .Opt Lett ,1995,20(8:

898~900.

[5]Clarkson W A ,Hanan D C.Opt Lett ,1996,21(6:375~377.

[6]Ehlers B ,Du K ,Ba

μmann M et al .Proc SPIE ,1997,3097:639~644.

[7]陆雨田,刘立人,江建中et al .线光束整形装置.中国发明专

利:Z L99124019.2000205217.

?简讯?

利用纳米粒子设计硅基发光二极管

尽管硅的非间接带隙使它不能按常规方法来制造发光二极管,但全世界的科研小组都试图合作解决这

个问题,希望最终能生产硅基发光二极管以及其它一些可以大批量生产的光电材料,就像如今大批量生产集成电路一样。2003年1月25号到31号在加州圣琼斯举行的西部光电研讨会上,来自台湾大学的科学家为大家阐述了他们的两个想法(尽管这两个方法都还没有生产出有效的发光体。一个方案是,将直径为8nm ~12nm 的SiO 2纳米粒子层放置在背面为电镀铝层和前面为镀银层之间的硅上。放至电场之后,银移进纳米粒子层。尽管效率仅仅是1.5×10-4,但仍可以通过直径为1mm 的器件看到近似激发光的现象,其光谱显示了谐振峰值。另外一个方案是,将悬空的5nm 大小的硫化镉粒子固定于硅底层之上(室温下抽真空,使微粒位置固定,在571nm 处发光,光谱的FWHM 为29nm ,效率近似为10-5。

(蒋锐叶大华供稿

1

63第27卷第4期郭明秀激光二极管光束整形技术

激光二极管的特性

激光二极管的特性 1、伏安特性 半导体激光器是半导体二极管,具有单向导电性,其伏安特性与二极管相同。反向电阻大于正向电阻,可以通过用万用表测正反向电阻确定半导体激光二极管的极性及检查它的PN结好坏。但在测量时必须用1k以下的档,用大量程档时,激光器二极管的电流太大,容易烧坏。 2、P—I特性 激光二极管的出射光功率P与注入电流I的关系曲线称为P-I 曲线。 注入电流小于阈值电流I th时,激光器的输 出功率P很小,为自发辐射的荧光,荧光的输 出功率随注入电流的增加而缓慢增加。 注入电流大于Ith时,输出功率P随注入 电流的增加而急剧增加,这时P—I曲线基本上 是线性的。当I再增大时,P—I曲线开始弯曲呈非线性,这是由于随着注入电流的增大,使结温上升,导致P增加的速度减慢。 判断阈值电流的方法:在P—I特性曲线中,激光输出段曲线的向下延长线与电流轴的交点为激光二极管的阈值电流。 3、光谱特性

激光二极管的发射光谱由两个因素决定:谐振腔的参数,有源介质的增益曲线。 腔长L确定纵模间隔,宽W和高H决定横模性质。如果W和H 足够小,将只有单横模TEM00存在。 多模激光二极管在其中心波长附近呈现出多个峰值的光谱输出。单纵模激光器只有一个峰值。 工作在阈值以上的1mm腔长的增益导引LD的典型发射光谱 激光二极管是单模或多模还与泵浦电流有关。折射率导引LD,在泵浦电流较小、输出光功率较小时为多模输出;在电流较大、输出光功率较大时则变为单模输出。而增益导引LD,即使在高电流工作

下仍为多模。 折射率导引激光器光谱随光功率的变化发射光谱随注入电流而变化。IIt 发射激光,光谱突然变窄。因此,从激光二极管发射光谱图上可以确定阈值电流。当注入电流低于阈值电流时光谱很宽,当注入电流达到阈值电流时,光谱突然变窄,出现明显的峰值,此时的电流就是阈值电流。 IIt 激光辐射

脉冲驱动激光二极管

脉冲驱动激光二极管

脉冲驱动激光二极管 by Doug Hodgson, Kent Noonan, Bill Olsen, and Thad Orosz 介绍 相对较高的峰值功率和工作效率使得脉冲激光二极管成为固态激光器泵浦和范围测定这类应用的理想选择。脉冲激光二极管工作时通常占空比相对较低,因此平均功率较低,这样就可能达到更高的峰值功率。所以产生的热量并不很高。另一方面,连续波激光二极管要承受的热量比脉冲激光器高。这是由于在连续波工作期间,器件的热电阻使得结温度显著增加。所以连续波激光二极管一般需要很好的热沉封装和/或用热电致冷。 脉冲驱动激光二极管是测试其质量和热效率的一个强大的分析工具。本文描述了通过用电流脉冲驱动激光二极管来进行测试的方法,提出了脉冲驱动激光二极管的几点困难,并给出了克服或避免的方法。文中介绍了一个简单的实验,用ILX Lightwave LDP-3811脉冲电流源来驱动一个典型的激光二极管。这里主要表现的是脉冲驱动二极管出现的问题。最后描述了LDP-3811的典型应用。 为什么要脉冲驱动一个连续波激光二极管? 在低占空比情况下脉冲驱动连续波激光二极管的能力在二极管评测中很有用。其应用可划分为两个广泛领域。第一个是封装前通过/失败测试;第二个是器件特性评价。这两种应用都利用了脉冲方式驱动激光二极管不会产生大量热量的优点。可在热效应最小的情况下完成测试和特性评价。 封装前测试 对于这种应用,低占空比的脉冲可用于半 导体制造工艺后的晶圆或条级测试。单点 光测量或L/I曲线(光输出vs.驱动电流)能用来“预筛选”工艺处理后的晶圆。它能将有缺陷的晶圆在花费不匪的切割和 封装操作之前就清除掉,建立制造工艺的成品率数目和性能。(注意对于这些测试相对测量比绝对精度更重要。) 特性测试 脉冲测试的第二个应用领域是对封装好的器件的特性测试。很多关于激光二极管特性的工业文档既推荐连续波测试也推荐脉冲波测试。(贝尔交流研究出版的题为“光电器件可靠性保证实践”的技术咨询文档TA-TSY-000983就是这样。)通过比较脉冲和连续波工作方式,可以评测像输出功率、波长和阈值电流这样一些与温度相关的参数。图1所示的是一个典型激光二极管的L/I曲线。 这些曲线既表示了低占空比脉冲模式,又表示了连续波工作模式。连续波曲线阈值电流的增加和斜率效率的略微减少(与脉冲曲线比较)主要是由器件热电阻引起的结温度上升造成。(脉冲L/I曲线所用的脉宽一般为100至500ns,占空比小于百分之一,因此热效应不明显。) 脉冲与连续波L/I曲线的比较也可用来检图1 典型激光二极管的脉冲及连续波L/I曲线

激光二极管光束整形技术

文章编号:100123806(2003)0420357205激光二极管光束整形技术 郭明秀1 沈冠群2 陆雨田1 (1中国科学院上海光学精密机械研究所,上海,201800) (2上海市激光技术所,上海,200233) 摘要:阐述了对LD 输出光束进行整形的必要性。在国内首次对目前常用的一些典型的光束整形技术的整形原理、关键技术及整形效果进行了分析、比较和评价。 关键词:激光二极管;激光二极管阵列;光束整形;拉格朗日不变量中图分类号:TN24814 文献标识码:A The technology of laser diode beam shaping Guo M i ngxi u 1,S hen Guanqun 2,L u Y utian 1 (1Shanghai Institute of Optics and Fine Mechanics ,the Chinese Academy of Science ,Shanghai ,201800) (2Shanghai Institute of Laser Technology ,Shanghai ,200233) Abstract :This paper introduces the necessity of beam shaping for LDA beam.S ome typical beam shaping methods ’shaping principles ,key techniques and shaping effects are areanalyzed ,compared and assessed for the first time.K ey w ords :laser diode (LD );laser diode array (LDA );beam shaping ;Lagrange invariant 作者简介:郭明秀,女,1975年11月出生。硕士。现从事半导体泵浦固体激光器及半导体激光器光束整形的研究工作。 收稿日期:2002212219;收到修改稿日期:2003201222 引 言 激光二极管LD (laser diode )及其阵列LDA (laser diode array )的主要特点是高效、稳定、结构简单,可制成小体积全固化器件。广泛应用于LD 泵浦的固体激光器、光纤激光器、材料处理、医药、航空航天等各个领域。 LD 由于其特殊的工作原理,其光束质量在垂直与平行于p 2n 结两个方向上相差很大。通常把垂直于p 2n 结方向称为快方向,平行于p 2n 结方向称为慢方向。快方向上的光束接近衍射极限(M 2≈1),发散角大;而慢方向上的光束质量则极差(M 2>1000),发散角小。正是由于这两个方向上的光束质量的极不均衡性使得LD 应用起来比较困难。而且这样的快慢两个方向上光束质量相差很大的光束无法用一般的光学系统直接改善而达到高功率密度输出。因此,LD 要获得更广泛的应用,必须采用光束整形方法,解决光束质量差、功率密度低的问题。 1 光束整形技术的原理、关键技术 1.1 LDA 光束整形技术的原理 假设d 为光源的尺寸,θ为其发散角,n 为所在 介质的折射率,一个光源无论经过什么样的光学成 像系统的变换,乘积L =d × θ×n 始终保持不变,称之为拉格朗日不变量。光束质量的评价一般采用M 2来表征,但通常也可采用拉格朗日不变量来表征。由于通常的光学成像系统不能改变光束的拉格朗日不变量,因此,必须将LD 光束分割、旋转、重排,即光束整形,把慢方向上的拉格朗日不变量减小,同时使快方向上的拉格朗日不变量增加,达到均衡拉格朗日不变量,提高光束质量的目的 。 图1 LDA 光束重组的几种结果 图1表示光束重排的几种结果(P 1~P 4)[1]。 CSA 是LDA 发光区排列方式。采用按微镜分割时,LDA 的发光区排列可看成像CS 一样,即在光束 第27卷 第4期 2003年8月 激 光 技 术 LASER TECHNOLO GY Vol.27,No.4August ,2003

半导体激光器光束准直技术研究

半导体激光器光束准直技术研究 摘要:相较于其他激光器,半导体具有结构简单、功耗低、操作方便等优点, 且目前已广泛应用于激光领域,例如:激光通信、激光测距等。基于半导体激光 器的基本结构,在垂直于结平面方向上,它发出的光束的发射角大小大约为30o;而在平行于结平面方向上,它的发射角大约为10o。正是由于两者的发射角相差 太大,所以半导体激光器在应用过程中,利用特殊的光学系统对其输出光束进行 准直是非常有必要的。 本文开篇部分主要介绍了半导体激光器的发展现状和准直意义,中间部分主 要讲述了半导体激光器的基本原理与结构分类,最后大概介绍了一些半导体激光 器光束准直方法。 关键词:半导体激光束;准直;整形 一、半导体激光器的发展现状和准直意义 半导体激光器从二十世纪六十年代开始发展,较其他激光器落后几年,如今 半导体激光器的技术已相当成熟。二十世纪七十年代开始,人们重点研究了半导 体激光器的动态特性,使其主要朝着两个方面发展,其一是功率型激光器,主要 以提高光功率为主;其二是信息型激光器,主要以传递信息为主。近年来,人们 也研发出了高功率半导体激光器,其指的是脉冲输出功率在5W以上,且连续输 出功率在100mW以上。二十世纪九十年代,在泵浦固体激光器的作用下,高功 率半导体激光器的研发取得了实质性进展,主要指半导体激光器的连续输出功率 可以达到5W~30W左右,得到了很大的提高。现在,高功率半导体激光器在国内 外的发展已相当白热化,其中国外商品化的大功率半导体激光二极管阵列已达到 千瓦级别,而国内的样品器件要稍微落后一点,但也已达到了600W。 现如今,半导体激光器已广泛应用于各行各业,但是在应用过程中,出现了 一些问题,主要是由于半导体激光器的波导结构造成的。这些问题主要表现在三 个方面:其一,半导体激光束在快轴方向和慢轴方向的发射角之间相差太大,其 中在慢轴方向的发射角大概在10o左右,而在快轴方向上的发射角甚至可以达到60o左右;其二,半导体激光器具有固有像散,即半导体激光器在慢轴和快轴两 个方向上的束腰不在同一地方;其三,半导体激光器的远场的光斑为椭圆形的。 基于这些特点,在那些条件较高的领域,几乎都要利用特殊的光学系统对输出光 束进行准直。 二、半导体激光器的基本原理与结构分类 半导体激光器是利用半导体中的电子光跃迁导致光子受激辐射从而产生的光 振荡器和光放大器的统称。 受激辐射是指若入射光的能量满足式(2-1)且大于带隙能量Eg时,则导带 中的电子将发生跃迁以及价带中的空穴将发生光子辐射。而自发辐射是指没有入 射光的光子发射。式(2-1)如下, (2-1) 其中,h是普朗克常量,是角频率。 假如系统具有数量较多的电子,那么在热平衡状态下,低能级的电子数小于 高能级的电子数,即电子的能量分布是服从费米-狄拉克分布的,所以基本来讲, 光还是被吸收的。半导体激光束发挥作用主要依靠的是激光辐射,而激光作用的 基本原理就是光放大,其是靠系统的能量分布产生反转而形成的净的光辐射产生的。对于半导体激光器来说,其与别的激光器的基本原理是无本质差别的,且阈

激光二极管原理及应用

激光二极管参数与原理及应用 2011-06-19 17:10:29 来源:互联网 一、激光的产生机理 在讲激光产生机理之前,先讲一下受激辐射。在光辐射中存在三种辐射过程, 一时处于高能态的粒子在外来光的激发下向低能态跃迁,称之为自发辐射; 二是处于高能态的粒子在外来光的激发下向低能态跃迁,称之为受激辐射; 三是处于低能态的粒子吸收外来光的能量向高能态跃迁称之为受激吸收。 自发辐射,即使是两个同时从某一高能态向低能态跃迁的粒子,它们发出光的相位、偏振状态、发射方向也可能不同,但受激辐射就不同,当位于高能态的粒子在外来光子的激发下向低能态跃迁,发出在频率、相位、偏振状态等方面与外来光子完全相同的光。在激光器中,发生的辐射就是受激辐射,它发出的激光在频率、相位、偏振状态等方面完全一样。任何的受激发光系统,即有受激辐射,也有受激吸收,只有受激辐射占优势,才能把外来光放大而发出激光。而一般光源中都是受激吸收占优势,只有粒子的平衡态被打破,使高能态的粒子数大于低能态的粒子数(这样情况称为离子数反转),才能发出激光。 产生激光的三个条件是:实现粒子数反转、满足阈值条件和谐振条件。产生光的受激发射的首要条件是粒子数反转,在半导体中就是要把价带内的电子抽运到导带。为了获得离子数反转,通常采用重掺杂的P型和N型材料构成PN结,这样,在外加电压作用下,在结区附近就出现了离子数反转—在高费米能级EFC以下导带中贮存着电子,而在低费米能级EFV以上的价带中贮存着空穴。实现粒子数反转是产生激光的必要条件,但不是充分条件。要产生激光,还要有损耗极小的谐振腔,谐振腔的主要部分是两个互相平行的反射镜,激活物质所发出的受激辐射光在两个反射镜之间来回反射,不断引起新的受激辐射,使其不断被放大。只有受激辐射放大的增益大于激光器内的各种损耗,即满足一定的阈值条件: P1P2exp(2G - 2A) ≥1 (P1、P2是两个反射镜的反射率,G是激活介质的增益系数,A是介质的损耗系数,exp 为常数),才能输出稳定的激光,另一方面,激光在谐振腔内来回反射,只有这些光束两两之间在输出端的相位差Δф=2qπq=1、2、3、4。。。。时,才能在输出端产生加强干涉,输出稳定激光。设谐振腔的长度为L,激活介质的折射率为N,则 Δф=(2π/λ)2NL=4πN(Lf/c)=2qπ, 上式可化为f=qc/2NL该式称为谐振条件,它表明谐振腔长度L和折射率N确定以后,只有某些特定频率的光才能形成光振荡,输出稳定的激光。这说明谐振腔对输出的激光有一定的选频作用。 二、激光二极管本质上是一个半导体二极管,按照PN结材料是否相同,可以把激光二极管分为同质结、单异质结(SH)、双异质结(DH)和量子阱(QW)激光二极管。量子阱激光二极管具有阈值电流低,输出功率高的优点,是目前市场应用的主流产品。同激光器相比,激光二极管具有效率高、体积小、寿命长的优点,但其输出功率小(一般小于2mW),线性差、单色性不太好,使其在有线电视系统中的应用受到很大限制,不能传输多频道,高性能模拟信号。在双向光接收机的回传模块中,上行发射一般都采用量子阱激光二极管作为光源。 半导体激光二极管的基本结构如图所示,垂直于PN结面的一对平行平面构成法布里—

半导体激光器输出特性的影响因素

半导体激光器输出特性的影响因素 半导体激光器是一类非常重要的激光器,在光通信、光存储等很多领域都有广泛的应用。下面我将探讨半导体激光器的波长、光谱、光功率、激光束的空间分布等四个方面的输出特性,并分析影响这些输出特性的主要因素。 1. 波长 半导体激光器的发射波长是由导带的电子跃迁到价带时所释放出的能量决定的,这个能量近似等于禁带宽度Eg(eV)。 hf=Eg f(Hz)和λ(μm)分别为发射光的频率和波长 且c=3×108m/s ,h=6.628×10?34J ·s ,leV=1.60×10?19J 得 决定半导体激光器输出光波长的主要因素是半导体材料和温度。 不同半导体材料有不同的禁带宽度Eg ,因而有不同的发射波长λ:GaAlAs-GaAs 材料适用于0.85μm 波段,InGaAsP-InP 材料适用于1.3~1.55μm 波段。 温度的升高会使半导体的禁带宽度变小,导致波长变大。 2. 光功率 半导体激光器的输出光功率 其中I 为激光器的驱动电流,P th 为激光器的阈值功率;I th 为激光器的阈值电流;ηd 为外微分量子效率;hf 为光子能量;e 为电子电荷。 hf 、e 为常数,Pth 很小可忽略。由此可知,输出光功率主要取决于驱动电流I 、阈值电流I th 以及外微分量子效率ηd 。驱动电流是可随意调节的,因此这里主要讨论后两者。除此之外,温度也是影响光功率的重要因素。 1)阈值电流 半导体激光器的输出光功率通常用P-I 曲线表示。当外加正向电流达到某一数值时,输出光功率急剧增加,这时将产生激光振荡,这个电流称为阈值电流,用I th 表示。当激励电流II th 时,有源区不仅有粒子数反转,而且达到了谐振条件,受激辐射为主,输出功率急剧增加,发出的是激光,此时P-I 曲线是线性变化的。对于激光器来说,要求阈值电流越小越好。 阈值电流主要与下列影响因素有关: a) 晶体的掺杂浓度越大,阈值电流越小。 b) 谐振腔的损耗越小,阈值电流越小。 c) 与半导体材料结型有关,异质结阈值电流比同质结小得多。 d) 温度越高,阈值电流越大。 2)外微分量子效率 ) (th d th I I e hf P P -+=ηλ c =f

光束整形器的分类

光束整形器的分类 光束整形器又称为激光整形器,是衍射光学元件(DOE)中的最常用的透镜。光束整形器的作用是把激光光束转化为一个能量均匀分布的平顶光斑,光斑形状可以是正方形、圆形或其它形状。评价光束整形器好坏的标准是光斑能量分布是否均匀、边沿是否锐利、效率是否足够高。 光束整形器(Beam Shaper/Top-Hat)——平顶光斑 1.平顶光束整形器(Top hat) 1)带聚焦镜的光束整形器(Focal Beam Shaper);2)平顶光束整形元件(Angular Beam Shaper) 2.M-Shape光束整形器,M形光束整形透镜(Beam Shaper_M Shape),维尔克斯光电技术支 持 3.圆环激光发生器,圆环光束整形器,激光圆环衍射光学元件(Ring generator, Multi-Circles)

4.螺旋相位板,涡旋透镜,激光轴棱镜,漩涡镜头,涡旋相位板(Diffractive Axicon, Vortex Lens) 5.激光扩散器(使激光均匀地扩散成一个平面),均匀片,激光匀束元件,匀化光束整形 器(Homogenizers,Diffusers)维尔克斯光电选型支持

光束整形器——激光分束(Beam Splitters) 1.激光分束器(Beam Splitter) 1)一维激光分束镜,一维激光光束分束元件(1D Beam Splitter) 2)二维激光分束器,激光二维分束透镜(2D Beam Splitter) 2.客制化激光光束分束器,随机点阵激光分束镜,定制图形激光分束器(Custom Beam Splitter)

半导体激光器pi特性测试实验

太原理工大学现代科技学院 课程实验报告 专业班级 学号 姓名 指导教师

实验名称 半导体激光器P-I 特性测试实验 同组人 专业班级 学号 姓名 成绩 一、 实验目的 1. 学习半导体激光器发光原理和光纤通信中激光光源工作原理 2. 了解半导体激光器平均输出光功率与注入驱动电流的关系 3. 掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法 二、 实验仪器 1. ZY12OFCom13BG 型光纤通信原理实验箱 1台 2. 光功率计 1台 3. FC/PC-FC/PC 单模光跳线 1根 4. 万用表 1台 5. 连接导线 20根 三、 实验原理 半导体激光二极管(LD )或简称半导体激光器,它通过受激辐射发光,(处于高能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射。所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。)是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。 P-I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,I th 对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比(测试方法见实验四)大, ……………………………………装………………………………………订…………………………………………线………………………………………

激光二极管光束整形技术讲解

文章编号:100123806(20030420357205激光二极管光束整形技术 郭明秀1沈冠群2陆雨田1 (1中国科学院上海光学精密机械研究所,上海,201800(2上海市激光技术所,上海,200233 摘要:阐述了对LD 输出光束进行整形的必要性。在国内首次对目前常用的一些典型的光束整形技术的整形原理、关键技术及整形效果进行了分析、比较和评价。 关键词:激光二极管;激光二极管阵列;光束整形;拉格朗日不变量中图分类 号:TN24814文献标识码:A The technology of laser diode beam shaping Guo M i ngxi u 1,S hen Guanqun 2,L u Y utian 1 (1Shanghai Institute of Optics and Fine Mechanics ,the Chinese Academy of Science ,Shanghai ,201800 (2Shanghai Institute of Laser Technology ,Shanghai ,200233 Abstract :This paper introduces the necessity of beam shaping for LDA beam.S ome typical beam shaping methods ’shaping principles ,key techniques and shaping effects are areanalyzed ,compared and assessed for the first time.K ey w ords :laser diode (LD ;laser diode array (LDA ;beam shaping ;Lagrange invariant 作者简介:郭明秀,女,1975年11月出生。硕士。现从事半导体泵浦固体激光器及半导体激光器光束整形的研究工作。

试论高斯光束整形技术

试论高斯光束整形技术 发表时间:2016-01-27T14:56:49.093Z 来源:《医师在线》2015年10月第21期供稿作者:张海英 [导读] 北京V美精致雕颜平顶光束的转化,多年来一直成为中外学者研究探索的重要课题。 张海英 北京V美精致雕颜 100123 【摘要】:本文给出了一个整形系统的设计实例,简化了高斯光束整形系统的光学设计;解释了高斯光束的形成原理;利用Zemax编写计算了坐标变换的ZPL宏指令;通过非球面透镜实验,证实了高斯光束的整形变化。仿真设计结果表明,输出光斑的光强均匀度高、能量损耗小、符合使用标准。且方法易于操作、计算简单、具有较高的实用价值。 【关键词】光束整形高斯光束平顶光束 【引言】 平顶光束的转化,多年来一直成为中外学者研究探索的重要课题,国外主要以Alavinejad和B.Ghafar等人为主,国内的研究学者主要有罗时荣、季小玲、曾庆刚等人,本文利用ZEMAX软件对整形系统进行研究,根据上述理论设计了针对高斯光束的仿真实验系统,据此进行了相关实验,验证了设计结果。 目前将高斯光束转化为平顶光束的方法主要有:衍射光学元件法、长焦深整形原件法、双折射透镜组法、陈列光学元件法、液晶空间光调制器法、以及非球面透镜法,其中非球面最具实用价值,故而本文将重点对其进行介绍。 一基础理论 1.光束整形原理 依据M.F.Frieden的整形原理示意图,分别用字母表示入射光强,出射光强,入射面任意一条光线的坐标值,以及与其对应的出射平面坐标值,高斯光束束腰,平顶光半径,依据能量守恒定律,建立入射光线与出射光线的联系,可以得出入射面光线的坐标值和与其对应的出射面坐标值间的能量相等。 2.非球面面型参数 利用单片透视镜使光强分布在平面B,实现均匀分布,因为R与r间是非线性关系,所以B平面内光波,不是平面光波,因此需要采用双片式结构使B处光波转换为平面光波。根据三角函数关系及几何光学为依据;配合snell定律、三角恒等式等进行计算,通过大量的计算和比对,我们发现该方法计算过程较为复杂,不利于光学软件的优化设计。 二 .ZEMAX软件仿真设计 1软件功能介绍 ZEMAX软件是美国 Radiant Zemax 公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射、折射绕射等光学模型,并结合优化、公差等分析功能,是一套可以运算sequential及Non-Sequential的软件。可以按照光学系统的不同需求进行仿真操作,操作方便且精确度高,在激光整形系统中应用较为广泛。在序列模式下建模与优化,非序列模式下仿真,公差分析。选择适合的初始结构和系统优化三大步骤。 2平顶光束实验 在ZEMAX系统中,将工作波长设定为532nm,高斯光束束腰为6mm,平顶光束半径为6mm,通过率为90%,以硅胶玻璃为介质,采用双透镜系统进行整形,选取入射平面上的200条光线,作为样品,利用zemax软件上的“reay”对每条出射光的投射高度进行操控。 要保证实验结果的准确性以及精确度,必须要保证初始结构的选取绝对精确,否则将无法达到预期的效果。为保证设计效果的准确。须要分进行步完成设计。 首先设计但透镜整形系统:第一面为平面,第二面为高次非球面。在zpl下进行语言优化。借助图标可以得到,经过单透镜系后的高斯光束,已转换为平顶光束,此系统光程差较大,只能在固定区域内实现光束平均化,因而将对其进行更为精准的优化。 在原有的设计基础上,将一非球面透镜加至原像面处,有zemax的无焦像空间模式就,对准直系统进行进一步优化。实验结果表明,高斯光束,在普乐系统重整后,变为了平顶光束,出射光以平行状分布,但光束边缘处波动较大。 进一步对其进行公差分析可知,元件的偏心公差和倾斜公差,透视面的倾斜公差,对灵敏度的影响十分明显。因此提高系统装调精度,才能使光学系统得到更好的发挥。 三.平顶光束的特性 平顶光束的优势在于,可以将场分布函数用有限的厄米-高斯或拉盖尔-高斯模的和来表示。且于abcd相吻合。利用Li提出的模型以及基模高斯光束传播规律作为依据,对于平顶光束的特性进行研究,将不同模型的平顶光束表达式带入Collins公式中,得到结论,阶数增大,会使光场均匀性增强,会呈现平顶方波形式,阶数大时,光束光场分布变化减小。 平顶光束处于自由空间时,光阶数增加,平顶光束趋于平坦。呈现方形分布,若光阶数超出一定范围,光强分布逐渐减弱。 四.复杂的高斯光束 实验证明上述方法,至适用于球面整形的设计。对于谐振腔为方形德的激光器并不适用。因此研究厄米特-高斯光束和拉盖尔高斯光束的整形方法,是解决这一问题的关键。 首先利用zemax分别对两种光束,进行自动优化设计,得到光束设计图,通过对设计图的分析研究,找出平顶光束传输,存在一种特定的模式,不同的平顶光模型间存在的这种联系,可以将复杂的平顶光束转化为简单的光传输形式。这种传输形式的转换,对于复杂平顶光线在科学,医学,以及物理学方面的应用,提供了更加便利的条件。对于复杂平顶光线的应用具有重大意义。 五.总结与展望 概括来说,平顶光束可以弥补高斯光束,光束分布不均的缺点,且具有更强的实用性,对于人类科学,医疗方面的发展,具有重大的意义。本文对高斯光束转化为平顶光束,进行了合理的设计及论证;利用光学软件进行了设计优化;对于相对复杂的平顶光模型的整形技术进行了整合、细化、及推广。 然而,为了使其实用价值得到更加充分的体现,仍需对其进行更加系统化的实验研究,进而得到更为精确完整的理论。与此同时还应

半导体激光器线阵的棱镜组光束整形器和光纤耦合输出

第34卷第5期2008年9月 光学技术OPTICAL TECHN IQU E Vol.34No.5 Sep. 2008 文章编号:100221582(2008)0520664203半导体激光器线阵的棱镜组光束 整形器和光纤耦合输出 Ξ 王春灿1,2,张帆1,刘楚1,宁提纲1,简水生1 (1.全光网络与现代通信网教育部重点实验室,北京 100044;2.北京交通大学光波技术研究所,北京 100044) 摘 要:针对半导体激光器线阵输出光束快慢轴方向光参数积不对称问题,提出并制作了基于直角棱镜片的光束整形器,其具有结构简单紧凑,制作安装容易的特点。通过数值仿真和实验对光束整形器进行了分析,研究表明整形器实现了半导体激光器线阵输出光束的对称化,并且光束经过透镜聚焦后对数值孔径为0.46,直径为200μm 的光纤进行耦合,效率为53%。 关 键 词:激光技术;光束整形;半导体激光器线阵;光纤耦合 中图分类号:TN248.4 文献标识码:A Prism groups beam shaper and f iber coupling of the laser diode arrays WANG Chun 2can 1,2,ZH ANG Fan 1,LI U Chu 1,NI NG Ti 2gang 1,J I AN Shui 2sheng 1 (1.K ey Lab of All Optical Network &Advanced Telecommunication Network of EMC , Beijing Jiaotong University ,Beijing 100044,China ) (2.Institute of Lightwave Technology ,Beijing Jiaotong University ,Beijing 100044,China ) Abstract :The emission beam of the laser diode arrays (LDA )has an asymmetrical distribution and is astigmatic ,that is ,the waists and divergences of the beam in the fast and slow axes are different.To equalize the beam parameter products (BPP )of the asymmetrical laser beam ,a new beam shaper based on the prism groups is developed and demonstrated by experiment.By focusing the reshaped beam into an optical fiber with the diameter of 200 μm and numerical aperture of 0.46,high quality laser beams can be obtained and the overall efficiency is 53%. K ey w ords :laser technique ;beam shaping ;laser diode arrays ;fiber coupling 0 引 言 近年来由于大功率半导体激光器线阵(LDA )具有体积小、光电转换效率高、工作寿命长和较高的高性价比等优势,在材料加工、激光医疗和固体激光器的泵浦源等方面得到广泛地应用。半导体激光器线阵的输出光束具有不对称性,即在垂直于p 2n 结的方向上发光区宽约1μm ,输出光束的发散角为30°~60°,这一方向称为快轴,在平行于p 2n 结的方向上发光区宽约10mm ,发散角约为10°,其称为慢轴。例如nlight 公司60W 半导体激光器线阵是由 49个发光单元以间隔100 μm 周期沿慢轴方向排列组成,每个发光单元尺寸为1μm ×100 μm (快轴尺寸×慢轴尺寸),整体半导体激光器线阵的发光面尺 寸为1μm ×10mm ,发散角为36°×10°。一般用拉 格朗日不变量,也称作光束参数积(BPP )来描述光束质量,其值为光斑尺寸与发散角度的乘积,则快轴和慢轴两个方向上BPP 分别为0.6和1745mm ?mrad 。图1给出了上海恩耐公司的60W 半导体激 光器线阵的输出光束强度分布,由SPIRICON M 22200光束质量分析仪测得,可以看出光束沿快慢轴 两个方向上是不对称的。因此,如果要把LDA 输出光束耦合进光纤,需要首先通过光束整形技术将LDA 输出光束进行对称化。目前,国内外所用的整 形技术有双平面镜反射法[1]、阶梯反射镜法[2]、微片棱镜堆整形法[3]、衍射元件法[4]等。本文报道利用直角棱镜组对LDA 输出光束进行整形的方案,其特点是结构简单紧凑,制作和安装较为容易,并且成 4 66Ξ收稿日期:2007211221;收到修改稿日期:2008201221 E 2m ail :xzwangchuncan @https://www.doczj.com/doc/4d4156067.html, ;ssjian @https://www.doczj.com/doc/4d4156067.html, 基金项目:国家自然科学基金、北京市自然科学基金(4052023)、新世纪优秀人才支持计划(NCET 20620076)、北京交通大学校科技基金 (2006XM003)资助);北京交通大学科学技术基金(2004RC073);北京交通大学专项研究员基金(48101) 作者简介:王春灿(19752),男,江苏人,北京交通大学博士研究生,从事光纤激光器与光器件方面的研究。

半导体激光器输出特性的影响因素

半导体激光器输出特性的影响因素

半导体激光器输出特性的影响因素 半导体激光器是一类非常重要的激光器,在光通信、光存储等很多领域都有广泛的应用。下面我将探讨半导体激光器的波长、光谱、光功率、激光束的空间分布等四个方面的输出特性,并分析影响这些输出特性的主要因素。 1. 波长 半导体激光器的发射波长是由导带的电子跃迁到价带时所释放出的能量决定的,这个能量近似等于禁带宽度Eg(eV)。 hf = Eg f (Hz)和λ(μm)分别为发射光的频率和波长 且c=3×108m/s , h=6.628×10?34 J ·s ,leV=1.60×10?19 J 得 决定半导体激光器输出光波长的主要因素是半导体材料和温度。 λ c =f ) ( )(24.1m eV Eg μλ=

不同半导体材料有不同的禁带宽度Eg ,因而有不同的发射波长λ:GaAlAs-GaAs 材料适用于0.85 μm 波段, InGaAsP-InP 材料适用于 1.3~1.55 μm 波段。 温度的升高会使半导体的禁带宽度变小,导致波长变大。 2. 光功率 半导体激光器的输出光功率 其中I 为激光器的驱动电流,P th 为激光器的阈值 功率;I th 为激光器的阈值电流;ηd 为外微分量 子效率;hf 为光子能量;e 为电子电荷。 hf 、e 为常数,Pth 很小可忽略。由此可知,输出光功率主要取决于驱动电流I 、阈值电流I th 以及外微分量子效率ηd 。驱动电流是可随意调节 的,因此这里主要讨论后两者。除此之外,温度也是影响光功率的重要因素。 1)阈值电流 半导体激光器的输出光功率通常用P-I 曲线 ) (th d th I I e hf P P -+=η

半导体激光器的应用与分类

半导体激光器的应用与分类 半导体光发射器是电流注入型半导体PN结光发射器件,具有体积小、重量轻、直接调制、宽带宽,转换效率高、高可靠和易于集成等特点,被广泛应用。按照其发光特性,可分为激光二极管(又称半导体激光器或二极管激光器,Laser Diode,LD),通常光谱宽度不]于5nm(采取专门措施可不大于0.1nm);发光二极管(Light Emitting Diode,LED),光谱宽度一般不小于50nm;超辐射发光二极管(Superluminescent Dmde,SLD),光谱宽度不大于5nm(采取专门措施可不大于0.1nm);发光二极管(Light Emiltting,LED),光谱宽度一般不小于50nm;超辐射发光二极管(Superluminescent SLD),光谱宽度为30~50nm,本节重点介绍几种半导体激光器,钽电容简要介绍超辐射发光二极管。 半导体激光器的分类有多种方法。按波长分:中远红外激光器、近红外激光器、可见光激光器、紫外激光器等;按结构分:双异质结激光器、大光腔激光器、分布反馈激光器、垂直腔面发射激光器;按应用领域分:光通信激光器、光存储激光器、大功率泵浦激光器、引信用脉冲激光器等;按管心组合方式分:单管、阵列(线阵、面阵);按注入电流工作方式分:脉冲、连续、准连续等。 LD主要技术摄技术指标有光功率、中心波长、光谱宽度、阈值电流、工作电流、工作电压、斜率效率和电光转换效率等。 半导体激光器的光功率是指在规定驱动电流条件下输出的光功率,该指标直接与工作电流对应,这体现了半导体激光器的电流驱动特性。如果是连续驱动条件,T491T336M004AT则输出功率就是连续光功率,如果是脉冲驱动条件,输出的光功率可用峰值功率或平均功率来衡量。hymsm%ddz 半导体激光器的中心波长是指激光器所发光谱曲线的中心点所对应的波长,通常用该指标来标称激光器的发光波长。光谱宽度是标志个导体激光器光谱纯度的一个指标,通常用光谱曲线半高度对应的光谱全宽来表示。 半导体激光器的光场是发散的而且是不对称的。在垂直PN结平面方向(快轴方向),发散角较大,通常在20°~45°之间;在平行PN结平面方向(慢轴方向),发散角较小,通常在6°~12°之间。由此可以看出,半导体二极管激光器的光场在空间分布呈椭圆形。

复眼透镜在激光二极管阵列光束整形中的应用

第38卷 第2期中 国 激 光 V ol.38,N o.22011年2月 CHINESE JO URNAL OF LASERS February,2011 复眼透镜在激光二极管阵列光束整形中的应用 贾文武 汪岳峰 黄 峰 殷智勇 赵 诚 (军械工程学院光学与电子工程系,河北石家庄050003) 摘要 在回顾复眼透镜对单光束光源的均匀化机制基础上,分析了复眼透镜对激光二极管(L D)阵列光源的光束均匀化机制。即对子光束分割叠加破坏相似性,对所有分割叠加后的子光斑进行叠加获得均匀性。在此基础上,以抽运薄片或者板条激光器需要高功率密度的均匀抽运光为需求,设计了基于复眼透镜的L D 阵列光束整形系统,并给出了其中复眼透镜和积分透镜这两个关键部件的结构形式和相关参数。最后根据所设计的复眼透镜LD 光束整形系统搭建了相应的实验光路并测试了整形后光斑不均匀性,测试表明不均匀性为9.8%,验证了对复眼透镜L D 阵列光束整形的分析。 关键词 光电子学;复眼透镜;光束整形;抽运 中图分类号 T N 245 文献标识码 A doi :10.3788/CJL 201138.0202008 Application of Fly s Eye Le ns in Be am Shaping Laser Diode Array Jia Wenwu Wang Yuefeng Huang Feng Ying Zhiyong Zhao Cheng (Depar t m en t of Opt ics a nd Electr on ic En gin eer in g ,Or dn an ce Engin eer in g College , Shijia zhu an g ,Hebei 050003,Chin a ) Abstract Reviewing the mechanism of fly s eye lens homogenizing single beam sourc e,the mechanism of fly s eye lens homogenizing la ser diode a rray is studied.Each single beam is split and superposed to break down the c om parability between them,then the shaped beams are superposed to gain a uniform beam.Then a fly s eye lens based beam shaping system for laser diode array,aiming to improve pumping intensity,is designed.The parameters of fly s eye lens and integrating lens are given out.An experim ent of the designed beam shaping system is done and the non uniformity of result beam is measured,which confirms the analysis of fly s eye lens homogenizing la ser diode a rray. Key wo rds optoelectronic s;fly s eye lens;bea m shaping;pum ping OCIS co des 220.2945;140.5560;140.2020 收稿日期:2010 08 07;收到修改稿日期:2010 09 25 作者简介:贾文武(1984 ),男,博士研究生,主要从事光学系统设计和光束整形等方面的研究。E mail:jw w4891@https://www.doczj.com/doc/4d4156067.html, 导师简介:汪岳峰(1963 ),男,博士,教授,主要从事固体激光技术方面的研究。E mail:W Y Fmail@https://www.doczj.com/doc/4d4156067.html, 1 引 言 复眼透镜由一系列子透镜组合而成,形成空间上的微透镜阵列。将复眼透镜应用于照明系统中可以获得高的光能利用率和均匀的照明效果,其光束匀化能力在投影显示等领域已经得到广泛的证明 [1~5] 。而在高功率固体激光抽运中,抽运均匀性 直接与激光介质的温度分布、应力分布相关联,会影响到激光器能否实现高光束质量的激光输出以及激光器的能量转换效率[6~9]。因此将复眼透镜引入到 激光二极管(LD)抽运耦合系统中作为LD 阵列的光束整形器件,对于提高LD 抽运的均匀性具有重要意义。但是与投影显示中光束整形不同,LD 阵列的光束整形具有它的特殊性:抽运功率密度是激光抽运源的重要技术指标,因此针对LD 抽运做光束整形时通常要求压缩光斑尺寸以提高抽运功率密度;LD 阵列光源中单个发光点的光束是相干光而发光点之间不相干,这种局部相干性是如何影响复眼透镜整形结果的均匀性的,这是以抽运为需求的

相关主题
文本预览
相关文档 最新文档