当前位置:文档之家› 单纯形法及其应用

单纯形法及其应用

单纯形法及其应用
单纯形法及其应用

单纯形法及其应用

摘要

单纯形法是一种主要的解决线性规划问题的方法,它在生活的成本问题、交通选择或规划学术问题等方面得到广泛应用.本文系统的研究了单纯形法的相关概念以及原理.并阐述了用单纯形法解决线性规划问题的步骤与方法及不同方法的特殊性.正确的应用单纯形法解决问题能够提高准确率,从而进行合理的规划安排,使得效果或收益达到期待化或最优化.

关键词:单纯形法;单纯形表;最优性

The Simplex Method and its Application

Abstract:Simplex method is a main to solve linear programming problems, it in life cost, the choice of traffic or academic planning problems are widely used. This paper study the simplex method of the related concepts and principles. It describes the steps and methods to use simplex method to solve linear programming problems, and the different method. Correct application of the simplex method problem solving is able to improve the accuracy, in order to carry out reasonable planning arrangements, makes the effect or income reached expectations or optimization.

Keywords:simplex method;simplex tableau;optimality

目录

1引言 (1)

2文献综述 (1)

2.1国外研究现状 (1)

2.2国外研究现状评价 (2)

2.3提出问题 (2)

3单纯形法的相关概念及原理 (2)

3.1线性规划问题解的相关概念 (2)

3.2初始基可行解的确定 (4)

3.3最优性检验与解的判定 (4)

4单纯形法的计算 (5)

4.1单纯形表的计算步骤 (5)

4.1.1单纯形表 (5)

4.1.2计算步骤 (7)

4.2人工变量 (9)

4.2.1大M法 (10)

4.2.2两阶段法 (12)

4.3单纯形法的改进——对偶单纯形法 (15)

5单纯形法在实际问题中的应用 (17)

6结论 (19)

6.1主要发现 (19)

6.2启示 (19)

6.3局限性 (19)

6.4努力方向 (20)

参考文献 (21)

1引言

线性规划问题算运筹学中比较早开始研究,在研究过程中发展比较快,在现实生活和学术领域应用比较广泛,研究、解决方法比较成熟的一个不可缺少的分支,随着社会的发展,线性规划也成了人们在解决问题时应用的一种数学方法,它主要应用于数学管理问题的解决中.例如社会经济、交通选择、工业、农业生产等活动中.人们为了提高回报或收益从而对已有的人力、资源、物力等进行合理的的规划安排,使得效果或收益达到期待化或最优化.

在解决线性规划问题时,通常应用的方法有图像法和单纯形法等.而应用最多、最有效的方法为单纯形法.单纯形法是一种解决线性规划问题的有效方法,它的应用原理方法为:把线性规划问题的解的可实施部分看做一个n维向量空间Rn中的凸集,由此可得线性规划问题存在最优值那么此最优值只能在凸集的顶点处.既然最优值在顶点处,我们就把所有顶点看做一个集合,先在这个集合里面挑选出一个顶点的值,对它进行判别,判别是否为最优值;如果判别结果不是最优值,那么就用一些方法把这个顶点的值转换为另外一个更可能为最优值的顶点值,依次进行判别,因为顶点有限,所以都可以转换出最终的结果,从而达到解决问题的要求,线性规划问题中没有最优的解也可以利用单纯形法进行计算判别.

因此,单纯形法对于解决线性规划有非常重要的地位.单纯形法是一种解决线性规划的方法,只有在线性规划问题中才能更好展现,在本文中,我首先就单纯形法所涉及到的一些线性规划的基本概念、解的定义、专业名词等做出简要说明,然后在典型的线性规划中充分揭示单纯形法的步骤、方法及应用,旨在开阔人们分析线性规划问题的思路,

加强人们实施实际问题的能力.

2文献综述

2.1国外研究现状

现查阅到的参考文献中,分别就单纯形法的综述及其在解决线性规划问题中的应用做出说明.敖特根、章学仁在[1-2]中强调单纯形法在线性规划中的产生与发展的重要性.燕子宗等在[3]中给出了一种新的原对偶单纯形法.郭照庄等在[4-5]中详细阐述单纯形法的基本原理.娜、唐帅等在[6-7]中针对如何使用大M法和两阶段法实现某一线性目标最优化问题作出详细说明.胡运权在文献[8]中针对单纯形法的基本知识和应用做出阐述.文献[9]中,马振华举例说明单纯形法在解决不同线性规划问题中的应用及规律.文献[10]中红英等对单纯形法的计算机算法进行了说明.邓成梁等在[11-15]中对单纯形法的迭代步骤与解的讨论进行研究,而且也对单纯形法的具体求解做出的研究.

2.2国外研究现状评价

文献[1-15]分别就单纯形法的解题步骤及单纯形法在线性规划问题解题中的意义举例作了说明,文献中主要阐述一种或几种单纯形法在线性规划解题中的应用,没有全面地介绍常用单纯形法在不同线性规划问题的应用及解题步骤,而且文献中对怎样应用单纯形法解决线性规划问题提及甚少,对应用中存在的问题也未给出详细深入的说明,以及遇到现实问题时,单纯形法的具体用法及计算机应用方法未有太多涉及.

2.3提出问题

单纯形法的在线性规划中有广泛的应用,但是大部分书本只介绍了一些基础知识或

讲解线性规划时一带而过. 因此,除对解决线性规划问题过程中被一带而过单纯形法作出介绍外,还需要对应用单纯形法解决问题过程中可能遇到的困难、不理解及解决办法作出探讨,包括对使用不同单纯形法的目的、作用、要求作阐述.体会在不同题中单纯形法的不同应用,总结概括以指导方便快捷地解决问题.

3单纯形法的相关概念及原理

3.1线性规划问题解的相关概念

线性规划问题是需要用单纯形法解决的一类问题,所以我们在研究讨论单纯形法时是基于线性规划的基础之上,利用单纯形法使线性规划问题简单、清楚的得出结果是我们的最终目的.一般线性规划问题化为标准式是利用单纯形法求解线性规划问题的基本步骤,对于单纯形法能否顺利得出结果,也有很大联系,在解题过程中,应该谨记变量,目标函数,约束条件的相关要求.

线性规划问题的标准形式为:

目标函数 1max n

j j j z c x ==∑

约束条件 ()()11,,..01,,n

ij j i j j

a x

b i m s t x j n =?==???≥=?∑

我们不难看出上式的三个特点:

(1)有决策变量:0;1,,j x j m ≥=.

(2)有目标函数,:max min 或,一般多用max .两者可以互换,即()max min z z ?-.

(3)有约束条件,通常为等式,对于“≤”或“≥”型的约束条件,可以添加变量转换成等式约束条件,添加的变量称为松弛变量,在目标函数中,松弛变量相对应的系数为

0.例如:

123123445154515x x x x x x x +-≤→+-+=

12312352632026320x x x x x x x -+≥→-+-=

在利用单纯形法进行计算时,对于线性规划的解的相关概念也需要牢记,在接下来的单纯形法格式中,是以基本概念的求解为基础.线性规划解的概念对于不同元素的换入、换出等都有影响.下面将介绍线性规划问题解的概念:

1、可行解:可以满足全部约束条件的解()1,

,T

n X x x =,称为线性规划问题的可行解.可行解的集合,称为可行域.

2、最优解:最符合题目要求的解,在可行域中,能够使目标函数取得最大值的可行解称为最优解.最优解一定是可行解.

3、基:设A 为约束方程组的m n ?阶系数矩阵(设n m >),基为A 的满秩子矩阵m m ? 矩阵.

4、基可行解:满足变量非负约束条件的基解叫做基可行解,最优解一定是基可行解.

5、可行基:对应于基可行解的基称为可行基. 3.2初始基可行解的确定

我们说单纯形法是一种迭代算法.所以我们在迭代时需要确定每一次迭代的对象,特别是在进行第一次迭代前,我们必须确定好对象才能使单纯形法的迭代顺利进行.第一次迭代的对象我们称为初始基可行解.为了确定初始基可行解,首先要找出初始可行基.找出初始可行基的方法为:

(1)有的线性规划问题中能直接观察得到一个初始可行基:

单纯形法的综述及其应用-文献综述

毕业论文文献综述 数学与应用数学 单纯形法的综述及其应用 一、 前言部分(说明写作的目的,介绍有关概念、综述范围,扼要说明有关 主题争论焦点) 1.写作目的 本文主要在于介绍单纯形法的历史背景,基本计算方法,改进的计算方法,以及单纯形法的应用.目的在于对单纯形法的历史背景,计算方法等进行综述,并总结单纯形法在生活各个领域的应用,单纯形法是求解线性规划问题很有效的方法,通过对单纯形法的进一步了解,最后提出一实际问题利用单纯法进行分析求解. 2.有关概念 LP 问题的一般形式[1] ()1122. Max min n n ob Z c x c x c x =+++L ()()()11112211 211222221122 12..: ,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b s t a x a x a x b x x x +++≤≥?? +++≤≥?? ??+++≤≥??≥? L L L L L 线性规划问题的标准型为[2] ()()()11221111221121122222 m1122 12min a a s.t.a 01,2,,,,,n n n n n n m mn n m j n S c x c x c x S x a x a x b x a x a x b x a x a x b x j n x x x =+++?+++=? +++=?? ??+++=??≥=? L L L L L L 为目标函数(1)为决策变量 其矩阵形式为 min s.t.0 S CX AX b X ==?? ≥?(2)

其中,()12,,,n C c c c =L ,决策向量()()1212,,,,,,,T T n m X x x x b b b b ==L L . A 为约束条件中的系数矩阵, 即 1112121 22212 n n m m mm a a a a a a A a a a ??????=??????L L M M M M L 本文除了介绍线性规划问题的一般形式、标准形式和矩阵形式以外还列举了一些定义. 定义1[3]:设矩阵A 的秩为m ,矩阵B 是A 中的一个m 阶满秩子方阵,则B 为一个基矩阵.矩阵A 中剩余元素组成的子阵为N ,即[]A BN =.把x 的分量相应地分成两部分,记成B x 和N x ,B x 的分量与B 的列对应,称为基变量;N x 的分量与N 中的列对应,称为非基 变量.在约束Ax b =中令所有的非基变量取值为零时,得到解10B N x B b x x -?? ??==???????? ,称为相 应于B 的基本解. 定义2[3]:基本解得基变量都取非负值时,即满足1 0B x B b -=≥的基本解为基本可行解. 定义3[4]:满足式(1)各约束条件的解()12,,,T n X x x x =L 称为可行解.全部可行解的集合称为可行域.目标函数1 min n j j j Z c x == ∑达到最大值的可行解称为最优解. 定义4[4]:设 A 为约束方程组1 (1,...,)n ij j i j a x b i m ===∑的m n ?阶系数矩阵, 设(n m >),其秩为m ,B 为矩阵A 中的一个m m ?阶的满秩子矩阵,称B 为线性规划问题的一个基.不失一般性,设 11111...(,...,)...m m m mm a a B a a αα?? ??==?? ???? M M B 中每一个向量(1,..,)j j m α=称为基向量;与基向量j α对应的变量j x 称为基变量. 基变量以外的的变量称为非基变量. 定义5[4] :在约束方程组 1 (1,...,)n ij j i j a x b i m ===∑中,令所有非基变量

改进单纯形法matlab程序

clear clc X=[1 2 3 4 5]; A=[ 1 2 1 0 0; 4 0 0 1 0; 0 4 0 0 1]; C=[2 3 0 0 0 ]; b=[8;16;12]; t=[3 4 5]; B0=A(:,t); while 1 CB0=C(:,t); XN01=X; for i=1:length(t); for j=1:length(X); if XN01(j)==t(i) XN01(j)=0; end end end j=1; for i=1:length(X); if XN01(i)~=0 XN0(j)=XN01(i); j=j+1; end end for j=1:length(XN0); CN0(j)=C(XN0(j)); end N0=[]; for i=1:length(XN0); N0=[N0,A(:,XN0(i))]; end xiN0=CN0-CB0*B0*N0; j=1; z=[]; for i=1:length(xiN0) if xiN0(i)>0 z(j)=i; j=j+1; end end if length(z)+1==1; break; end n=1; for i=1:length(z) if z(i)>z(n) n=i; end end k=XN0(z(n));%换入变量 B=B0*b; P=B0*A(:,k); j=1; for i=1:length(P)

if P(i)>0 x(j)=i; j=j+1; end end y=1; for i=1:length(x) if B(x(y))/P(x(y))>B(x(i))/P(x(i)) y=i; end end y1=x(y); y=t(y1);%换出变量 for i=1:length(t) if t(i)==y m=i; break; end end t(m)=k; P2=B0*A(:,k); q=P2(y1); P2(y1)=-1; P2=-P2./q; E=[1 0 0;0 1 0;0 0 1]; E(:,m)=P2; B0=E*B0; end CB0*B0*b

单纯形法求最优解问题及一些知识点整理

单纯形法求最优解问题 题目(老师布置的那道作业题):2153m ax x x f +=,其中 ??? ??? ?=≥=++=+=+5,4,3,2,1,0182312245214 231j x x x x x x x x j ,求2153m ax x x f +=的最大值。 这张表是根据题目画的,Cj (行向量)为5432100053m ax x x x x x f ++++=中各个变量的系数,Ci (列向量)为与X B (列向量)相对应的各项的系数,X B 称为基变量(3列,由题目中的方程个数决定),起初的基变量由构造的变量x3、x4、x5组成,b 为对应三个方程等式右边的常数,z j 为Ci 各列与xj 各列乘积的和,如z1=0*1+0*0+0*3=0。i θ为判别将哪个基变量换出的依据,根据c j -z j 为正,要先将x2换入XB 中,关键是判断x3、x4、x5哪个跟x2换,这就要根据各列各列除以2x B i X =θ,与所得的最小的i θ对应的XB 换,如上表可知x2跟x4换,换完之后注意原来x4所对应的列向量为[0 1 0]T ,故要将x2所对应的列向量变换为为[0 1 0]T ,注意b 也要跟着变化,于是得下表.

由上表知c 1-z 1=3>0,故仍需将x1换入XB 中,用各列各列除以2x B i X =θ,与所得的最小的i θ对应的XB 换,结合i θ可知,x1跟x5换,于是得下表。 由上表可知c j -z j 均非正,故5432100053m ax x x x x x f ++++=取最大值时,????? ?? ?????????=00662x , 对应的最大值36max =f . 系统工程导论知识点整理: 系统是由相互作用和相互依赖的若干组成部分(要素)结合的具有特定功能的有机整体。 系统的特征:整体性、相关性、目的性、环境适应性。 系统的功能是指系统与外部环境相互作用所反映的能力。 结构是功能的内在根据,功能是结构的外在表现。 系统功能的特性:易变性、相关性。 系统工程就是用科学的方法规划和组织人力、物力、财力,通过最优途径的选择,使人们的工作在一定期限内收到最合理、最经济、最有效的效果。 科学的方法:从整体观念出发,通盘筹划,合理安排整体中的每一个局部,以求得整体的最优规划、最优管理和最优控制,使每个局部都服从一个整体目标,力求避免资源的损失和浪费。

单纯形法及其应用

单纯形法及其应用 摘要 单纯形法是一种主要的解决线性规划问题的方法,它在生活的成本问题、交通选择或规划学术问题等方面得到广泛应用.本文系统的研究了单纯形法的相关概念以及原理.并阐述了用单纯形法解决线性规划问题的步骤与方法及不同方法的特殊性.正确的应用单纯形法解决问题能够提高准确率,从而进行合理的规划安排,使得效果或收益达到期待化或最优化. 关键词:单纯形法;单纯形表;最优性

The Simplex Method and its Application Abstract:Simplex method is a main to solve linear programming problems, it in life cost, the choice of traffic or academic planning problems are widely used. This paper study the simplex method of the related concepts and principles. It describes the steps and methods to use simplex method to solve linear programming problems, and the different method. Correct application of the simplex method problem solving is able to improve the accuracy, in order to carry out reasonable planning arrangements, makes the effect or income reached expectations or optimization. Keywords:simplex method;simplex tableau;optimality

单纯形法解决无约束优化问题

分数: ___________任课教师签字:___________ 课程作业 学年学期:2017——2018学年第二学期 课程名称:优化理论 作业名称:作业三 学生姓名: 学号: 提交时间:

一、问题重述 形如的min (x),x R n f ∈问题称为无约束优化问题,常用下降算法来解决这类问题。下降算法的关键在于步长和搜索方向的选取。步长的求取可以借助前面作业中提到的一维搜索等方法求取,而搜索方向算法可以分为两大类,解析法和直接法。 解析法借助了目标函数的导数进行搜索,这类算法搜索速度快、效率高,但是对目标函数的要求更为严格。常用的方法有最速下降法、Newton 法、共轭梯度法、拟Newton 法等。 直接法不使用导数,也不需要得到目标函数的明确解析式,只需要能够得到某些函数上的点即可。因此直接法的适用范围更广,但相应的收敛速度会较慢,计算量也会随着问题维数的增加而迅速增大。常用的方法有单纯形法、Powell 方向加速法以及Powell 改进算法。 本作业以直接法的Powell 法为例,解决具体的无约束优化问题,并对将Powell 方向加速法和Powell 改进算法解决结果进行对比。 二、算法原理 对于n 维正定二次函数(x)0.5T T f x Gx b x c =++,设011,,...(k n)k p p p -<关于G 共轭,0x 与1x 为任意不同点。分别从0x 与1x 出发,依次沿011,,...k p p p -作一维搜索。如果最后找到两个互不相同的极小点x a 与x b ,则x b a x -与011,,...k p p p -关于G 共轭。 Powell 方向加速法正是基于这一原理,每次迭代过程作n+1次一维搜索。第一次沿给定的n 个线性无关的方向011,,...n p p p -依次作一维搜索,之后沿由这一阶段的起点到第n 次搜索所得到的点的方向P 再做一次一维搜索,并把这次所得点作为下一阶段的起点,下一阶段的n 个搜索方向为011,,...,n p p p p -。以此直到找到最优解。 此算法是在迭代中逐次生成共轭方向,而共轭方向又是较好的搜索方向,所以称之为方向加速法。但是,此算法产生的n 个向量可能线性或近似线性相关,这时张不成n 维空间,可能得不到真正的极小点。因此,Powell 原始算法存在一定的缺陷。 Powell 改进算法虽然不再具有二次终止性,但克服了搜索方向的线性相关的不利情形,是解决无约束优化问题较有效的直接法之一。 本次作业一维搜索的过程是利用函数求导,求得最小值。经过试验发现,α是允许为负数的。否则最终寻优得到的极值点与实际结果存在很大的偏差,

单纯形法在经济管理中的应用

单纯形法在经济管理中的应用 [摘要]发展生产力,提高经济效益是人类发展不可或缺的要求,是合理利用现有的人力,物力资源,使经济效益达到最好的重要途径,而这些正是线性规划所研究的主要内容。本篇论文主要探讨单纯形法在经济管理中的应用,即应用单纯形法及其改进的方法来求解经济管理中的线性规划问题。详细介绍线性规划问题的基本思想和数学模型,深入研究单纯形法的原理和解法,将方法运用到生产计划模型和投资模型中。分析模型的求解结果,比较各种算法之间的优劣性,进一步说明单纯形法的实用性。 [关键字]线性规划单纯形法生产计划模型投资计划模型

The application of simplex method in economic management [Abstract]Development of productivity and economic efficiency are indispensable requirement of human development. Rational use of human and material resources is an important way to achieve the best economic benefits, which is the main contents the linear programming studies. This paper mainly discusses the application of the simplex method in economic management, namely Simplex method and the improved methods are applied to solving the economic management of the linear programming problem. The basic ideas and mathematical models of linear programming problems will be introduced in detail the research on the theory and solution of the simplex method is studied, and apply these methods to the production planning model and investment model . The results of the model will be analyzed. By comparing the advantages and disadvantages between various algorithms, the practicality of the simplex method is further illustrated. [Key words]Linear Programming Simplex Method Production planning model Investment Planning Model

单纯形法在线性规划中的实际应用

单纯形法在线性规划中的实际应用 摘要:线性规划是以数学模型为基础,研究如何在一定条件下实现目标最优化,而单纯形法是求解线性规划问题的主要方法,有效提升了数学规划的应用。本文介绍了线性规划的基本理论及单纯形法的基本理论和具体算法,然后将两者结合进行实际的应用。最终以的公交排班表和蛋糕店的加工计划为例通过模型的建立与求解制定了更加合理的公交排班时刻表和各时段的司机分配数量;解决在激烈竞争市场中如何利用有限的资源、人力、时间进行统筹安排,提高效率,降低成本使总的经济效益达到最佳。 关键词 : 线性规划;单纯形法;最优性;Lingo Abstract:Linear programming is based on the mathematical model to study how to achieve th e goal optimization under certain conditions, and the simplex method is the main method to solve t he linear programming problem, which effectively improves the application of mathematical progra mming. This paper introduces the basic theory of linear programming and the basic theory and spec ific algorithm of simplex method, and then combines the two into practical application. Finally, the bus schedule and the processing plan of the cake shop in Chongqing second Teachers ' College (Na nshan Campus) are used as examples to establish a more reasonable bus scheduling timetable and t he number of drivers assigned to each period. To solve the problem of how to make use of the limit ed resources, manpower and time in the competitive market to improve the efficiency Reduce costs to achieve the best overall economic benefits. Key words: Linear programming; Simplex method; Optimality; Lingo

单纯形法解决无约束优化问题

分数: ___________ 任课教师签字:___________ 课程作业 学年学期:2017——2018学年第二学期 课程名称:优化理论 作业名称:作业三 学生姓名: 学号: 提交时间:

一、问题重述 形如的min (x),x R n f ∈问题称为无约束优化问题,常用下降算法来解决这类问题。下降算法的关键在于步长和搜索方向的选取。步长的求取可以借助前面作业中提到的一维搜索等方法求取,而搜索方向算法可以分为两大类,解析法和直接法。 解析法借助了目标函数的导数进行搜索,这类算法搜索速度快、效率高,但是对目标函数的要求更为严格。常用的方法有最速下降法、Newton 法、共轭梯度法、拟Newton 法等。 直接法不使用导数,也不需要得到目标函数的明确解析式,只需要能够得到某些函数上的点即可。因此直接法的适用范围更广,但相应的收敛速度会较慢,计算量也会随着问题维数的增加而迅速增大。常用的方法有单纯形法、Powell 方向加速法以及Powell 改进算法。 本作业以直接法的Powell 法为例,解决具体的无约束优化问题,并对将Powell 方向加速法和Powell 改进算法解决结果进行对比。 二、算法原理 对于n 维正定二次函数(x)0.5T T f x Gx b x c =++,设011,,...(k n)k p p p -<关于G 共轭,0x 与1x 为任意不同点。分别从0x 与1x 出发,依次沿011,,...k p p p -作一维搜索。如果最后找到两个互不相同的极小点x a 与x b ,则x b a x -与011,,...k p p p -关于G 共轭。 Powell 方向加速法正是基于这一原理,每次迭代过程作n+1次一维搜索。第一次沿给定的n 个线性无关的方向011,,...n p p p -依次作一维搜索,之后沿由这一阶段的起点到第n 次搜索所得到的点的方向P 再做一次一维搜索,并把这次所得点作为下一阶段的起点,下一阶段的n 个搜索方向为011,,...,n p p p p -。以此直到找到最优解。 此算法是在迭代中逐次生成共轭方向,而共轭方向又是较好的搜索方向,所以称之为方向加速法。但是,此算法产生的n 个向量可能线性或近似线性相关,这时张不成n 维空间,可能得不到真正的极小点。因此,Powell 原始算法存在一定的缺陷。 Powell 改进算法虽然不再具有二次终止性,但克服了搜索方向的线性相关的不利情形,是解决无约束优化问题较有效的直接法之一。 本次作业一维搜索的过程是利用函数求导,求得最小值。经过试验发现,α是允许为负数的。否则最终寻优得到的极值点与实际结果存在很大的偏差,而且寻优的效率特别低下。

优化算法-单纯形法

%%%%%%%%%%考虑外部性%%%%%%%%% K=[0.238982596 0.287307802 0.316082138 0.41731 0.44684 0.554375 0.7433476 -0.5]; Ae=[]; be=[]; Au=[-4312.03 -4428.81 -4762.01 -3621 -1742 -1125 -7042 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 16.99234332 15.49032101 16.29521726 0 0 0 0 0 28.69966647 24.77171169 25.46127697 0 0 0 0 0 0.374634341 0.243236446 0.217269563 0 0 0 0 0 3.709548964 3.549331817 3.764874154 0 0 0 0 0 0.519208086 0.439245837 0.453720507 -0.687558374 -0.330772352 -0.213615899 -1.337140588 0 0.800693399 0.626156548 0.637213949 -0.754544082 -0.362998009 -0.234427532 -1.467412158 0 1.389212223 0.956314404 0.910849795 -1.243454189 -0.598204142 -0.386325867 -2.418228224 0 0.02072254 0.007129367 0.003239074 -0.01405806 -0.006763088 -0.004367666 -0.027339646 0 1.481346246 1.260784084 1.304148318 -1.871119181 -0.900162832 -0.581333631 -3.638890162 0 -4070.125117 -4222.427454 -4572.482002 -3578.6343 -1688.3464 -1097.6625 -6592.7204 0 -0.87848773 -0.8804649 -0.87608648 -0.9171424 -0.9362472 -0.95345404 -0.9357319 0]; bu=[0;6.76;2.53;5022.16;300;250;40;36.351;0;0;0;0;0;-59200;-12.3074]; B1=[0;0;0;0;0;0;0;0]; X=linprog(K,Au,bu,Ae,be,B1); X %%%%%%%%%%%%%%%%%%%% %%%%%%不考虑外部性%%%%%%%%%%% K=[0.232622352 0.281860365 0.310653447 0.574625 0.46229 0.56 0.7433476 -0.5]; Ae=[]; be=[]; Au=[-4312.03 -4428.81 -4762.01 -3621 -1742 -1125 -7042 1 0 0 0 1 0 0 0 0

单纯形法的简述及应用

单纯形法的简述及应用 摘要 自1947年G.B.Dantzig提出单纯形法以来,他一直是求线性规划的最有效的计算方法。但是,单纯形法要求已知一个基本可行解,且线性规划需化典式。而在一般情况下,线性规划问题并无明显的可行解。如用两阶段法获得基本可行解,必须增加人工变量,从而增加计算量。针对这一问题,本文提出了改进单纯形法(一),在不增加人工变量的前提下,采用较简单的方法,求出一基本可行解,并在求解过程中剔除多余约束,判断问题是否有解,同时将线性规划的约束方程化为典式。此方法减少了比较次数,且简单易行,容易在计算机上实现。本文针对线性规划问题在变量和约束的个数较多时,传统单纯形法占据较大的内存空间,且有不少多余计算的情况提出改进单纯形法(二),能以较少的计算量及较小的占用存储空间方法从基的逆矩阵计算出新基的逆矩阵。从而既能使迭代过程持续进行下去,又能克服上述单纯形法的不足,是解决这些问题的一种实用且较有效的方法。 关键词:线性规划、单纯形法、基本可行解、初等变换。 绪论 引言 运筹学是近六十年发展起来的一门学科。运筹学在生产管理、工程技术、军事作战、科学实验。财政经济。社会科学以及自然科学和其他学科都应经取得了很多令人瞩目的成果。线性规划是运筹学的一个重要分支,是运筹学中最重要的一种数量方法,其应用范围非常广泛。主要用于研究解决有限资源的最佳分配问题,即如何对有限的资源做出最佳方式的调配和最有力的使用,以便最充分地发挥资源的效能去获取最佳经济效益。从数学的角度来说,也就是在对决策变量施加一组线性等式、不等式以及等号的约束下,求决策变量的线性目标函数的最大化和最小化。 与其他的数学学科相比,线性规划是一个相当年轻又非常活跃的应用数学分支。自从一般线性规划问题求解的方法——单纯形法被提出之后,线性规划在理论上趋向成熟,在使用中日益广发与深入。线性规划的广泛应用以及涉及到的数学理论和计算方法,都引起了专业人员和学者们的很大兴趣。 线性规划基础及单纯形法 线性规划问题及数学模型 凡是同时满足以下三个条件的问题,就叫做线性规划问题: (1)可用一些变量表示问题的待定方案,这些变量的一组定值就代表一个具体的方案。因此,可将这些变量称为决策变量,并往往要求它们为非负的。 (2)存在一定的约束条件,这些约束条件都能用关于决策变量的线性等式或线性不等式来表示。 (3)有一个期望达到的目标,它可用决策变量的线性函数(称为目标函数)来表示,根据具体问题的不同,要求目标函数实现最大化或最小化。 线性规划就是研究并解决上述问题的一种理论和方法。满足以上三个条件的数学模型称为线性规划的数学期望,简称线性规划模型。期一般形式如下:

单纯形法在线性规划中的应用

单纯形法在线性规划中的应用 摘要 求解线性规划问题,就是在各项资源条件的限制下,如何确定方案,使预期的目标达到最优。本文重点介绍了求解线性规划问题目前最常见的两种方法,图解法和单纯形法。图解法适合于只含两个变量的线性规划问题,文中只做了简单的描述。而单纯形法是求解线性规划问题的通用方法,适合于求解大规模的线性规划问题,本文作了重点描述,对单纯形法中的基本概念如基变量、非基变量、基向量、非基向量、可行基以及基本可行解等概念作了详细的陈述,在此基础上,介绍了线性规划问题的标准化、单纯形法的基本原理、确定初始可行解、最优性检验、解的判别、基本可行解的改进、换入变量的确定-最大增加原则、换出变量的确定-最小比值原则、表格单纯形法、大M法、两阶段法等。 关键词:线性规划图解法单纯形法基变量基向量可行基基本可行解

正文 引言 在生产管理和经济活动中,经常遇到这些问题,如生产计划问题,即如何合理利用有限的人、财、物等资源,以便得到最好的经济效果;材料利用问题,即如何下料使用材最少;配料问题,即在原料供应量的限制下如何获取最大利润;劳动力安排问题,即如何用最少的劳动力来满足工作的需要;运输问题,即如何制定调运方案,使总运费最小;投资问题,即从投资项目中选取方案,使投资回报最大等等。对于这些问题,都能建立相应的线性规划模型。事实上,线性规划就是利用数学为工具,来研究在一定条件下,如何实现目标最优化。 解线性规划问题目前最常见的方法有两种,图解法和单纯形法。单纯形法是求解线性规划问题的通用方法。 1 线性规划问题的求解方法 1.1 图解法解线性规划问题 只含两个变量的线性规划问题,可以通过在平面上作图的方法求解,步骤如下: (1)以变量x 1为横坐标轴,x 2 为纵坐标轴,适当选取单位坐标长度建立平面 坐标直角坐标系。由变量的非负性约束性可知,满足该约束条件的解均在第一象限内。 (2)图示约束条件,找出可行域(所有约束条件共同构成的图形)。 (3)画出目标函数等值线,并确定函数增大(或减小)的方向。 (4)可行域中使目标函数达到最优的点即为最优解。 然而,图解法虽然直观、简便,但当变量数多于三个以上时,其实用意义不大。

无约束优化算法:单纯形法

单纯形法 1. 算法原理 单纯形法的基本思想是: 设(0)(1)(),,...,n x x x 是n R 中的1n +个点,构成一个当前的单纯形,max min ,x x 定义如下: {}(0)(1)()max ()max (),(),...,()n f x f x f x f x = {}(0)(1)()min ()min (),(),...,()n f x f x f x f x = 记x 为这个单纯形除去max x 外的所有顶点的形心, ()max 01n i i x x x n =??=- ??? ∑ 取max x 关于x 的反射点(1)n x +,(1)max ()n x x x x +=+-构成新的单纯形,反复上述过程,直到达到停止条件。 2. 函数min f search 1) 函数语法 min (,0)x f search fun x = min (,0,) [,]min (...) [,,]min (...) [,,,]min (...) x f search fun x options x fval f search x fval exitflag f search x fval exitflag output f search ==== 函数输入: fun :目标函数 0x :迭代初始点 options :函数参数设置 函数输出: x :最优点 fval :最优点对应的函数值 exitflag :函数停止信息 1:函数收敛正常停止 0:迭代次数,目标函数计算次数达到最大数 -1:算法被输出函数停止 output :函数运算信息

2)函数使用 BanaFun m (1)目标函数程序. function f BanaFun x =不含导数解析式 ()() f x x x =-+- 100*((2)(1)^2)^2(1(1))^2 -函数不需要导数信息。 Nelder Mead Simplex SimplexUnc m (2)算法参数设置:. ('arg','','','','',250,'','') = options optimset L eScale off gradobj off MaxFunEvals display iter SimplexUnc m (3)函数调用运算:. = ('arg','','','','',250,'','') options optimset L eScale off gradobj on MaxFunEvals display iter x=- [ 1.9,2] x fval exitflag output f search BanaFun x options = [,,,]min(@,,) 3)计算结果 Iteration Func-count min f(x) Procedure 0 1 267.62 1 3 236.4 2 initial simplex 2 5 67.2672 expand 3 7 12.2776 expand 4 8 12.2776 reflect 5 10 12.277 6 contract inside 6 12 6.76772 contract inside 7 13 6.76772 reflect 8 15 6.76772 contract inside 9 17 6.76772 contract outside 10 19 6.62983 contract inside 11 21 6.55249 contract inside 12 23 6.46084 contract inside 13 24 6.46084 reflect 14 26 6.46084 contract inside 15 28 6.45544 contract outside 16 30 6.42801 expand 17 32 6.40994 expand 18 34 6.32449 expand 19 36 6.28548 expand 20 38 6.00458 expand 21 39 6.00458 reflect 22 41 5.43287 expand

单纯形法课程论文

最优化方法课程论文 题目:单纯形法的发展及其应用 系别:理学院 专业:信息与计算科学 姓名: 班级:信息101班

单纯形法的发展及其应用 一.单纯形法简介: 单纯形法,求解线性规划问题的通用方法。单纯形是美国数学家G.B.丹齐克于1947年首先提出来的。它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。 二.单纯形法在线性规划中的应用 1.单纯形法解线性规划问题 在生产管理和经济活动中,经常遇到这些问题,如生产计划问题,即如何合理利用有限的人、财、物等资源,以便得到最好的经济效果;材料利用问题,即如何下料使用材最少;配料问题,即在原料供应量的限制下如何获取最大利润;劳动力安排问题,即如何用最少的劳动力来满足工作的需要;运输问题,即如何制定调运方案,使总运费最小;投资问题,即从投资项目中选取方案,使投资回报最大等等。对

于这些问题,都能建立相应的线性规划模型。事实上,线性规划就是利用数学为工具,来研究在一定条件下,如何实现目标最优化。单纯形法是求解线性规划问题的通用方法。 (1)单纯形法解线性规划问题的理论根据是: 线性规划问题的可行域是 n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。 (2)单纯形法的基本思想是: 先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。 (3)单纯形法的一般解题步骤可归纳如下: ①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。②若基本可行解不存在,即约束条件有矛盾,则问题无解。③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到

单纯形法

单纯形法 可按现代电子计算机标准程序求解线性规划模型的一般方法。分为代数形式 的单纯形法和表格形式的单纯形法。前者提供基本算法所依据的逻辑规则,适用 于在电子计算机上进行求解运算;后者将变量和数据列成表格,适用于笔算。两 者在数学上是等价的。单纯形法是由美国数学家G.B.丹齐克(1914~)于1947 年提出来的,它与苏联数学家Л.Β.坎托罗维奇(1912~)于1938年提出的 解乘数法相类似。 根据单纯形法的原理,在线性规划问题中,决策变量(控制变量)x1,x2, (x) 的值称为一个解,满足所有的约束条件的解称为可行解。使目标函数达到最大n 值(或最小值)的可行解称为最优解。这样,一个最优解能在整个由约束条件所 确定的可行区域内使目标函数达到最大值(或最小值)。求解线性规划问题的目 的就是要找出最优解。 可能出现下列情况之一:①存在着一个最优解;②存在着无穷多个最优解; ③不存在最优解,这只在两种情况下发生,即没有可行解或各项约束条件不阻止 目标函数的值无限增大(或向负的方向无限增大)。 要缩小对最优解的搜索范围,就必须认识最优解的一般性质,最优解如果存 在的话,则它必然处于可行区域的边界上。 任何一项约束条件的边界方程是用“=”号来替换该约束条件中的“≤”或 “≥”号而得到的。每一个边界方程确定一个超平面。因此,可行区域的边界是 由那些满足一个或同时满足几个边界方程(即处在作为边界的一个或几个超平面 上)的可行解所组成,而且最优解必在其中。最优解不仅是在可行区域的边界上, 而且也在这个区域的一个隅角上。一个可行解,如果不处在由另两个可行解连接 起来的任何线段上,它就是一个角点可行解。如果连接两个角点可行解的线段处 在可行区域的边界上,这两个角点可行解就称为相邻的角点可行解。角点可行解 具有下列三个重要性质:①如果存在着一个最优解,那么它必定是角点可行解。 如果存在有多个最优解,那么至少有两个最优解必定是相邻的角点可行解。②只 存在有限个数的角点可行解。③如果一个角点可行解按目标函数值来衡量时比其 所有的相邻角点可行解更好一些,那它就比所有其他角点可行解都更好,也就是 最优解。

最优化--单纯形法解例

例1 用单纯形法解下列问题: 解:将原问题化成标准形: x 4与添加的松弛变量x 5,x 6在约束方程组中其系数列正好构成一个3阶单位阵,它们可以作为初始基变量,初始基可行解为X =(0, 0, 0,10, 8, 4)T 列出初始单纯形表,见表1。 表1 由于只有σ2> 0,说明表中基可行解不是最优解,所以确定x 2为换入非基变量;以x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量作为换出的基变量。 2 4 2)24,110( min ===θ 因此确定2为主元素(表1中以防括号[]括起),意味着将以非基变量x 2去置换基变量x 6,采取的做法是对约束方程组的系数增广矩阵实施初等行变换,将x 2的系数列(1, -1, 2)T 变换成x 6的系数列(0, 0, 1)T ,变换之后重新计算检验数。变换结果见表2。 表2 检验数σ3=3>0,当前基可行解仍然不是最优解。继续“换基”,确定2为主元素,即以非基变量x 3置换基变量x 5。变换结果见表3。 表3 123 1234123 123min 2..210, 248, 244,0,1,,4. j x x x s t x x x x x x x x x x x j -++-+=-+≤-+-≤≥= 1231234 1235 1236max 2..210,248,244, 0,1,,6. j x x x s t x x x x x x x x x x x x x j -+-+-+=-++=-+-+=≥=

此时,3个非基变量的检验数都小于0,σ1= -9/4,σ5= -3/2,σ5= -7/4,表明已求得最优解:T )0,0,8,5,12,0(=*X 。 去除添加的松弛变量,原问题的最优解为:T )8,5,12,0(=*X ,最小值为-19 例2 用大M 法求解下列问题: 123 1231231 3min 3..211, 243,21, 0,1,,3. j x x x s t x x x x x x x x x j +--+≤+-≥-=≥= 解 引进松弛变量x 4、、剩余变量x 5和人工变量x 6、x 7,解下列问题: 12345671234 12356 1 37min 300()..211243 21 0,1,2,,7 j x x x x x M x x s t x x x x x x x x x x x x x j +-++++-++=+--+=-+=≥= 用单纯形法计算如下: 由于σ1<σ2< 0,说明表中基可行解不是最优解,所以确定x 1为换入非基变量;以x 1的系数列的正分量对应去除常数列,最小比值所在行对应的基变量作为换出的基变量。 1 1 1)11,23,111( min ===θ 因此确定1为主元素(表1中以防括号[]括起),意味着将以非基变量x 1去置换基变量x 7,采取的做法是对约束方程组的系数增广矩阵实施初等行变换,将x 1的系数列(1, 2, 1)T 变换成x 7的系数列(0, 0, 1)T ,变换之后重新计算检验数。变换结果见表2。

单纯形法matlab程序

算法实现与分析 算法1.单纯形法 具体算例: min z=?3x1+x2+2x3 3x1+2x2?3x3=6 x1?2x2+x3+x5=4 x1,x2,x3≥0 标准化后: min z=?3x1+x2+2x3+Mx4+Mx5 3x1+2x2?3x3+x4=6 x1?2x2+x3+x5=4 x1,x2,x3,x4,x5≥0 用单纯形法求解,程序如下: clear clc M=1000000; A=[3,2,-3,1,0;1,-2,1,0,1];%系数矩阵 C=[-3,1,2,M,M,0];%价值矩阵 B=[6;4]; Xt=[4 5]; for i=1:length(C)-1 D=0; for j=1:length(Xt) D=D+A(j,i)*C(Xt(j)); end xi(i)=C(i)-D; end s=[]; for i=1:length(xi) if xi(i)<0 s=[s,i]; end end f=length(s); h=1; while(f) for k=1:length(s) j=1; A x=[]; for i=1:length(Xt) if A(i,s(k))>0

x(j)=i; j=j+1; end end x if(length(x)+1==1) break; end y=1 x for i=1:length(x) if B(x(i))/A(x(i),s(k))

相关主题
文本预览
相关文档 最新文档