当前位置:文档之家› 动平衡测试系统操作说明书

动平衡测试系统操作说明书

动平衡测试系统操作说明书
动平衡测试系统操作说明书

ZL-Ⅱ型动平衡测试系统

操作说明书

OPERATOR MANUAL

宣化正力平衡机械制造有限公司 2012-05

ZL-Ⅱ型动平衡测试系统操作方法

1、系统的启动和关闭

系统正常工作前,要保证测控计算机与测量模块、各传感器连接正常并处于得电的待工作状态。打开计算机,双击桌面的“动平衡”图标,系统打开、电脑屏幕

显示控制系

统的默认界

面如下图。试

验完毕,可点

击“退出”按

钮退出系统

图1测控系统主界面

2、平衡方法选择

本系统为用户提供两种解算方法即ABC永久标定法和影响系数法以适应不同转子的平衡需要,ABC永久标定法一经标定就可适各种转子的动平衡,适合多品种转子的平衡;而影响系数法则具有较高的分离比,更适合大批量和薄片转子的平衡。点击“影响系数”或“ABC法”可选择相对应的平衡方法。

3、影响系数动平衡操作步骤

3.1将待平衡转子置于平衡机上并连接好;点击“影响系数”标签,弹出如图2界面,此为影响系数平衡法主程序的默认界面——参数设置。

3.2参数设置

参数设置是为将待平衡转子的主要特征,在平衡机上装载的位置特征等参数

图2参数设置界面

予以保存,在以后对同类转子进行平衡时、只需调出此参数就可以进行平衡测试而无需再标定。同设定转子质量、转子转速、精度等级等参数系统会自动给出转子应该达到许用不平衡量和每次平衡后实际达到的平衡精度,这样十分方便用户掌控转子的平衡状态。输入的参数如图所示;R1和R2代表转子两校正面的校正半径,A—1(左)校正面到左支撑滚轮中线的距离;C—2(右)校正面到右支撑滚轮中线的距离。B—左右校正面间距离。以上单位为mm。装载形式为待平衡转子在平衡机摆架上的位置状态,共有7种状态,通过“装载形式”选择器选择一种与实际相符合的装载形式;确定转子编号即完成参数设置。以后再做同样转子的动平衡,只需要在右下面的“转子编号”输入相应转子的编号,然后点击“参数调入”按钮,并将转子的在摆架的位置调整到与参数设置A、B、C指示值相一致即可。

3.3标定设置

对于影响系数法,在做新转子的平衡时在完成参数设置后需要进行标定操作。

点击“标定设置”标签,系统进入标定设置界面如图所示。

图3标定设置界面

3.3.1转子补偿

转子补偿就是将要进行平衡和标定的转子通过信号补偿的方法成为一个类似完全平衡的“电气转子”,补偿过程是:将“补偿—复位”开关置于补偿状态,启动转子待转速稳定后,点击“转子补偿”键,完成转子补偿。

3.3.1法兰盘补偿

为消除万向节连接法兰盘对转子平衡的影响,有必要对法兰盘进行补偿平衡。其补偿过程是置“补偿—复位”键于“补偿”位置;启动转子待转速稳定后点击“0度补偿”键,停机、将转子法兰盘与万向节法兰盘相对旋转180度、连接好后启动转子待转速稳定后,点击“180度补偿”键,完成万向节补偿,停机。

3.3.2标定分离

在1(左)校正面已知相位加一已知质量的试重,在1相位数字器中输入相应相位,在1试重数字器中输入相应的试重质量值,启动转子;待转速稳定后点击“1标定”键、停机;取下试重加到2校正面已知位置,在2相位数字器中输入相

应相位值、在2试重数字器中输入相应的试重质量值,启动转子;待转速稳定后点击“2标定”键、再点击“标定确认”键,停机,标定完成。

4、测量显示

点击“测量显示”标签,系统进入测量显示界面,如图4所示。—

图4测量显示界面

4.1读取测量值

本系统转子不平衡测量值,分别由极坐标和数字显示方式同时显示不平衡量的大小和相位,极坐标显示会根据不平衡量值的大小自动改变量程。其量程为0—100g和0—1000g。转子的平衡分为“加重”和“去重”两种方式,根据需要用户可通过点击“加重—去重”转换键加以选择。

4.2测量方式选择

通过右下方“自动测量—手动测量”选择键,用户可以选择手动测量和自动测量,一般选择手动测量较为方便,它可以自动记忆测量数据,而手动测量可以控制测量时间。

4.3许用不平衡量和平衡精度

右侧设有许用不平衡量和平衡精度显示器,当某一校正面的平衡精度达到许用不平衡量后,此校正面的平衡精度显示器的颜色会由红色改变为绿色。当两校正面平衡精度显示器均成为绿色时,表示该工件已达到要求的平衡精度。

4.4文件操作

保存—点击“保存”键可以将平衡结果保存到用户指定的路径和文件夹。

打印—配有打印机即可打印平衡结果;点击“打印”键,弹出打印菜单,如图5

点击“文件”菜单选择Print Wondos即可打

印平衡测试报告。

图5打印界面

打开—点击“打开”键,选择已保存的平衡测试结果,即可显示平衡测试报告。5、波形显示

点击“波形显示”标签,系统进入波形显示界面,如图6所示。在左面波形图中,显示的是基准传感器信号、左力传感器和右力传感器信号。通过观察各传感器的信号波形可以判断系统工作是否正常或故障所在。右边上下波形图分别显示的是左、右传感器信号的功率谱,功率谱大小代表了不平衡量的大小。

图6波形显示

6、ABC法动平衡操作步骤

ABC法一为永久标定,一经标定就可适各种转子的动平衡。点击图1界面中“ABC法”键,进入ABC法平衡测试系统,选择“参数设置”进入图7界面

图7参数设置界面

6.1参数设置

在进行系统表标定时,需要输入的参数如图所示;R1和R2代表转子两校正面的校正半径,A—1(左)校正面到左支撑滚轮中线的距离;C—2(右)校正面到右支撑滚轮中线的距离。B—左右校正面间距离。以上单位为mm。装载形式为待平衡转子在平衡机摆架上的位置状态,共有7种状态,通过“装载形式”选择器选择一种与实际相符合的装载形式。而在实际做平衡测试时,还可输入转子质量、转子转速、精度等级等参数,这样系统会自动给出转子应该达到许用不平衡量和每次平衡后实际达到的平衡精度,方便用户掌控转子的平衡状态。当然如嫌麻烦不输入上述3个参数也不会影响正常的平衡测量。在输入参数完成后可以点击“保持”所设定的参数会被保存,并在下一次启动系统时自动调入。

6.2标定分离

点击“系统设置”标签,进入系统设置界面如图8

图8系统设置界面

6.2.1转子补偿

转子补偿就是将要进行平衡和标定的转子通过信号补偿的方法成为一个类似

完全平衡的“电气转子”,补偿过程是:将“补偿—复位”开关置于补偿状态,启动转子待转速稳定后,点击“转子补偿”键,完成转子补偿。

6.2.2法兰盘补偿

为消除万向节连接法兰盘对转子平衡的影响,有必要对法兰盘进行补偿平衡。其补偿过程是置“补偿—复位”键于“补偿”位置;启动转子待转速稳定后,点击“0度补偿”键,停机、将转子法兰盘与万向节法兰盘相对旋转180度、连接好后启动转子待转速稳定后,点击“180度补偿”键,完成万向节补偿,停机。

6.2.3标定分离

在1(左)校正面已知相位加一已知质量的试重,在1相位数字器中输入相应相位,在1试重数字器中输入相应的试重质量值,在2(右)校正面已知位置加一已知质量的试重,在2相位数字器中输入相应相位值、在2试重数字器中输入相应的试重质量值,启动转子,待转速稳定后点击“标定”键、再点击“标定确认”键,停机,标定完成。

7、测量显示

与前述4、测量显示同

8、波形显示

与前述5、波形显示同

回转体的动平衡实验实验指导书样本

回转体的动平衡实验 一、实验目的 1、掌握刚性转子动平衡的试验方法。 2、初步了解动平衡试验机的工作原理及操作 特点。 3、了解动平衡精度的基本概念。 二、实验设备及工具 1、 CYYQ—50TNC型电脑显示硬支承动平衡机 2、转子试件 3、橡皮泥, M6螺钉若干 4、电子天平( 精度0.01g) , 游标卡尺, 钢直尺 图 1 硬支承动平衡机三、 CYYQ—50TNC型硬支承动平衡机的结构与 工作原理 1、硬支承动平衡机的结构 该试验机是硬支承动平衡机, 实物如图1所示。 动平衡试验机是用来测量转子不平衡量的大小和相角位置的精密设备, 一 般由机座6、左右支承架4、圈带驱动装置2、计算机检测显示系统、传感 器5、限位支架3和光电头1等部件组成, 如图2所示。

图2 硬支承动平衡机结构示意图 1.光电头 2.圈带驱动装置 3.限位支架 4.支承架 5.传感器 6.机座 左右支承架是动平衡机的重要部件, 中间装有压电传感器, 此传感器在出厂前已严格调整好, 切不可自行打开或转动有关螺丝( 否则会严重影响检测质量) 。左右移动只需松开支承架下面与机座连接的两个紧固螺钉, 把左右支承架移到适当位置后再拧紧即可。支承架下面有一导向键, 保证两支架在移动后能互相平行, 支承架中部有升降调节螺丝, 可调节转子的左右高度, 使之达到水平。外侧有限位支架, 可防止转子在旋转时向左右窜动。 转子的平衡转速必须根据转子的外径及质量, 并考虑电机拖动功率及摆架动态承载能力来进行选择。本动平衡机采用变频器对电动机调频变速, 使工作速度控制自如。 2、 转子动平衡的力学条件 由于转子材料的不均匀、 制造的误差、 结构的不对称等诸因素导致转子存在不平衡质量。因此当转子旋转后就会产生离心惯性力, 它们组成一个空间力系, 使转子动不平衡。要使转子达到动平衡, 则必须满足空间力系的平衡条件 ?????==∑∑00M F 或 ?????==∑ ∑00B A M M ( 1)

动平衡测量原理

动平衡测量原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

刚性转子的平衡条件及平衡校正 回转体的不平衡---回转体的惯性主轴与回转轴不相一致; 刚性转子的不平衡振动,是由于质量分布的不均衡,使转子上受到的所有离心惯性力的合力及所有惯性力偶矩之和不等于零引起的。 如果设法修正转子的质量分布,保证转子旋转时的惯性主轴和旋转轴相一致,转子重心偏移重新回到转轴中心上来,消除由于质量偏心而产生的离心惯性力和惯性力偶矩,使转子的惯性力系达到平衡校正或叫做动平衡试验。 动平衡试验机的组成及其工作原理 动平衡试验机是用来测量转子不平衡量的大小和相角位置的精密设备。一般由机座部套,左右支承架,圈带驱动装置,计算机显示系统,传感器限位支架,光电头等部套组成。 当刚性转子转动时,若转子存在不平衡质量,将产生惯性力,其水平分量将在左右两个支撑上分别产生振动,只要拾取左右两个支撑上的水平振动信号,经过一定的转换,就可以获得转子左右两个校正平面上应增加或减少的质量大小与相位。 在动平衡以前,必须首先解决两校正平面不平衡的相互影响是通过两个校正平面间距b,校正平面到左,右支承间距a, c,而a, b, c 几何参数可以很方便地由被平衡转子确定。 F1, F2: 左右支承上的动压力;P1, P2 : 左右校正平面上不平衡质量的离心力。m1, m2 : 左右校正平面上的不平衡量;a, c : 左右校正平面至支承间的距离 b : 左右校正平面之间距离;R1 R2: 左右校正平面的校正半径 ω:旋转角速度 单缸曲柄连杆机构惯性力测量方法 活塞的速度为 活塞的加速度为 我的论文中的对应表达式与以上两个式子不同: 测量系统机械结构 惯性力测量机的机械系统主要包括驱动机构、摆架。驱动机构通过联轴节带动曲轴达到额定测量转速。摆架支承测量曲柄连杆机构,使之在惯性力作用下产生振动。

转子现场动平衡实验

实验一 转子现场动平衡实验 实验目的 通过本实验了解动平衡实验的基本方法 1. 实验原理 在实际工作过程中人们通常用单面加重三元作图法进行叶轮、转子等设备的现场动平衡,以消除过大的振动超差。这一方法的优点是设备简单——只需一块测振表。但缺点是作图分析的过程复杂,不易被掌握,而且容易出现错误。为此,我们在这里提出了一种简单易行的方法——单面现场动平衡的三点加重法。 假设在假设转子上有一不平衡量m ,所处角度为α,用分量m x 、m y 表示不平衡量。 m x =mcos α m y =msin α 为了确定不平衡量m 的大小和位置α,启动转子在工作转速下旋转,用测振设备在一固定点测试振动振速,设振速为V 0,则存在下列关系 式中K为比例系数 图42.1 三点加重法示意图 在P 1(α=0 )点加试重M ,启动转子到工作转速,测得振动振速V 1,有如下关系: 用同样的方式分别在P 2(α=120o )和P 3(α=240 o )点加试重M ,并测得振动值V 2 ,V 3, 有如下关系: 2 2V m m K y x =+ x ) (3P 1 2 2)(V m M m K y x =++222)2 3 ()21(V M m M m K y x =++- 322)2 3()21(V M m M m K y x =-+-

从以上三式推导可得: 从而可以进一步推得: 即由m x ,m y 计算不平衡质量m 和位置α。 2. 实验仪器和设备 1. 计算机 n 台 2. DRVI 快速可重组虚拟仪器平台 1套 3. 速度传感器(CD-21) 1套 4. 蓝津数据采集仪(DRDAQ-EPP2) 1台 5. 开关电源(DRDY-A ) 1套 6. 5芯-BNC 转接线 1条 7. 转子实验台(DRZZS-A ) 1 套 3. 实验步骤及内容 1. 转子动平衡实验结构如图4 2.2所示,将速度传感器通过配套的磁座吸附在转子实 验台底座上,然后通过一根带五芯航空插头-BNC 转接电缆和对应通道连接。图42.5是本实验的信号处理流程框图。 图42.2 转子动平衡实验结构示意图 2. 启动服务器,运行DRVI 主程序,点击DRVI 快捷工具条上的“联机注册”图标, 选择其中的“DRVI 采集仪主卡检测”进行服务器和数据采集仪之间的注册。在实验目录中选择“转子现场动平衡”实验。将参考的实验脚本文件读入DRVI 软件平台,如图42.3所示 3. 在转子实验台的配重盘上选取一个位置(比如贴反光纸的位置)作为初始位置(即 P 1点),然后用转子实验台附件中的螺钉,任意选取一个位置加上,作为不平衡重。 4. 启动转子/振动实验台到稳定转速,点击“数据采集开始”按钮,再点击“获取初 始振动数据”按钮,获取初始振动数据,然后停止运行转子实验台。 ) (3212 12/)(3/)3(23222 220212202322212V V MK m M MK V V m M V V V V K y x -= --=-++=) /(12 2x y y x m m tg a m m m -=+ =

机械原理实验室方案方案----上海顶邦教育设备制造有限公司

机械原理实验室方案 目前职业教育所培养出的人才最大的特点就是专门性强,专业性差。虽然可以适应社会的发展,但是对社会的发展起不到很好的推动作用,这也是企业在招聘人才时存在的最大问题。要解决这一现象,职业教育的人才培养思路最好贴近于基础扎实、实践能力强、综合素质高。 机械原理课程是机电类各专业中研究机械共性问题的主干课程,属专业基础课。它的任务是使学生掌握常用机构的工作原理、基本理论并初步具有分析和设计机械零件的能力。其专业覆盖面约占工科专业的80%,在培养和增强学生对机械技术工作的适应能力方面具有举足轻重的作用。 机械原理课程实验课是机械原理课中重要的实践环节。以前的机械原理课程实验大多是验证性的试验,只偏重于一些几何参数、运动参数、动力参数的测定和分析。这些实验对学生掌握课堂中所学的基本概念,加深理解一些基本原理具有显著的效果,但这些实验作为课程教学的一部分,在培养学生初步具有拟定机械运动方案,分析和设计新机构的能力,以及培养学生的创新与动手能力方面还远远不够。 提高学生理论学习融会贯通的能力,分析问题和解决问题的能力以及综合运用基本理论、基本原理的能力是课程教学的最终目标,也同我们的培养思想“基础扎实、实践能力强、综合素质高”相吻合。 机械原理实验室是机械原理系列课程:《机械原理》和《机械原理》的教学实验基地。承担机械与汽车工程系机械原理制造及自动化专业和汽车服务工程专业的教学实验课,以及机电综合实践的部分实践环节。 机械原理实验室旨在培养学生的综合设计能力、创造性设计能力及工程实践能力;打破传统的演示性、验证性、单一性的实验模式,建立新型的设计型、搭接型、综合型的实验体系;实验教学从以教师为中心转变成以学生为中心,从强调学术型转变为强调理论与实践相结合和应用型。实验室开设了机械创新设计陈列演示实验、带传动实验、机齿轮综合实验、转动平衡实验、机械系统创意组合综合实验、机构运动方案创新设计实验等。

机械动平衡

机械动平衡 一、实验目的 1.了解转子不平衡的危害。 2.巩固转子动平衡的理论知识。 3.掌握动平衡机的基本工作原理及动平衡机进行刚性转子动平衡的方法。 二、实验设备 实验设备为DPH-I型智能动平衡机,如图6-1所示,测试系统由计算机、数据采集器、高灵敏度有源压电力传感器和光电相位传感器等组成。当被测转子在部件上被拖动旋转后,由于转子的中心惯性主轴与其旋转轴线存在偏移而产生不平衡离心力,迫使支承做强迫震动,安装在左右两个硬支撑机架上的两个有源压电力传感器感受此力而发生机电换能,产生两路包含有不平衡信息的电信号输出到数据采集装置的两个信号输入端;与此同时,安装在转子上方的光电相位传感器产生与转子旋转同频同相的参考信号,通过数据采集器输入到计算机。 图 6-1 DPH-I型智能动平衡机结构简图 计算机通过采集器采集此三路信号,由虚拟仪器进行前置处理,跟踪滤波,幅度调整,相关处理,FFT变换,校正面之间的分离解算,最小二乘加权处理等。最终算出左右两面的不平衡量(g),校正角(°),以及实测转速(r/min)。 DPH-I型智能动平衡机有关内容简介见附录Ⅲ。 三、实验原理 由于转子结构不对称、材质不均匀或制造和安装不准确等原因,有可能会造成转子的质心偏离回转轴线。当其转动时,会产生离心惯性力。惯性力将在构件运动副中引起附加动压力,使机械效率、工作精度和可靠性下降,加速零件的损坏。当惯性力的大小和方向呈周期性变化时,机械将产生振动和噪音。因此,在高速、重载、精密机械中,为了消除或减少惯性力的不良影响,必须对转子进行平衡。 转子平衡问题可分为静平衡和动平衡两类。 对于轴向尺寸b 与径向尺寸D 的比值b/D ≤ 0.2,即轴向尺寸相对很小的回转构件(如砂轮、叶轮、飞轮等),常常可以认为不平衡质量近似的分布在同一回转平面内。因此只要在这个一回转面内加上或减去一定的质量,便可使转子达到静平衡。 当转子的b/D≥0.2(如电机转子、机床主轴等),或工作转速超过1000 r/min时,应考虑

1-实验一 车轮动平衡检测

实验一车轮动平衡检测 一、实验目的 1、掌握车轮动平衡检测的原理 2、掌握轮胎动平衡的检测方法。 3、掌握平衡块的拆装方法。 二、实验设备 GD-80车轮动平衡测试仪1台,车轮一个,平衡块若干,工具若干。 三、实验原理及实验步骤 车轮不平衡(包括静态不平衡和动态不平衡)会使汽车在行驶中产生摇摆和跳动,车速超过60km/h时更加明显。汽车摇摆和跳动将导致油耗增加,轮胎不正常磨损,对车上其它部件也有损害。 车轮动平衡的检测按照下列步骤进行: 1) 清除被测车轮上的泥土、石子和旧平衡块。 2) 检查轮胎气压,视必要充至规定值。 3) 根据轮辋中心孔的大小选择锥体,仔细地装上车轮,用大螺距螺母上紧。 4)打开电源开关,检查指示与控制装置的面板是否指示正确。 5)用卡尺测量轮辋宽度b、轮辋直径d(也可由胎侧读出),用平衡机上的标尺测量轮辋边缘至机箱距离a,用键入或选择器旋钮对准测量值的方法,将a、 b、d直接输入指示与控制装置中。 (6)放下车轮防护罩,按下起动键,车轮旋转,平衡测试开始,微机自动采集数据。 (7)车轮自动停转或听到“笛”声,按下停止键并操纵制动装置使车轮停转后,从指示装置读取车轮内、外不平衡量和不平衡位置。 (8)抬起车轮防护罩,用手慢慢转动车轮。当指示装置发出指示(音响、指示灯亮、制动、显示点阵或显示检测数据等)时停止转动。在轮辋的内侧或外侧的上部(时钟12点位置)加装指示装置显示的该侧平衡块质量。内、外侧要分别进行,平衡块装卡要牢固。

(9)安装平衡块后有可能产生新的不平衡,应重新进行平衡试验,直至不平衡量<5g(0.3oz),指示装置显示“00”或“OK”时才能满意。当不平衡量相差10g左右时,如能沿轮辋边缘左右移动平衡块一定角度,将可获得满意的效果。 四、实验注意事项 1. 实验过程中,学生必须严格遵守指导教师和实验室管理人员的要求,按操作程序进行实验; 2.未经允许,学生不得擅自操作该实验台。 3.实验过程中要注意安全。 五、实验数据、现象记录 1.轮辋宽度b(mm): 轮辋直径d(mm): 轮辋边缘至机箱距离a(mm): 2.检测到的车轮不平衡量是: 3.选择的平衡块质量是: 4.动平衡是否检测成功: 六、思考题或讨论题 车轮动平衡检测的原理是什么?

实验二机构运动简图测绘

《机械设计基础》实验指导书课程编号:02106220、02106420、02107220、02106520 课程名称:机械设计基础(A)、机械设计基础(B)、机械设计基础(C) 注:1、实验01和10可合并在一起,分两个单元进行; 2、实验03和04应根据学时和专业方向从中选择一个。 实验一机构认识实验 一、实验目的 1.初步了解《机械原理》课程所研究的各种常用机构的结构、类型、特点及应用实例。 2.增强学生对机构与机器的感性认识。 二、实验内容 陈列室展示各种常用机构的模型,通过模型的动态展示,增强学生对机构与机器的感性认识。实验教师只作简单介绍,提出问题,供学生思考,学生通过观察,增加对常用机构的结构、类型、特点的理解,培养对课程理论学习和专业方向的兴趣。 三、实验设备和工具 机构陈列室机构展柜和各种机构模型。 四、实验原理

(一)对机器的认识:通过实物模型和机构的观察,学生可以认识到:机器是由一个机构或几个机构按照一定运动要求组合而成的。所以只要掌握各种机构的运动特性,再去研究任何机器的特性就不困难了。在机械原理中,运动副是以两构件的直接接触形式的可动联接及运动特征来命名的。如:高副、低副、转动副、移动副等。 (二)平面四杆机构:平面连杆机构中结构最简单,应用最广泛的是四杆机构,四杆机构分成三大类:即铰链四杆机构;单移动副机构;双移动副机构。 1.铰链四杆机构分为:曲柄摇杆机构、双曲柄机构、双摇杆机构,即根据两连架杆为曲柄,或摇杆来确定。 2.单移动副机构,它是以一个移动副代替铰链四杆机构中的一个转动副演化而成的。可分为:曲柄滑块机构,曲柄摇块机构、转动导杆机构及摆动导杆机构等。 3.双移动副机构是带有两个移动副的四杆机构,把它们倒置也可得到:曲柄移动导杆机构、双滑块机构及双转块机构。 (三)凸轮机构:凸轮机构常用于把主动构件的连续运动,转变为从动件严格地按照预定规律的运动。只要适当设计凸轮廓线,便可以使从动件获得任意的运动规律。由于凸轮机构结构简单、紧凑,因此广泛应用于各种机械,仪器及操纵控制装置中。 凸轮机构主要有三部分组成,即:凸轮(它有特定的廓线)、从动件(它由凸轮廓线控制着)及机架。 凸轮机构的类型较多,学生在参观这部分时应了解各种凸轮的特点和结构,找出其中的共同特点。 (四)齿轮机构:齿轮机构是现代机械中应用最广泛的一种传动机构。具有传动准确、可靠、运转平稳、承载能力大、体积小、效率高等优点,广泛应用于各种机器中。根据轮齿的形状齿轮分为:直齿圆柱齿轮、斜齿圆柱齿轮、圆锥齿轮及蜗轮、蜗杆。根据主、从动轮的两轴线相对位置,齿轮传动分为:平行轴传动、相交轴传动、交错轴传动三大类。 1.平行轴传动的类型有:外、内啮合直齿轮机构、斜齿圆柱齿轮机构、人字齿轮机构、齿轮齿条机构等。 2.相交轴传动的类型有圆锥齿轮机构,轮齿分布在一个截锥体上,两轴线夹角常为90°。 3.交错轴传动的类型有:螺旋齿轮机构、圆柱蜗轮蜗杆机构,弧面蜗轮蜗杆机构等。 在参观这部分时,学生应注意了解各种机构的传动特点,运动状况及应用范围等。 4.齿轮机构参数:齿轮基本参数有齿数z、模数m、分度圆压力角α、齿顶高系数h*a、顶隙系数c*等。 在参观这部分时学生们一定要知道,什么是渐开线?渐开线是如何形成的?什么是基圆、发生线? 并注意观察基圆、发生线、渐开线三者间关系,从而得出渐开线有什么性质?

电机转子动平衡测试仪技术要求

电机转子动平衡测试仪技术要求 一、设备名称:微机控制硬支承动平衡机 二、概述:动平衡机可对规格内的转子进行动平衡检测,要广泛应用于电机、增压器、纺机及军工和教育等行业;要求具有效率高、操作简单、显示直观、人机对话等特点;电测系统采用工业控制计算机,17″TFT彩显,用汉字和图形显示平衡量的大小、相位及合格标志,先进的硬支承振动系统和变频驱动控制系统,来提高工作效率和可靠性,设备的使用寿命要求长,稳定性高。 五、主要电路部分要求 5.1电测部分 a.测控用计算机:选用工业控制计算机Windows系统操作界面,工控机配置:P4/512MB内存/80G硬盘/17″TFT彩屏/USB与标准接口/键盘鼠标/其于准配,或以上配置; b.不平衡量显示:用图形和汉字同时显示不平衡量的大小和相

位及合格标志。 c.专用程序:自动量程、自动电路参数补偿、电气标准转子、 计算、标定、控制和故障自诊等。 d.自诊功能:能检测各工作单元是否异常 e.量检测:采用磁电式速度传感器(带机械放大)或其它更先进的检测技术 f.角度检测:采用光电开关或其它更先进的检测技术 g.操作提示:采用菜单中文提示操作,要体现友好人机界面 h.打印机:提供打印输出标准接口和USB打印接口 5.2电气控制部分: a.电源:主电源:AC 380V±10% 三相/AC 220V±10% 单相b.操作方式:采用独立电柜,设置一启动按钮和停车控钮; c.驱动控制:采用变频驱动控制,具有匀加速启动,恒速测量、 快速停车功能; 5.3机械部分: a.支承系统:整体硬支承摆架,其上装有高度可调的滚动支承装置,适应宽范围要求; b.在床身导轨上开有两条T型槽,一条供导向键用,另一条紧固摆架;或其它更合理的结构设计,使外观更有线条感\机械强度更强\操作更方便。 六、其它 6.1要求提供平衡机用配套的标准电源,提供调试用配套合格工件 6.2标准转子:每台按国家标准至少配备一套标准转子和对应砝码;

车轮动平衡检测实验【方案】.doc

车轮动平衡检测实验 一、实验内容 测量实验车车轮最大不平衡量。如不平衡量超出该型车轮技术条件要求,则进行平衡调整。 二、实验目的 1、熟悉车轮动平衡仪的工作原理、结构及其特点。 2、掌握车轮动平衡仪的使用方法。 三、实验仪器设备 1、实验车轮4个。 2、车轮动平衡仪1台。 3、常用工具1套,调整专用工具1套。 四、实验准备工作 1、检查并按标准充足轮胎气压。 2、清除轮胎上的泥土及杂物等。 3、取掉车轮轮辋上的旧平衡块。 4、清洁动平衡仪的主轴和车轮总成锁紧锥套。 五、实验步骤 1)根据轮辋中心孔的大小选择锥体,仔细地装上车轮,用大螺距螺母上紧。 2)打开电源开关,检查指示与控制装置的面板是否指示正确。 3)用卡尺测量轮辋宽度b、轮辋直径 d(也可由胎侧读出),用平衡机上的标尺测量轮辋边缘至机箱的距离a,再用键入可选择器旋

钮对准测量值的方法,将a、b、c值输入到指示与控制装置中。 4)按下启动键,车轮旋转,平衡测试开始,微机自动采集数据。 5)车轮自动停转,从指示装置读取车轮内、外两侧不平衡量和不平衡位置。 6)用手慢慢转动车轮,当指示装置发出指示时停止转动。在轮辋的内侧或外侧的上部(时钟12点的位置)加装指示装置显示该侧平衡块质量。内、外侧要分别进行,平衡块装卡要牢固。 7)安装平衡块后有可能产生新的不平衡,应重新进行平衡试验,直至不平衡量<5g,指示装置显示“00”或“ok”时才行。 8)测试结束,关闭电源开关。 六、注意事项 1、主轴是动平衡仪的主要部件,因此检测时,无论是主轴还是动平衡仪本身都应避免强烈的振动或移动。 2、不能用铁锤敲击动平衡仪的任何部件。 七、结果整理与分析 1、将实验数据记入实验报告(请自行设计记录表格)。 2、试分析车轮动平衡产生的主要原因。

转子动平衡

实验六转子动平衡 一、实验目的 1.巩固转子动平衡知识,加深转子动平衡概念的理解; 2.掌握刚性转子动平衡实验的原理及基本方法。 二、实验设备与工具 1.CS-DP-10型动平衡试验机; 2.试件(试验转子); 3.天平; 4.平衡块(若干)及橡皮泥(少许)。 三、实验原理与方法 本实验采用的CS-DP-10型动平衡试验机的简图如图1所示。待平衡的试件1安放在框形摆架的支承滚轮上,摆架的左端与工字形板簧3固结,右端呈悬臂。电动机4通过皮带带动试件旋转,当试件有不平衡质量存在时,则产生的离心惯性力将使摆架绕工字形板簧做上下周期性的微幅振动,通过百分表5可观察振幅的大小。 1. 转子试件 2. 摆架 3. 工字形板簧 4. 电动机 5. 百分表 6. 补偿盘 7. 差速器 8. 蜗杆 图1 CS-DP-10型动平衡试验机简图 试件的不平衡质量的大小和相位可通过安装在摆架右端的测量系统获得。这个测量系统由补偿盘6和差速器7组成。差速器的左端为转动输入端(n1)通过柔性联轴器与试件联接,右端为输出端(n3)与补偿盘联接。 差速器由齿数和模数相同的三个圆锥齿轮和一个蜗轮(转臂H)组成。当转臂蜗轮不转动时:n3=-n1,即补偿盘的转速n3与试件的转速n1大小相等转向相反;当通过手柄摇动蜗杆8从而带动蜗轮以n H转动时,可得出:n3=2n H-n1,即n3≠-n1,所以摇动蜗杆可改变补偿盘与试件之间的相对角位移。

图2所示为动平衡机工作原理图,试件转动后不平衡质量产生的离心惯性力F =ω2mr,它可分解为垂直分力F y和水平分力F x,由于平衡机的工字形板簧在水平方向(绕y轴)的抗弯刚度很大,所以水平分力F x对摆架的振动影响很小,可忽略不计。而在垂直方向(绕x轴)的抗弯刚度小,因此在垂直分力产生的力矩M = F y·l =ω2mrlsinφ的作用下,摆架产生周期性上下振动。 图2 动平衡机工作原理图 由动平衡原理可知,任一转子上诸多不平衡质量,都可以用分别处于两个任选平面Ⅰ、Ⅱ内,回转半径分别为rⅠ、rⅡ,相位角分别为θⅠ、θⅡ,的两个不平衡质量来等效。只要这两个不平衡质量得到平衡,则该转子即达到动平衡。找出这两个不平衡质量并相应的加上平衡质量(或减去不平衡质量)就是本试验要解决的问题。 设试件在圆盘Ⅰ、Ⅱ各等效着一个不平衡质量mⅠ和mⅡ,对x轴产生的惯性力矩为: MⅠ=0 ;MⅡ=ω2mⅡrⅡlsin(θⅡ+ωt) 摆架振幅y大小与力矩MⅡ的最大值成正比:y∝ω2mⅡrⅡl ;而不平衡质量mⅠ产生的惯性力以及皮带对转子的作用力均通过x轴,所以不影响摆架的振动,因此可以分别平衡圆盘Ⅱ和圆盘Ⅰ。 本实验的基本方法是:首先,用补偿盘作为平衡平面,通过加平衡质量和利用差速器改变补偿盘与试件转子的相对角度,来平衡圆盘Ⅱ上的离心惯性力,从而实现摆架的平衡;然后,将补偿盘上的平衡质量转移到圆盘Ⅱ上,再实现转子的平衡。具体操作如下: 在补偿盘上带刻度的沟槽端部加一适当的质量,在试件旋转的状态下摇动蜗杆手柄使蜗轮转动(正转或反转),从而改变补偿盘与试件转子的相对角度,观察百分表振动使其达到最小,停止转动手柄。(摇动手柄要讲究方法:蜗杆安装在机架上,蜗轮安装在摆架上,两者之间有很大间隙。蜗杆转动一定角度后,稍微反转一下,脱离与蜗轮的接触,这样才能使摆架自由振动,这时观察振幅。通过间歇性地使蜗轮向前转动和观察振幅变化,最终可找到振幅最小的位置。)停机后在沟槽内再加一些平衡质量,再开机左右转动手柄,如振幅已很小(百分表摆动±1~2格)可认为摆架已达到平衡。亦可将最后加在沟槽内的平衡质量的位置沿半径方向作一定调整,来减小振幅。将最后调整到最小振幅的手柄位置保持不动,停机后用手转动试件使补偿盘上的平衡质量转到最高位置。由惯性力矩平衡条件可知,圆盘Ⅱ上的不平衡质量mⅡ必在圆盘Ⅱ的最低位置。再将补偿盘上的平衡质量m p'按力矩等效的原则转换为位于圆盘Ⅱ上最高位置的平衡质量m p,即可实现试件转子的平衡。根据等效条件有:

机械原理实验报告大全

机械原理实验项目 机械原理课程实验(一) 机械传动性能测试实验 一、实验目的 (1) 通过测试常见机械传动装置(如带传动、链传动、齿轮传动、蜗杆传动等)在传递运动与动力过程中的速度、转矩、传动比、功率及机械效率等,加深对常见机械传动性能的认识与理解。 (2) 通过测试由常见机械传动组成的不同传动系统的机械参数,掌握机械传动合理布置的基本要求。 (3) 通过实验认识机械传动性能综合实验台的工作原理、提高计算机辅助实验能力。 二、实验设备 机械传动性能测试综合实验台。 三、实验内容 机械传动性能测试是一项基于基本传动单元自由组装、利用传感器获取相关信息、采用工控机控制实验对象的综合性实验。它可以测量用户自行组装的机械传动装置中的速度、转矩、传动比、功率与机械效率,具有数据采集与处理、输出结果数据与曲线等功能。 机械传动性能测试实验台的逻辑框图 变频 电机 ZJ 扭矩 传感器 ZJ 扭矩 传感器 工作载荷 扭矩测量卡 转速调节 机械传动装置 负载调节 工控机 扭矩测量卡

机械原理课程实验(二) 慧鱼机器人设计实验 一、实验目的 1)通过对慧鱼机器人、机电产品的系统运动方案的组装设计,培养学生独立确定系统运动方案设计与选型的能力。 2)利用“慧鱼模型”组装机器人模型,探索机器人各个功能的实现方法,进行机电一体化方面的训练。 二、实验设备 1)慧鱼创意组合模型包; 2)计算机一台; 3)可编程控制器、智能接口板; 4)控制软件。 三、实验内容 “慧鱼创意组合模型”是工程技术型模型,能够实现对工程技术以及机器人技术等的模拟仿真。模型是由各种可以相互拼接的零件所组成,由于模型充分体现了各种结构、动力、控制的组成因素,并设计了相应的模块,因此,可以拼装成各种各样的机器人模型,可以用于检验学生的机械结构和机械创新设计与控制的合理可行性。 慧鱼机器人实验二室 自动步行车 学生创新实验

转子动平衡实验报告

转子动平衡实验报告 实验目的 1.巩固转子动平衡知识,加深转子动平衡概念的理解。 2.掌握刚性转子动平衡实验的原理及基本方法。 3.了解动平衡试验机的组成、工作原理,通过参数化和可视化的方法,观察转子动平衡虚拟实验的平衡效果。 二实验设备及工具 DPI—I型智能动平衡机结构如图一所示。测试系统由计算机, 数据采集器、高灵敏度有源压电传感器和光电相位传感器等组成。

三实验记录及结果 四思考题 1转子(试件)在什么情况下作静平衡?什么情况下作动平衡? 答:定义 1)静平衡:在转子一个校正面上进行校正平衡,校正后的剩余 不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。 2)动平衡:在转子两个校正面上同时进行校正平衡,校正后的 剩余不平衡量,以保证转子在动态时是在许用不平衡量的规定范围内,为动平衡又称双面平衡。 转子平衡的选择与确定如何选择转子的平衡方式,是一个关键问题。其选择有这样一个 原则:只要满足于转子平衡后用途需要的前提下,能做静平衡的,则不要做动平衡,能做动平衡的,则不要做静动平衡。

2作往复运动或平面运动的构件,能否用动平衡试验机将其不平衡惯性力平衡?为什么? 可以用动平衡试验机将其不平衡惯性力平衡 五收获和体会 做实验时虽然理论基础但同需要团队合作,操作时精度也需要很准确,即使只差1g也会对结果产生很大的影响

伏直 帮幻 尺寸怅fi C 伽J ^18.50 密壬丰甩 G.) I 左购 r E ? 1.1 J II ■■rrnaimBiarmai i -ri■ j 綴命肅鸞娠鱷j I 手动底卑I 停I 卜藩试I 馥据冗翼忧 S ■ 滚了平断甌 > i 打VF 试验结尿]干衙成量{立〕0.30 I C1 IOS FT^ 龙不平ig 量 晶示 】 ;£H 砖扮0.23呢 } 1 £H 站 FITS 芋 曲钿柬右 T 平緡a 晁示 S4D 3M 20 理匕二二、严 刑30 2SD J |^^E 55?^>L 100 他 A 1. ■ 1 C W 寸萇 fi 1(^.) CO 退出 aim [ £&? 4C0 2兀 ]ZD ££□ 、J . i4jj ___ £00 lan leo 0( J 220 LB 2D0 1 站 LBO 如「湘D 20 3OT 40 号 nn

动平衡实验.doc

实验八 零件设计专项能力训练 ——回转件的动平衡 一、实验目的 1. 熟悉运动平衡机的工作原理及转子动平衡的基本方法 2. 掌握用动平衡机测定回转件动平衡的实验方法。 二、设备和工具 简易动平衡试验机、药架天平。 三、原理和方法 T ?、 ? 内,回转半径分别为r o ?、r o ?的两个不平 G o ?、G o ?所产生,如图8-1所示。因 进行动平衡试验时,只需对G o ?、G o ?进 简易动平衡试验机可以分别测出上述 平衡重径积G o ?r o ?和 o ?r o ?的大小和方位,使回转件达到动平 图8-2是简易动平衡机的工作原理图。 图8-1 图8-2 如图所示,框架1经弹簧2与固定的底座3相联,它只能绕OX 轴线摆动,构成一个振动系统。框架上装有主轴4,由固定在底座上的电动机14通过带和带轮12驱动。主轴4上装有螺旋齿轮6,它与齿轮5齿数相等,并相互啮合,齿轮6可以沿主轴4移动。移动的距离和齿轮的轴向宽度相等,比齿轮5的节圆圆周要大,因此调节手轮18,使齿轮6从左端位置移到右端位置时,齿轮5及和它固定的轴9可以回转一周以上,借此调节φc ,φc 的大小由指针15指示。圆盘7固定在轴9上,通过调节手轮17可以使圆盘8沿轴向9上下移动,以调节两圆盘间的距离l c ,l c 由指针16指示。7、8两圆盘大小、重量完全相等,上面分别

装有一重量为G c的重块,其重心都与轴线相距r c,但相位差180°。 被平衡的回转件10架于两个滚动支承13上,通过挠性联轴器11由主轴4带动,因此回转件10与圆盘7、8转速相等,当选取T?和T?为平衡校正面后,回转件10的不平衡就可以看作平面T?和T?内向径为r o?和r o?的不平衡重量G o?和G o?所产生。平衡时可先令摆架的振摆轴线OX处于平面T?内(如图8-2所示)。当回转构件转动时,不平衡重量G o?的离心力P o?对轴线OX的力矩为零,不影响框架的振动,仅有G o?的离心力P o?对轴线OX形成的力矩M o,使框架发生振动,其大小为 M o=P o??l?cosφ 这个力矩使整个框架产生振动。 为了测出T?面上的不平衡重量大小和相位,加上一个补偿重径积G c r c,使产生一个补偿力矩,即在圆盘7和8上各装上一个平衡重量G c。当电机工作时,带动主轴4并带动齿轮5、6,因而圆盘7、8也旋转,这时G c的离心力P c,就构成一个力偶矩M c,它也影响到框架绕OX轴的振摆,其大小为 M c=P c?l c?cosφc 框架振动的合力矩为 M=M o=M c=P o??l?cosφ-P c?l c?cosφc 如果合力为零,则框架静止不动。此时 M=P o??l?cosφ-P c?l c?cosφc=0 满足上式条件为 G o?r o?=G c r c?l c/l(1) φo=φc(2)在平衡机的补偿装置中G c、r c是已知的,试件的两平衡平面是预先选定的,因而两平衡平面间的距离l也是一定的,因此(1)式可以写成 G o?r o?=A?l c(3)其中A=G c?r c/l 为便于观察和提高测量精度,在框架上装有重块19,移动19,可改变整个振动系统的自振频率,使框架接近共振,即振幅放大。 通过调节手轮17和18,使框架静止不动,读出l c和φc的数值,由公式(3)即可计算出不平衡重量G o?的大小为 G o?=A?l c?r o? 其相位可以这样确定,停车后,使指针15转到图8-2所示与OX轴垂直的虚线位置,此时G o?的位置就在平面T?内回转中心的铅直上方。 测量另一个平衡平面T?上的不平衡重径积,只需将试件调头,使平面T?通过OX轴,测量方法与上述相同。 四、实验步骤 1.在被平衡试件上机以前,先开动电机,调节手轮18,使圆盘8与7的重块G c产生的离心力在一直线上,这时力矩M c=0,从主轴下的指针可看出框架是静止状态,此时标尺16所示的读数为l c的零点位置。 2.装上试件,试件的一端联轴节应与带轮接好,以免开动电机时发生冲击。 3.移动重块19以改变框架的自振频率,使框架接近共振状态,这时框架振幅放大,以提高平衡精度,调共振后锁紧。 4.先调节手轮17,即加一定的补偿力矩(将圆盘7、8分开一定距离),然后调节手轮18,即移动齿轮6,使齿轮5与圆盘7、8得到附加转动,当调节到框架振动的振幅最小时不平衡重量相位已找到。然后再调节手轮18,即调节l c,使框架最后振动消除,振动系统

动平衡测量原理

刚性转子的平衡条件及平衡校正 回转体的不平衡---回转体的惯性主轴与回转轴不相一致; 刚性转子的不平衡振动,是由于质量分布的不均衡,使转子上受到的所有离心惯性力的合力及所有惯性力偶矩之和不等于零引起的。 如果设法修正转子的质量分布,保证转子旋转时的惯性主轴和旋转轴相一致,转子重心偏移重新回到转轴中心上来,消除由于质量偏心而产生的离心惯性力和惯性力偶矩,使转子的惯性力系达到平衡校正或叫做动平衡试验。 动平衡试验机的组成及其工作原理 动平衡试验机是用来测量转子不平衡量的大小和相角位置的精密设备。一般由机座部套,左右支承架,圈带驱动装置,计算机显示系统,传感器限位支架,光电头等部套组成。 当刚性转子转动时,若转子存在不平衡质量,将产生惯性力,其水平分量将在左右两个支撑上分别产生振动,只要拾取左右两个支撑上的水平振动信号,经过一定的转换,就可以获得转子左右两个校正平面上应增加或减少的质量大小与相位。

在动平衡以前,必须首先解决两校正平面不平衡的相互影响是通过两个校正平面间距b,校正平面到左,右支承间距a, c,而a, b, c 几何参数可以很方便地由被平衡转子确定。 F1, F2: 左右支承上的动压力;P1, P2 : 左右校正平面上不平衡质量的离心力。 m1, m2 : 左右校正平面上的不平衡量;a, c : 左右校正平面至支承间的距离 b : 左右校正平面之间距离;R1 R2: 左右校正平面的校正半径 ω:旋转角速度 单缸曲柄连杆机构惯性力测量方法

活塞的速度为 ..1(sin sin 2)2v x r wt wt λ==-+ 活塞的加速度为 .. 2(cos cos 2)a x rw wt wt λ==+ 我的论文中的对应表达式与以上两个式子不同: )2sin 2(sin αλ αω+-=r v p )2cos (cos 2αλαω+-=r a p 测量系统机械结构 惯性力测量机的机械系统主要包括驱动机构、摆架。驱动机构通过联轴节带动曲轴达到额定测量转速。摆架支承测量曲柄连杆机构,使之在惯性力作用下产生振动。 测量机摆架包括轴承、摆架、弹性元件等,轴承与摆架连成一体,通过弹性元件与支承架连接,工件安装在两支撑架之间组成振动系统,旋转时,由于曲柄连杆机构惯性力的作用作受迫振动,通过传感器将摆架的振动量转换为电信号。 测量机实验图片一系统标定装置 :

转子动平衡技术实验报告

广州大学学生实验报告 开课学院及实验室:526室2015年12月26日 学院 机械与电气 工程 年级、专 业、班 机械121姓名吴海明学号1207200014 实验课程名称机械故障诊断技术成绩 实验项目名称转子动平衡技术 指导 老师 郑文 一、实验目的 1、掌握振动幅值及相位测量方法,熟悉相关测量仪器; 2、掌握旋转机械动平衡的基本步骤及方法。 通过运用振动监测手段,完成转子不平衡特征的测量,从而提高学生进行数据采集、 转子振动分析及状态评估、动平衡校正等方面的能力。 二、实验设备 1、列出所用振动分析仪器、软件、传感器的名称、型号、用途等; 加速度传感器 光电式传感器,用于测量振动的相位 数据采集器 质量块、天平 2、振动试验台 实验台配有两个质量盘(如图所示),可以在轴的任意位置固定安装。本实验 要求完成单面动平衡试验,把两个质量盘分开安装,并且在某个质量盘上加上一个 M5的螺钉作为质量块,使得转子不平衡。 1、质量盘 2、夹紧法兰 3、转轴备用螺纹孔(16个)5、夹紧法兰螺钉孔

图质量盘结构示意图 三、实验要求 1.熟悉实验的整个过程 2.实验过程要注意安全,防止转子高速时质量块脱落伤人。 3.正确布置质量块位置,并要记下各个具体位置。 4.实验后分析各频谱图以及参数与转子动平衡的关系。 5、绘出振动试验台的结构简图,列出主要结构参数,如电机参数、传动比、转速等。 6、画出测试系统的连接框图。 7、绘出振动试验台测点布置图,说明测量的位置、方向及传感器安装方法等。 8、描述不平衡质量的施加方法。 四、实验操作过程 1、仪器连接,传感器安装; 2、贴反光带,启动试验台; 3、开始动平衡测量及校正过程,完成转子台初始振动测量、试重、校正重量计算及施 加等工作; 4、评价动平衡后的效果; 5、填写附表。 要求学生绘出测量对象的结构简图,列出主要结构参数;计算不平衡的特征频率;选择测试参数;测量各测点的时域波形、频谱等数据;参照有关标准,判断各点的测量值是否在正常范围内;分析频谱图中的主要频率成分,解释频谱峰值的来源及其与转子不平衡的对应关系;综合判断机器的运行状态及存在的不平衡问题; 完成转子现场动平衡测量与校正。五、实验结果及分析 下表是实验过程中测出的实验数据 动平衡数据表 振动值 Vibration μm(p-p) 相位 Phase 度(°) 重量 Weight 克g 角度 Angel 度(°)初始振动测量值 Initial Vibration 17 80 动平衡试重 Trial Weight 8 45 加试重后的振动值 Trail Running Vibration 15 60 第一次动平衡配重 1st Correcting Weight 8 135 第一次加配重后的振动值 1st Residual Vibration 7 50 第二次动平衡配重 2nd Correcting Weight 7 135 第二次加配重后的振动值 2nd Residual Vibration 2 200 转子转速n=800r/min 以下是实验结果频谱图 初始振动测量值频谱图 (a)在转盘外圆贴有一反光带作为起始原点,并在外缘随意安装一质量块(相对原点逆时针旋转45°的位置加上8克重物),使转盘存在偏心量,并记录频谱图

动平衡试验思考题参考答案

自己看个一遍再抄,挑着抄,之前都预习过,只要把数据整理下,然后思考题写上,再把实验遇到的困难与总结写下就可以了,4/4晚上我来收! 第一题: 1、当试件作旋转运动的零部件时,例如各种传动轴、主轴、风机、水泵叶轮、刀具、电动机和汽轮机的转子等,统称为回转体。在理想的情况下回转体旋转与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。但工程中的各种回转体,由于材质不均匀或毛坯缺陷、加工及装配中产生的误差,甚至设计时就具有非对称的几何形状等多种因素,使得回转体在旋转时,其上每个微小质点产生的离心惯性力不能相互抵消,离心惯性力通过轴承作用到机械及其基础上,引起振动,产生了噪音,加速轴承磨损,缩短了机械寿命,严重时能造成破坏性事故。为此,必须对转子进行平衡,使其达到允许的平衡精度等级,或使因此产生的机械振动幅度降在允许的范围内。 2、转子动平衡和静平衡的区别: 1)静平衡:在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。 2)动平衡:在转子两个及以上校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子动态时是在许用不平衡量的规定范围内,为动平衡又称双 面平衡。 3、转子平衡的选择与确定 1)如何选择转子的平衡方式,是一个关键问题。通常以试件的直径D与两校正面的距离b,即当D/b≥5时,试件只需做静平衡,相反,就必需做动平衡。 2)然而据使用要求,只要满足于转子平衡后用途需要的前提下,能做静平衡的,就不要做动平衡,能做动平衡的,则不要做静动平衡。原因很简单,静 平衡比动平衡容易做,省功、省力、省费用。 第二题: 主要原因是因为偏重太大会产生强大的离心惯性力..将在构件运动副中引起附加动压力,使机械效率,工作精度和可靠性下降,加速零件的损坏.当惯性力的大小和方向呈周期性变化时,机械将产生振动和噪音.因此,特别是在高速,重载,精密机械中,,必须对转子进行平衡以尽可能减少偏重... 第三题: 造成转子不平衡的因素很多,例如:转子材质的不均匀性,联轴器的不平衡、键槽不对称,转子加工误差,转子在运动过程中产生的腐蚀、磨损及热变形等。

动平衡测试系统操作说明书

ZL-Ⅱ型动平衡测试系统 操作说明书 OPERATOR MANUAL 宣化正力平衡机械制造有限公司 2012-05

ZL-Ⅱ型动平衡测试系统操作方法 1、系统的启动和关闭 系统正常工作前,要保证测控计算机与测量模块、各传感器连接正常并处于得电的待工作状态。打开计算机,双击桌面的“动平衡”图标,系统打开、电脑屏幕 显示控制系 统的默认界 面如下图。试 验完毕,可点 击“退出”按 钮退出系统 图1测控系统主界面 2、平衡方法选择 本系统为用户提供两种解算方法即ABC永久标定法和影响系数法以适应不同转子的平衡需要,ABC永久标定法一经标定就可适各种转子的动平衡,适合多品种转子的平衡;而影响系数法则具有较高的分离比,更适合大批量和薄片转子的平衡。点击“影响系数”或“ABC法”可选择相对应的平衡方法。 3、影响系数动平衡操作步骤 3.1将待平衡转子置于平衡机上并连接好;点击“影响系数”标签,弹出如图2界面,此为影响系数平衡法主程序的默认界面——参数设置。 3.2参数设置 参数设置是为将待平衡转子的主要特征,在平衡机上装载的位置特征等参数

图2参数设置界面 予以保存,在以后对同类转子进行平衡时、只需调出此参数就可以进行平衡测试而无需再标定。同设定转子质量、转子转速、精度等级等参数系统会自动给出转子应该达到许用不平衡量和每次平衡后实际达到的平衡精度,这样十分方便用户掌控转子的平衡状态。输入的参数如图所示;R1和R2代表转子两校正面的校正半径,A—1(左)校正面到左支撑滚轮中线的距离;C—2(右)校正面到右支撑滚轮中线的距离。B—左右校正面间距离。以上单位为mm。装载形式为待平衡转子在平衡机摆架上的位置状态,共有7种状态,通过“装载形式”选择器选择一种与实际相符合的装载形式;确定转子编号即完成参数设置。以后再做同样转子的动平衡,只需要在右下面的“转子编号”输入相应转子的编号,然后点击“参数调入”按钮,并将转子的在摆架的位置调整到与参数设置A、B、C指示值相一致即可。 3.3标定设置 对于影响系数法,在做新转子的平衡时在完成参数设置后需要进行标定操作。

相关主题
文本预览
相关文档 最新文档