当前位置:文档之家› PWM小功率多路输出开关电源的设计

PWM小功率多路输出开关电源的设计

PWM小功率多路输出开关电源的设计
PWM小功率多路输出开关电源的设计

摘要

开关电源的高频化电源技术发展的创新技术,高频化带来的效益是使开关电源装置空前地小型化,并使开关电源进入更广泛的领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约资源及保护环境方面都具有深远的意义。

为此本论文以反激式高频开关电源为设计方向而展开,对高频变压器的认知及所注意的问题,其中包括磁芯损耗、绕组损耗、温升以及磁芯要求。高频单端反激式变压器是本文的中心内容,其核心参数设计许多,具体内容正文中有详细介绍。其次是控制电路的设计,首先我们要对PWM集成控制器原理的有所了解,在此基础上保护两种控制模式分别是电压模式和电路模式。同时采用UC3842开关电源集成控制器,它是一种高性能的固定频率电流型集成控制器,能很好地应用在隔离式单端开关电源的设计,其最大优点是外接元件少,外电路装配简单等。开关电源的质量指标应该是以安全性、可靠性为第一原则,所以,在同一开关电源电路中,设计多种保护电路的相互关联和应注意的问题也要引起足够的重视。

通过相关文献及实现数据的带入进行验证,最终确定出此设计方案是可行的,设计达到最初的效果。

关键词:单端反激式变压器;PWM集成控制器;UC3842集成控制器;多路输出。

PWM small power multi-output switching power supply

Abstract

Switch power source high frequency power supply technology development of innovative technologies, the benefits is to make high frequency switching power supply device with an unprecedented miniaturization, and causes the switching power supply to enter the more widely, especially in the high-tech fields of application, promote the high-tech products of miniaturization, light. In addition the power switch in the development and application in saving resource and protect environment has profound significance.

In this paper, the flyback switch power supply for the design direction and spread out, the high frequency transformer of cognitive and attention problems, including the core loss and winding loss, temperature rise, and core requirements. High frequency single end flyback transformer is the central content of the article, the core of many specific parameter design, detailed in the content of the text. Followed by the design of the control circuit, first of all we have to understand the principle of PWM integrated controller, based on the protection of two kinds of control modes are the voltage mode and circuit model. While the use of UC3842 switching power supply integrated controller, it is a kind of high performance fixed frequency current-mode integrated controller, can be well applied in isolation type single end switching power supply design, its biggest advantage is less external components, simple external circuit assembly. Switching power supply quality indicators should be based on safety, reliability as the first principle, so, in the same switch power supply circuit, protection circuit design a variety of interrelated and should pay attention to the problem should cause enough attention.

Through the literature and data to verify, eventually determine the design scheme is feasible, the effect of initial design to achieve.

Key words: single end flyback transformer; PWM controller; UC3842controller; Multiple output。

目录

1 前言 ............................................................ 错误!未定义书签。

1.1 开关电源的定义与分类 (1)

1.2 开关电源的基本工作原理与应用 (1)

1.2.1开关电源的基本工作原理 (1)

1.2.2 开关电源的应用 (2)

1.2.3开关电源常见的变换器 (3)

1.3 开关电源待解决的问题及发展趋势 (5)

1.3.1 开关电源待解决的问题 (5)

1.3.2 开关电源的发展趋势 (5)

2 设计方案比较与选择 (7)

2.1 本课题选题意义 (7)

2.2 方案的设计要求 (7)

2.3选取的设计方案 (8)

3 多路输出开关电源系统的设计 (9)

3.1 多路输出开关电源系统参数及主电路原理图 (9)

3.2 单端反激式变压器的设计 (10)

3.2.1 变压器设计考虑的问题 (10)

3.2.2 单端反激式变压器设计 (11)

3.3 开关电源控制电路的设计 (15)

3.3.1 PWM 集成控制器的工作原理与比较 (14)

3.3.2 UC3842工作原理 (17)

3.3.3 UC3842的使用特点 (24)

3.4 反馈电路及保护电路的设计 (25)

3.4.1 过压、欠压保护电路及反馈 (25)

3.4.2 过流保护电路及反馈 (25)

3.5变压器设计中注意事项 (26)

4 总结 (27)

参考文献 (28)

谢辞 (29)

附录 (30)

1 前言

1.1 开关电源的定义与分类

电是工业的动力,是人类生活的源泉。电源是产生电的装置,表示电源特性的参数有功率、电压、电流、频率;在同一参数要求下,又有重量、体积、效率和可靠性等指标。我们用的电,一般都需经过转换才能合适使用的需要,例如交流转换成直流,高电压变成低电压,大功率变换小功率等。

按照电子理论,所谓AC/DC就是交流转换为直流;AC/AC称为交流变交流,即为改变频率;DC/AC称为逆变;DC/DC为直流变交流后再变为直流。为了达到转换的目的,电流变换的方法是多样的。自20世纪60年代,人们研发出了二极管、三极管半导体器件后,就用半导体器件进行转换。所以,凡是用半导体功率器件作开关,将一种电源形态转换成另一种形态的电路,叫开关变换电路。在转换时,以自动控制稳定输出并有各种保护环节的电路,称为开关电源(Switching Power Supply)

人们在开关电源技术领域是边开发相关电力电子器件,边开发开关变频技术,两者相互促进推动着开关电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源可分为AC/DC和DC/DC两大类,也有AC/AC DC/AC 如逆变器 DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。以下分别对两类开关电源的结构和特性作以阐述。

1.2 开关电源的基本工作原理与应用

1.2.1开关电源的基本工作原理

开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。

与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。脉冲的占空比由开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。通过增加变压器的二次绕组数就可以增加输出的电压组数。最后这些交流波形经过整流滤波后就得到直流输出电压。如图1.1所示。

图1.1开关电源的基本组成图

控制器的主要目的是保持输出电压稳定,其工作过程与线性形式的控制器很类似。也就是说控制器的功能块、电压参考和误差放大器,可以设计成与线性调节器相同。他们的不同之处在于,误差放大器的输出(误差电压)在驱动功率管之前要经过一个电压/脉冲宽度转换单元。

开关电源有两种主要的工作方式:正激式变换和升压式变换。尽管它们各部分的布置差别很小,但是工作过程相差很大,在特定的应用场合下各有优点。

1.2.2 开关电源的应用

随着电力电子技术的发展, 特别是大功率MOS 管技术的迅速发展, 将开关电源的工作频率提高到150~200 kHz, 这使得功率损耗更小, 电源的效率可达90%~95%。用高频变压器取代工频变压器可大大减小体积, 降低重量; 同时输出电压纹波降低到0.05%以内, 稳定度可达0.5%~1%, 抗干扰能力强而且智能化程度高, 因为这些优良的特性, 高功率开关电源主要应用于工业和军事上。如粒子加速器、电磁发射、电磁推进、微波武器等脉冲功率技术应用领域中, 电源设备的平均功率通常在几百千瓦甚至几兆瓦以上, 体积和重量只有线性电源的几十分之一。而小功率开关电源主要应用于家电、IT 等领域, 如计算机、彩色电视机、程控交换机、摄像机、机顶盒、VCD、电子游戏机等电子设备上。

①通信电源

通信业的迅速发展极大地推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流- 直流(DC/DC)变换器称为二次电源。一次电源是把单相或三相交流电网变换成标称值为48V 的直流电源。如在程控交换机用的一次电源中, 传统的相控式稳压电源早已被高频开关电源取代,它通过MOSFET 或IGBT 的高频工作,开关频率一般控制在50~100kHz 范围内,实现了高效率和小型化。近几年, 一次电源的功率容量不断扩大, 单机容量已从48V/12.5A 扩大到48V/200A、48V/400A。

通信设备计算速度的不断提高, 使得时钟频率不断提高, 所用集成电路的种类繁多,其电源电压要求也各不相同,通常超过10 种, 在通信供电系统中采用高功率密度的高频DC- DC 隔离电源模块,从中间母线电压(一般为48V 直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

②高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今

焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流- 直流- 交流- 直流(AC- DCAC-DC)变换的方法。50Hz 交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz 的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁地处于短路、燃弧、开路交替变化之中, 因此高频逆变式整流焊机电源的工作可靠性成为最关键的问题,也是用户最关心的问题。采用微处理器作为脉冲宽度调制( PWM) 的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理, 解决了目前大功率IGBT 逆变电源可靠性。国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

③大功率开关型高压直流开关电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X 光机和CT 机等大型设备。电压高达50~l59kV,电流达到0.5A 以上,功率可达100kW。

自从上个世纪70 年代开始, 日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz 左右的中频,然后升压。进入80 年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz 以上, 并将干式变压器技术成功地应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制, 市电经整流变为直流, 采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为

25.6kHz。

④电力操作电源

在上个世纪90 年代之前, 电力操作电源几乎全部选用相控电源, 即采用可控硅整流充电设备, 由于可控硅整流在纹波、效率、体积等方面不尽人意, 监控系统也不够完善, 尤其现在变电所逐步采用微机保护和监控, 对直流系统的性能和可靠性要求更高, 因此90 年代之后更新换代为开关电源。

变电所中的电力操作电源是保证可靠供电必不可少的,它的主要任务是为继电保护、开关分合闸及控制等提供可靠的直流操作电源。它的性能优劣直接关系到变电所的正常安全供电, 进而关系到生产设备的正常运行。采用高频开关后,输出电压精度高, 其输出纹波系数从2%提高到0.1%, 电源稳压、稳流精度从2%减小到0.5%, 能够保证对蓄电池的平稳充放电, 延长了电池使用寿命。由于采用模块化结构和N+1 备份方式, 可根据实际负载容量的大小, 选择合适的整流模块数量。当1 台电源故障时, 只需将该模块退出检修, 而其它模块仍可继续运行, 在保证系统充电容量的前提下, 为负载的正常供电提供了更加可靠的保障。以往的可控硅整流相控电源系统, 其备件需要1 个同样大小的硅整流模块, 而改用高频开关后, 只需备1~2 个高频开关单元就可以了, 减少了备件储备成本。由于高频开关电源的功率因数大于0.9, 而常规整流功率因数仅为0.7 左右, 对同样的负载, 采用高频开关模块可节省输入功率30%。

1.2.3 开关电源常见的变换器

1 PWM变换器

脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。一种模拟控制方式,根据相应载荷的变化

来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定。

脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。其工作原理如图1.2

图1.2 PWM变换器的基本工作原理

多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。

PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。

对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。

2 DC/DC变换器

DC/DC变换器用于开关电源时,很多情况下要求输入与输出间进行电隔离。这时必须采用变压器进行隔离,称为隔离变换器。这类变换器把直流电压或电流变换为高频方波电压或电流,经变压器升压或降压后,再经整流平滑滤波变为直流电压或电流。因此,这类变换器又称为逆变整流型变换器。

DC/DC变换器有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。下面重点分析隔离式单端反激转换电路,电路结构图如图1.3所示。

图1.3 电路结构图

电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,

使VD导通,给输出电容C充电,同时负载R上也有电流I流过。M1导通与截止的等效拓扑如图1.4所示。

图1.4 M1导通与截止的等效拓扑

1.3 开关电源待解决的问题及发展趋势

1.3.1 开关电源待解决的问题

客观上说,开关电源的发展是非常快的,这是因为它具有其他电源所无法比拟的优势。材料之新、用途之广,是它快速发展的主要动力。但是,它离人们的要求、应用的价值还差得较远,体积、重量、效率、抗干扰能力、电磁兼容性以及使用的安全性都不能说是十分完美。目前要解决的问题有:

①器件问题。电源控制集成度不高,这就是影响了电源的稳定性和可靠性,同时对电源的体积和效率来说也是一个大问题。

②材料问题。开关电源使用的磁芯、电解电容及整流二极管等都很笨重,也是耗能的主要根源。

③能源变换问题。按照习惯,变换有这样几种形式:AC/DC变换、DC/AC变换以及DC/DC变换等。实现这些变换都是以频率为基础,以改变电压为目的,工艺复杂,控制难度大,始终难以形成大规模生产。

④软件问题。开关电源的软件开发目前只是刚刚起步,例如软开关,虽然它的损耗低,但难以实现高频化和小型化。要做到“软开关”并实现程序化,更是有一定的困难。要真正做到功率转换、功率因素改善、全程自动检测控制实现软件操作,目前还存在很大差距。

⑤生产工艺问题。往往在实验室中能达到相关的技术标准,但在生产上会出现各种问题。这些问题大多是焊接问题和元器件技术性能问题,还有生产工艺上得检测、老化、粘结、环境等方面的因素。没有先进的工艺设备,怎能生产出一流的产品?

1.3.2 开关电源的发展趋势

开关电源的发展方向是频率更高、体积更小、电压更低、电流密度更大、效率更高。

随着电力电子器件开关频率的不断提高, 使得开关电源的频率进一步提高, 小功率DC—DC 变换器的开关频率已将现在的200~500kHz 提高到1MHz 以上。频率的提高使体积进一步缩小, 开关电源在封装结构上正朝着薄型, 甚至超薄型方向发展, 目前薄型封装尺寸已可达到7.5mm、8.5mm 和10 mm。半导体工艺等级在未来十年将从0.18 微米向50 纳米工艺迈进, 芯片所需最低电压最终将为0.6V, 但输出电流将朝着大电流方向发展。1991 年高功率密度定义为每立方英寸输出功率为25W, 现在输出功率每立方英寸可达数百瓦。日本TDK 公司的分布式隔离型DC—DC 转换器, 输出电压12V、输出电流27A、效率为95%, 功率密度已达每立方英寸236W。而各种软开关技术的应用及用MOSFET 代替整流二极管都能大大地提高模块在低输出电压时的效率, 即将达到92% (5V)、

90%(3.3V)、87.5%(2V)。

开关电源的设计要求有非常高的效率,高效率有着极为重要的意义。首先,高效率减少了能量在传递过程中的损失,最理想的情况就是输入端的能量完全传递到了输出端,在开关电源内部不损失任何的能量,开关电源只是起到了能量形式转化的作用。然而,实际设计时这一点是不能实现的。如果电源内部有较大的损失,这部分能量将转化为热能损耗在器件上,这就要求开关电源有散热的设计,否则长时间的高温工作将减少使用寿命,大大增加不稳定性。而增大散热部件会对开关电源小型化起到巨大的阻碍作用。这一点在手持设备或者小型开关电源的应用中更为明显。其次,当今能源日趋紧张,全世界开始意识到节约能源的重要性,对于电子设备的功耗提出了硬性的指标规定。例如中国在2006年3月实施的节能评价值指标为待机能耗3W,能量效率指数为1.1。2009年3月1日将实施的节能评价值为待机能耗1W,能效指数为0.75。提高开关电源的效率不再是节省使用者电费开支的额外功能,开始成为各个产品必须满足的一项技术指标。

再次开关电源设计要求能够小型化。开关电源的应用领域中小型化,集成化的需求越来越高。比如笔记本电脑的电源系统,不仅需要完成充电控制,还需完成对微处理器供电的降压处理,对硬盘供电的降压处理,以及对屏幕供电的直流转交流变换等。所有的功能都希望在尽可能小的体积中完成。因此,小型化是开关电源的另一个发展方向。

2设计方案比较与选择

2.1 本课题选题意义

本课题研究的是多路输出开关电源及其几个研究热点,符合开关电源的发展方向,有助于新技术在国内开关电源中的应用。理论联系实际,通过开关电源的研发,可以使得理论知识应用于实际工程中,同时也培养了作者的科研能力和创新意识。

(1)在充分理解开关电源电路工作原理、设计任务书的基础上,设计主电路和控制电路参数,并设置了可行的方案,从而选取反激式开关电源作为本文论点。

(2)UC3842是美国Unitrode公司(该公司现已被 TI公司收购)生产的一种高性能单端输出式电流控制型脉宽调制器芯片,可直接驱动双极型晶体管、MOSFEF 和IGBT 等功率型半导体器件,具有管脚数量少、外围电路简单、安装调试简便、性能优良等诸多优点,广泛应用于计算机、显示器等系统电路中作开关电源驱动器件。

(3)调试研制的开关电源,通过对各项指标的测试,综合考察电源的性能,考察电源实现软开关的效果,进一步解决调试中出现的问题,完成有限双极性和峰值电流控制方法从理论到实际的转化。

2.2 方案的设计要求

以下是开关电源的基本功能:

(1)通过MODEM和电话网与监控中心通信,从通信口读取开关电源的信息;

(2)测量模块的输出电流和电压、直流母线电流和电压、电源的输出电流和电压、电池充放电电流和电压等;

(3)控制电源的输出电流和稳流,控制电源的开关机等;

(4)控制开关电源实现对蓄电池浮充、均充方式的自动转换;

(5)控制硅链的自动或手动投切,保证控制母线的稳压精度,进而保证微机和晶体管保护用电的可靠性,防止造成保护误动;

(6)调节充电限流值和总输出电流稳流值;

(7)具有本地和远程控制方式,采用密码允许或禁止方式操作,以增强系统运行可靠性。

2.3选取的设计方案

开关稳压电源被誉为“新型高效节能电源”,它代表着稳压电源的发展方向。由于内部器件工作在高频开关状态,因此本身消耗的能量极低,电源效率可以达到80%以上,比串连调整线性稳压电源的效率提高近一倍。随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、集成化的方向发展,高效率的开关稳压电源已得到越来越广泛的应用。利用电流型脉宽调制器UC3842芯片设计的电流制型脉宽调制开关稳压电源,克服了电压控制型脉宽调制开关稳压电源频响慢、电压调整率和负载调整率低的缺点,电路结构简单,成本低、体积小、易实现。该稳压电源是目前实用和理想的稳压电源,具有很大的发展前景。

根据要求,本次设计控制电路形式为反激式,单端反激式电路比正激式开关电源少用一个大储能滤波电感以及一个续流二极管,因此其体积小,且成本低。此电源设计要采用的是反激式的开关管连接方式,并且开关电源的触发方式是它激式。设计采用了UC3842作为PWM控制电路。

电源开关频率的选择决定了变换器如开关损耗、门极驱动损耗、输出整流管的损耗会越来越突出,对磁性材料的选择和参数设计的要求也会越苛刻。在本电的特性。开关频率越高,变压器、电感器的体积越小,电路的动态响应也越好。但随着频率的提高,诸源中,选定工作频率为100 KHz。

多路输出开关电源设计

多路输出开关电源设计 安森美半导体公司的NCP1252是一款电流模式PWM控制器,它使用内部固定的定时器,可以不依赖于辅助电压来检测输出过载。文章介绍了基于NCP1252芯片的多路输出开关电源设计,分析了开关电源的工作原理,给出了设计步骤。该开关电源可提供软起动、短路保护、过流保护等功能,并将该电源成功用于某型雷达收发机,验证了分析、设计的有效性。 标签:NCP1252芯片;多路输出;开关电源 Abstract:The ON Semiconductor’s NCP1252 is a current-mode PWM controller that uses internally fixed timers to detect output overload without relying on auxiliary voltages. This paper introduces the design of multi-output switching power supply based on NCP1252 chip,analyzes the working principle of switch power supply,and gives the design steps. The switching power supply can provide soft start,short circuit protection,over-current protection and so on. The power supply has been successfully used in a certain type of radar transceiver,which verifies the effectiveness of the analysis and design. Keywords:NCP1252 chip;multiplex output;switching power supply 引言 电源如同人的心脏,为各种电子设备提供电能,性能优劣直接影响到整个电子系统的稳定性。目前常用的直流稳压电源根据调整管的工作状态分为线性电源和开关电源两大类,线性电源应用较早,电路简单,元器件少,但随着输出功率的增加,工频变压器的体积不断增大,而且,其效率低、散热难;开关电源的功率器件工作在高频开关状态,自身功耗小,转化效率高,此外开关电源还具有体积小、重量轻、稳压范围宽等优点,其不足之处就是电路复杂,对变压器要求很高。由于开关电源优越的性能,势必将得到越来越广泛的应用。 本文围绕NCP1252芯片设计了一种多路输出开关电源,并应用在某型号导航雷达的收发机内,效率高,稳定性好。 1 NCP1252内部结构与功能特点 NCP1252是一款应用于正激和反激式的电流模式PWM控制器,适合于计算机ATX电源、交流适配器及其它任何要求低待机能耗的应用。它集成固定的定时器,可在不依赖辅助电源时检测输出过载;具有跳周期模式,能够空载工作。此外还可调节开关频率,增强设计的灵活性;带有闩锁过流保护功能,能够承受暂时的过载。其它特性包括可调节软启动时长、内部斜坡补偿、自恢复输入欠压检测等。

开关电源常见四大故障及检修方法

开关电源常见四大故障及检修方法 开关电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于深圳开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 1. 无输出,保险管正常这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 2. 保险烧或炸主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险

烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 3. 有输出电压,但输出电压过高这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4. 输出电压过低除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a. 开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b. 输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c. 开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能力下降。 12v开关电源维修分析 一.开关电源不启振,出现这种情况,我们首先要查看开关频率是否正确、保护电路是否封锁、电压反馈电路、电流反馈电路又没问题以及开关管是否击穿等。

1203P60 PWM开关电源芯片

NCP1203 PWM Current?Mode Controller for Universal Off?Line Supplies Featuring Standby and Short Circuit Protection Housed in SOIC?8 or PDIP?8 package, the NCP1203 represents a major leap toward ultra?compact Switchmode Power Supplies and represents an excellent candidate to replace the UC384X devices. Due to its proprietary SMARTMOS t Very High V oltage Technology, the circuit allows the implementation of complete off?line AC?DC adapters, battery charger and a high?power SMPS with few external components. With an internal structure operating at a fixed 40 kHz, 60 kHz or 100 kHz switching frequency, the controller features a high?voltage startup FET which ensures a clean and loss?less startup sequence. Its current?mode control naturally provides good audio?susceptibility and inherent pulse?by?pulse control. When the current setpoint falls below a given value, e.g. the output power demand diminishes, the IC automatically enters the so?called skip cycle mode and provides improved efficiency at light loads while offering excellent performance in standby conditions. Because this occurs at a user adjustable low peak current, no acoustic noise takes place. The NCP1203 also includes an efficient protective circuitry which, in presence of an output over load condition, disables the output pulses while the device enters a safe burst mode, trying to restart. Once the default has gone, the device auto?recovers. Finally, a temperature shutdown with hysteresis helps building safe and robust power supplies. Features ?Pb?Free Packages are Available ?High?V oltage Startup Current Source ?Auto?Recovery Internal Output Short?Circuit Protection ?Extremely Low No?Load Standby Power ?Current?Mode with Adjustable Skip?Cycle Capability ?Internal Leading Edge Blanking ?250 mA Peak Current Capability ?Internally Fixed Frequency at 40 kHz, 60 kHz and 100 kHz ?Direct Optocoupler Connection ?Undervoltage Lockout at 7.8 V Typical ?SPICE Models Available for TRANsient and AC Analysis ?Pin to Pin Compatible with NCP1200 Applications ?AC?DC Adapters for Notebooks, etc. ?Offline Battery Chargers ?Auxiliary Power Supplies (USB, Appliances, TVs, etc.) SOIC?8 D1, D2 SUFFIX CASE 751 1 MARKING DIAGRAMS PIN CONNECTIONS PDIP?8 N SUFFIX CASE 626 8 xx= Specific Device Code A= Assembly Location WL, L= Wafer Lot Y, YY= Year W, WW= Work Week Adj HV FB CS GND NC V CC Drv (Top View) xxxxxxxxx AWL YYWW 1 8 See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet. ORDERING INFORMATION https://www.doczj.com/doc/7d7867744.html, 查询1203P60供应商

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

多路输出开关电源的设计及应用原则

多路输出开关电源的设计及应用原则 引言 对现代电子系统,即便是最简单的由单片机和单一I/O接口电路所组成的电子系统来讲,其电源电压一般也要由+5V,±15V或±12V等多路组成,而对较复杂的电子系统来讲,实际用到的电源电压就更多了。目前主要由下述诸多电压组合而成:+3.3V,+5V,±15V,±12V,-5 V,±9V,+18V,+24V、+27V、±60V、+135V、+300V、-200V、+600V、+1800V、+3000V、+5000V(包括一个系统中需求多个上述相同电压供电电源)等。不同的电子系统,不仅对上述各种电压组合有严格的要求,而且对这些电源电压的诸多电特性也有较严格的要求,如电压精度,电压的负载能力(输出电流),电压的纹波和噪声,起动延迟,上升时间,恢复时间,电压过冲,断电延迟时间,跨步负载响应,跨步线性响应,交叉调整率,交叉干扰等。 2多路输出电源 对于电源应用者来讲,一般都希望其所选择的电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误。仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。

从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux2等辅电路都处在失控之中。从控制理论可知,只有Vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说Vp在很大程度上只取决于基准电压和采样比例。对Vaux1、Vaux2而言,其精度主要依赖以下几个方面: 1)T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np3 2)辅助电路的负载情况。 3)主电路的负载情况。 注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了。 在以上3点中,作为一个具体的开关电源变换器,主变压器匝比已经设定,所以影响辅助电路输出电压精度最大的因素为主电路和辅电路的负载情况。在开关电源产品中,有专门的技术指标说明和规范电源的这一特性,即就是交叉负载调整率。为了更好地讲述这一问题,先将交叉负载调整率的测量和计算方法讲述如下。 2.1电源变换器多路输出交叉负载调整率测量与计算步骤 1)测试仪表及设备连接如图2所示。

解析开关电源电压输出低的原因和检修方法

解析开关电源电压输出 低的原因和检修方法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

解析开关电源电压输出低的原因和 检修方法 1、开关电源电压输出低的原因 (1)220V交流电压输入和整流滤波电路对开关管提供的工作电压不够,超出脉宽调整电路控制范围。 (2)负载电路存在过流引起开关电源负载加重而导致输出电压下降。 (3)开/关机切换错误,行扫描电路刚开始工作瞬间,开关电源即处于待机状态,此类故障适用于无预备电源的机器,CPu电源取自同一个电源,非副电源提供。 (4)开/关机接口电路末端因故障处于开机与待机之间的状态,从而导致开关电源输出电压低于正常值高于待机值。 (5)保护电路末端因故障进入导通状态,使电源进入弱振状态,引起开关电源输出电压下降。 (6)整流输出电路中二极管和滤波电容、限流电阻损坏引起输出电压低。 (7)脉宽调制电路故障,不能对开关电源输出电压的变化作出正确的响应,对开关管基极电压调整方向不对,从而造成开关电源输出电压低。 (8)正反馈电路中的正反馈电阻值变化,续流二极管性能变质或恒流源故障,使正反馈量不足,导致振荡周期变长,振荡频率下降,从而引起开关电源输出电压低。 (9)它激式开关电源因未得到行逆程脉冲而工作于低频状态,造成输出电压低。 2、判断故障的方法与步骤 从上述分析的原因看出,引起电压低的原因涉及到了开关电源自身的各个部分和与开关电源相关的所有电路,在检修时应先缩小故障范围。 (1)先测开关管c极电压,确认开关管供电正常。 (2)根据开关电源各个输出端电压判断故障。 开关电源有的输出端电压正常,有的低于正常值。故障在输出电压低的这个整流输出电路,应对电路中的限流电阻、整流二极管、滤波电容进行检查代换,若限流电阻发烫,说明负载过流,查负载。 开关电源各路输出均低。这种情况说明负载和整流输出电路均正常,故障在开关电源的正反馈电路、脉宽调整、开/待机电路、保护电路。 输出电压有的下降比例大,有的输出电压下降比例小。测量结果说明故障在输出电压下降比例大的电路。此时可断开此路负载,如果断开的是行电路,应接假负载。在断开负载后,再测开关电源各输出端电压,若恢复正常,可判断所断电路的负载有过流现象。若仍不正常,说明故障在该整流滤波电路。 3、断开主负载、接上灯泡,判断是否负载故障

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

开关电源多路输出技术

开关电源多路输出技术控制方法综述 技术分类:电源技术 | 2009-07-20 华南理工大学文露谢运祥 0 引言 多路输出技术中一个重要性能指标就是负载交叉调整率的问题,我们通常采用变压器副边多个绕组的方法来实现多路输出。但是这种方法一般只采样一路主输出进行反馈调节控制,因此交叉调整性能较差。改善多路输出开关电源交叉调整率的方法可分为无源和有源两类。本文首先介绍了几种传统的多路输出技术,并对其进行了简单的分析和总结。重点介绍了两种新的多路输出技术:恒流源实现多路输出和PWM—PD多路输出技术。结合典型拓扑探讨了PWM—PD技术的应用前景。 l 传统的多路输出方法 1)无源调节 无源调节通过在次级增加一些简单的无源器件可以使负载交叉调整率得到一定的改善。无源调节包括耦合电感调节控制和加权电压反馈调节控制两种,如图1所示。前者通过将输出电感L1、L2绕在同一磁芯上,相当于增大了滤波电感,使辅输出稳压,从而使负载交错性能得到一定改善。加权电压反馈调节同时检测反馈几路输出电压加权和到控制电路中,通过合理设计各路输出反馈电压的加权因子,调整各路输出电压。这两种方法都存在调节误差。但它们实现起来比较简单,不增加电路的复杂性,适用于对输出电压精度要求较低的场合。

2)有源调节 有源调节也可称为次级后置装置调节,即通过在变压器副边加入一级有源调节装置对次级整流电路进行调整来实现对辅输出电压的调整。以正激电路为例,图2给出了五种不同类型的次级后置装置调节方式,他们具有各自的优缺点。表l给出了不同类型调节方式在电路结构、效率、性价比、调整率以及应用场合等方面的特性比较。

2 新颖的多路输出技术 1)恒流源实现多路输出技术 传统的多路输出技术存在交叉调整率较差或者电路过于复杂等问题,恒流源多路输出技术通过对几个控制开关的简单控制可很好的实现对不同负载的供电。 (1)工作原理 图3给出了恒流源实现多路输出的基本工作原理。如图所示,多个平行负载分别通过一个输出控制开关接在恒流源的后级,采用分时复用(TM)的方法,每个输出开关在一个开关周期内只有一段间隔时间与电流源连接,通过控制开关的开通和关断时间可以控制每路输出电容上的电压值,实现多路输出电压。该恒流源可以用平均电流控制型Buck,Buck—Boost,SEPIC,反激等单电感PWM DC—DC 变换器来实现,如果输入输出需要电气隔离则可用正激变换器拓扑。根据不同的电路拓扑,电路可工作在断续(DCM)模式,也可工作在连续 (CCM)模式,还能实现输出的双极性。

开关电源测试详细解说

开关电源测试详细解说当验证电源供应器的品质时,下列为一般的功能性测试项目,详细说明如下:一、功能(Functions)测试: ?输出电压调整(Hold-on Voltage Adjust) ?电源调整率(Line Regulation) ?负载调整率(Load Regulation) ?综合调整率(Conmine Regulation) ?输出涟波及杂讯(Output Ripple & Noise, RARD) ?输入功率及效率(Input Power, Efficiency) ?动态负载或暂态负载(Dynamic or Transient Response) ?电源良好/失效(Power Good/Fail)时间 ?起动(Set-Up)及保持(Hold-Up)时间 常规功能(Functions)测试 A. 输出电压调整: 当制造开关电源时,第一个测试步骤为将输出电压调整至规格范围内。此步骤完成后才能确保后续的规格能够符合。通常,当调整输出电压时,将输入交流电压设定为正常值(115Vac或230Vac),并且将输出电流设定为正常值或满载电流,然后以数字电压表测量电源供应器的输出电压值并调整其电位器(VR)直到电压读值位于要求之范围内。 B. 电源调整率: 电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。此项测试系用来验证电源供应器在最恶劣之电源电压环境下,如夏天之中午(因气温高,用电需求量最大)其电源电压最低;又如冬天之晚上(因气温低,用电需求量最小)其电源电压最高。在前述之两个极端下验证电源供应器之输出电源之稳定度是否合乎需求之规格。 为精确测量电源调整率,需要下列之设备: ?能提供可变电压能力的电源,至少能提供待测电源供应器的最低到最高之输入电压范围,(KIKUSUIPCR 系列电源能提供0--300VAC 5-1000Hz 的稳定交流电源,0---400V DC的直流电源)。 ?一个均方根值交流电压表来测量输入电源电压,众多的数字功率计能精确计量V A WPF。 ?一个精密直流电压表,具备至少高于待测物调整率十倍以上,一般应用5位以上高精度数字表。 ?连接至待测物输出的可变电子负载。 *测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,分别于低输入电压(Min),正常输入电压(Normal),及高输入电压(Max)下测量并记录其输出电压值。 电源调整率通常以一正常之固定负载(NominalLoad)下,由输入电压变化所造成其输出电压偏差率

电气自动化+PWM型开关电源电路设计

1 引言 当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 1.1 什么是开关电源 电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是 直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环 节的则称开关电源。 1.2 开关电源基本工作原理 开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。 开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。 图1-1 PWM型开关电源原理框图

一种多路输出开关电源控制器

一种多路输出开关电源控制器 [日期:2006-11-17] 来源:电源技术应用作者:瑞士商升特股份有限公司上海代表处周琛[字体:大中小] O 引言 SC2463是一个高性能多输出降压转换控制器。它可以被配置用在不同的电源管理应用中,比如有多路输出电压需求的ADSL电源,需要正负电压的混合信号电源,电脑调制解调器电源,基站电源,通用的多路输出电压的电源系统。 l 描述 SC2463提供了4.5V至30V的宽输入电压范围,两个可设置达700 kHz开关频率的开关转换器,能提供高达15A输出电流及低至0.5V输出电压。它还提供了两个正输出电压线性调节器。芯片TSS0P一28小封装极大地减小了线路板面积。 SC2463两个异相降压开关转换器可以减小输入电流纹波,允许使用更少的输入电容。高达700kHz的开关频率可以减少输出电压纹波并且降低噪音,同时还可以减小输出电感和电容的尺寸。其它的特性还包括软启动,电源正常指示和频率同步。如图l所示,电源VIN,PVCC和AVCC都给SC2463供电。其中AVCC为芯片内部振荡器、开关、低差压稳压器和电源正常电路提供偏置电压。PVCC用来驱动低端场效应管。当VIN高于14V时,需串联一个1100kΩ的电阻或一个外部PNP晶体管作为线性调节器,给AVC C和PVCC提供偏置电压。SC2463利用一个内部电流源和一个连在ILIM和AGND之间的外部电阻来调节通过场效应管的电流限流值。

如图2所示,SC2463启动时由一个5μA电流源给软启动管脚SS充电。当管脚SS电压达到O.5 V时,第一个开关转换器开始启动,误差放大器的参考电压随软启动信号开始上升。当管脚ss电压达到3 V时.将立刻被下拉到大约0 7V,此时第二个开关转换器开始按照第一开关转换器的形式进行软启动。当管脚SS电压第二次到达3V时,便会被第二次下拉至大约O.7V,此时两个正向LD0被启动。正向LDO的参考电压随管脚SS电压开始上升。管脚SS将会上拉至电源电压AVCC。此时间由管脚SS上的软启动电容值(C5)来控制。如果管脚SS被外部信号下拉至0.5 V以下,SC2463则不能工作。电源正常信号输出(POK)用来监测开关转换器中误差放大器的反馈电压(FB),如果这电压高于0.55V或低于O.45V,管脚POK便会被拉低,并且保持低态直到启动 结束。低端栅极驱动器由PVCC供电并提供1A的峰值电流。高端栅极驱动也能提供1A峰值电流。

多路输出开关电源

课程设计说明书 程设计名称:电子技术课程设计 题目:多路输出开关电源 学生姓名: 专业: 学号: 指导教师: 日期:2010年 7 月 2 日 成绩

多路开关输出电源 摘要:在我们的身边,经常接触到很多关于电子线路的设备。在电子电路及设备中,一般都需要稳定的直流电源供电。所以直流稳压电源是电子系统中经常应用到的。本设计将通过多路输出直流稳压电源是设计说明稳压电路的工作原理和稳压的电源的指标及其测试方式。在电子线路设计中通常都需要电压稳定的直流电源供电,其往往采用交流电源经过转换得到的,其性能的好坏直接影响整个电子设备,一般电源主要由电源变压器, 整流电路,滤波电路和稳压电路四部分组成。一般地,开关电源大致由输入电路、变换器、控制电路、输出电路四个主体组成。 关键词:直流稳压电源, 电源变压器,整流电路,滤波电路,稳压电路。 Abstract:Around us, often exposed to a lot of equipment on the electronic circuit. Electronic circuits and devices, generally requires a stable DC power supply. Therefore, DC power supply is often applied to the electronic system's. This design will be through a multi-output DC power supply regulator circuit is designed to explain the principle and regulator of the power indicator and test methods. In the design of electronic circuits requiring voltage stability is usually DC power supply, which often use AC power through transform be of, the direct impact of their affect all electronic equipment, general power main You power transformer, rectifier, analog filter and regulator circuit composed of four parts. Keywords:DC regulated power supply,power transform,rectifying circuit,filter circuit,voltage stabilizing circuit.

开关电源维修技巧

开关电源的检修技巧 开关电源中保险熔断的直接原因:开关管\电源厚模块\整流二极管击穿\100uf/400v大电容击穿漏电,消磁电阻内部碎裂. 开关电源各输出端始终无电压输出的最常见原因:交流220v整流滤波电路中的保险电阻开路;开关管基极到100uf/400v大滤波电容正极之间的电阻开路. 开关电源只在开机瞬间有小电压输出的常见原因:行输出管击穿,开关电源中开关变压器一左的2.2uf~100uf电解电容失效`漏电 开关电源输出电压低的最常见原因:行输出变压器局部短路`脉宽调制电路中的三极管和二极管击穿`漏电`光耦合器件中的三极管漏电等. 造成光栅与图象S扭曲和有两条垂直方向移动黑带的原因:100UF?400V大滤波电容失效和容量下降. 造成光栅局部有彩斑的和图象局部彩色不对的原因:是开关电源交流220V输入电路中的消兹电阻开路. 开关电源无输出的检修技巧 1开关电源始终无电压输出的原因 开关电源始终无电压输出是指开关电源各输出端,在按电源开关开机后始终为0V,这种情况是由于开关电源未产生震荡所致.进一步证实的方法是测开关电源100UF/400V电容关机后的电压,若300V之后慢慢下降,则说明开关电源未产生振荡.开关电源未产生振荡的原因有: (1)开关管集电极未得到足够的工作电压 (2)开关管基极未得到启动电压和相关电路漏电 (3)开关管正反馈元件失效 2判断故障的方法和步骤 检修这类故障的首要任务是判断鼓障在上述三个部位中的哪个部位,具体方法是测开关管集电极,基极电压,可能有以下几种情况: (1)开关管集电极电压为0V和低于市电1.4倍,开关管没有正常的工作电压,如果有1.4倍的 电压,说明开关管集电极具备了正常的工作电压,说明AC220V及整流滤波电路工作正常. (2)开关管的基极电压为0V(包括开机瞬间)这种情况说明启动电路对开关管基极未提供启 动(导通)电压,或基极与发射极之间相关元件击穿,应对启动电路和开关管发射极及相关元件进行检查,若电压为0.6~0.7(包括开几瞬间),说明启动电路和开关管发射极元件正常,若在0.7V以上说明启动电路正常,但开关管发射结或其元件断路或阻值变大. (3)开关管具备导通条件:开关管基极电压为0.6~0.7V,集电极电压大于250V,说明开关管具 备了工作条件,故障在正反馈电路,包括正反馈电阻,电容,续流二极管及开关变压器正反馈绕组及其之间的连接应制板. 开关电源瞬间有电压出检修技巧 1瞬间电压输出故障原因 这种故障在按下启动开关的瞬间,开关电源某个或各个输出端电压有一个小的电压输出,然后降为0V,这种情况说明开关电源在加电的初始产生了振荡,但后由于过压,过流保护引起停振,或开关机接口电路加电初始为开机状态,但随CPU清零的结束而转入待机状态,引发这种情况的原因有: (1)开关电源因故输出电压比标准值高10V而引起过压保护 (2)负载过流引起保护动作

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

多路输出开关电源的设计及应用原则

多路输出开关电源的设计及应用原则 王其岗,李莹 (华天微电子有限责任公司,甘肃天水741000) 摘要:比较了诸多国内外多路输出电源的设计思想,提出并总结了现今多路输出电源的设计原则。 关键词:开关电源;多路输出;设计原则 1引言 对现代电子系统,即便是最简单的由单片机和单一I/O接口电路所组成的电子系统来讲,其电源电压一般也要由+5V,±15V或±12V等多路组成,而对较复杂的电子系统来讲,实际用到的电源电压就更多了。目前主要由下述诸多电压组合而成:+3.3V,+5V,±15V,±12V,-5V,±9V,+18V,+24V、+27V、±60V、+135V、+300V、-200V、+600V、+1800V、+3000V、+5000V(包括一个系统中需求多个上述相同电压供电电源)等。不同的电子系统,不仅对上述各种电压组合有严格的要求,而且对这些电源电压的诸多电特性也有较严格的要求,如电压精度,电压的负载能力(输出电流),电压的纹波和噪声,起动延迟,上升时间,恢复时间,电压过冲,断电延迟时间,跨步负载响应,跨步线性响应,交叉调整率,交叉干扰等。 2多路输出电源 对于电源应用者来讲,一般都希望其所选择的电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误。仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。 从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux2等辅电路都处在失控之中。从控制理论可知,只有Vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说Vp在很大程度上只取决于基准电压和采样比例。对Vaux1,Vaux2而言,其精度主要依赖以下几个方面: 1)T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np3 2)辅助电路的负载情况。 3)主电路的负载情况。 注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了。

开关电源常见故障维修方法

开关电源常见故障及维修方法: 1.保险烧或炸 主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 2.无输出,保险管正常 这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 3.有输出电压,但输出电压过高 这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4.输出电压过低 除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a.开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该 断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断 开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b.输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c.开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能 力下降。 d.开关变压器不良,不但造成输出电压下降,还会造成开关管激励不足从而屡损开关 管 e.300V滤波电容不良,造成电源带负载能力差,一接负载输出电压便会下降。

PWM型开关电源电路设计

1 引言 当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 1.1 什么是开关电源 电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是 直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环 节的则称开关电源。 1.2 开关电源基本工作原理 开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。 开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。

相关主题
文本预览
相关文档 最新文档