当前位置:文档之家› 多路输出式单片开关电源的电路设计

多路输出式单片开关电源的电路设计

多路输出式单片开关电源的电路设计
多路输出式单片开关电源的电路设计

多路输出开关电源设计

多路输出开关电源设计 安森美半导体公司的NCP1252是一款电流模式PWM控制器,它使用内部固定的定时器,可以不依赖于辅助电压来检测输出过载。文章介绍了基于NCP1252芯片的多路输出开关电源设计,分析了开关电源的工作原理,给出了设计步骤。该开关电源可提供软起动、短路保护、过流保护等功能,并将该电源成功用于某型雷达收发机,验证了分析、设计的有效性。 标签:NCP1252芯片;多路输出;开关电源 Abstract:The ON Semiconductor’s NCP1252 is a current-mode PWM controller that uses internally fixed timers to detect output overload without relying on auxiliary voltages. This paper introduces the design of multi-output switching power supply based on NCP1252 chip,analyzes the working principle of switch power supply,and gives the design steps. The switching power supply can provide soft start,short circuit protection,over-current protection and so on. The power supply has been successfully used in a certain type of radar transceiver,which verifies the effectiveness of the analysis and design. Keywords:NCP1252 chip;multiplex output;switching power supply 引言 电源如同人的心脏,为各种电子设备提供电能,性能优劣直接影响到整个电子系统的稳定性。目前常用的直流稳压电源根据调整管的工作状态分为线性电源和开关电源两大类,线性电源应用较早,电路简单,元器件少,但随着输出功率的增加,工频变压器的体积不断增大,而且,其效率低、散热难;开关电源的功率器件工作在高频开关状态,自身功耗小,转化效率高,此外开关电源还具有体积小、重量轻、稳压范围宽等优点,其不足之处就是电路复杂,对变压器要求很高。由于开关电源优越的性能,势必将得到越来越广泛的应用。 本文围绕NCP1252芯片设计了一种多路输出开关电源,并应用在某型号导航雷达的收发机内,效率高,稳定性好。 1 NCP1252内部结构与功能特点 NCP1252是一款应用于正激和反激式的电流模式PWM控制器,适合于计算机ATX电源、交流适配器及其它任何要求低待机能耗的应用。它集成固定的定时器,可在不依赖辅助电源时检测输出过载;具有跳周期模式,能够空载工作。此外还可调节开关频率,增强设计的灵活性;带有闩锁过流保护功能,能够承受暂时的过载。其它特性包括可调节软启动时长、内部斜坡补偿、自恢复输入欠压检测等。

基于单片机的开关电源的设计

目录 引言 ................................................................................................ 错误!未定义书签。 1 概述 .......................................................................................... 错误!未定义书签。 1.1 课题来源及意义 (1) 1.2 课题基本要求 (2) 1.3 相关背景介绍 (2) 2 基于单片机的数控直流电源方案设计 (2) 2.1 方案设计 (3) 2.1.1 方案1:开关稳压电源 (3) 2.1.2 方案2:线性稳压电源 ........................................................... 错误!未定义书签。 2.2 方案论证 ................................................................................... 错误!未定义书签。 2.2.1方案一分析............................................................................. 错误!未定义书签。 2.2.2方案二分析 (5) 3.硬件电路设计 (5) 3.1 主电源电路设计 (6) 3.1.1 变压器的选择 (6) 3.1.2 整流滤波电路 (7) 3.1.3 稳压调压电路 (8) 3.1.4 扩流电路 (8) 3.2 副电源电路设计 (9) 3.3 控制部分电路设计 (10) 3.3.1 A/D及D/A转换电路 (11) 3.3.2 校正部分电路......................................................................... 错误!未定义书签。 3.3.3 键盘及数码管显示电路 .......................................................... 错误!未定义书签。 4 软件设计.................................................................................. 错误!未定义书签。7 4.1 软件介绍 ................................................................................. 错误!未定义书签。7 4.1.1 Protel 99 SE....................................................................... 错误!未定义书签。8 4.1.2 Keil uVision2....................................................................... 错误!未定义书签。 4.2 编程思想 ................................................................................... 错误!未定义书签。 4.2.1 键盘和数码管扫描子程序 (19) 4.2.2 ADC0809转换子程序............................................................... 错误!未定义书签。 4.2.3 DAC0832转换子程序 (21) 4.2.4中断定时处理程序设计 (21) 4.2.5数码显示子程序 (22)

开关电源常见四大故障及检修方法

开关电源常见四大故障及检修方法 开关电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于深圳开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 1. 无输出,保险管正常这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 2. 保险烧或炸主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险

烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 3. 有输出电压,但输出电压过高这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4. 输出电压过低除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a. 开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b. 输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c. 开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能力下降。 12v开关电源维修分析 一.开关电源不启振,出现这种情况,我们首先要查看开关频率是否正确、保护电路是否封锁、电压反馈电路、电流反馈电路又没问题以及开关管是否击穿等。

RC缓冲电路snubber设计原理

RC 缓冲 snubber 设计 Snubber 用在开关之间,图 4 显示了 RC snubber 的结构图,用 RC 电路可以降低管子的峰值电压及关断损耗和降低电流振铃现象。我们可以轻松选择一个snubber Rs , Cs 网络,但是我们需要优化设计以达到更好的缓冲效果 快速 snubber 设计,为了达到 Cs 〉 Cp ,一个比较好的选择是 Cs 选择两倍大小的 Cp ,也就是两倍大小的开关管寄生电容及估算出来的 LAYOUT 布板电容,对于 Rs ,我们选择的标准是 Rs=Eo/Io ,这表示通过电流流向 Rs 的所产生的电压不能比输出电压还大。消耗在 Rs 上的电压大小我们可以通过储存在Cs 上的能量来估计。下式表示了储存在电容上的能量。 当电容 Cs 充放电的过程中,能量在电阻 Rs 上消耗,而这个过程中在一个给定的开关频率下平均的功率损耗如下所得: 因为振铃的发生,实际的功耗比上式要稍微大一些。 如下将用实例来演示一遍以上的简化设计步骤,现在用 IRF740 ,额定工作电流时 Io=5A , Eo=160V , IRF740 的 Coss=170pF ,布板寄生电容大概 40pF ,两倍 Cp 值大概 420pF 左右,我们选择一个 500V 的 mike snubber 电容,标准的容值有 390 和 470pF ,我们选择比价接近的 390pF , Rs=Eo/Io=32W ,开关频率 fs 设为 100kHz 的话, Pdiss 大概为 1W 左右,选择一个寄生电感非常小的 2 W 的碳膜电阻作为 Rs 。 如果这种简化而实际有效的设计方法还不能有效减小峰值电压,那么我们可以增加 Cs ,或则使用如下的优化设计方法。 优化的 RC 滤波器设计 在一些情况下必须降低峰值电压及功率损耗很严重,我们可以借鉴以下的优化snubber 设计方法,以下是博士在一篇文章提出的经典的 Rcsnubber 优化设计方法,如下讨论其精粹的设计步骤。 在以下讨论中我们需要如下表的定义:

多路输出开关电源的设计及应用原则

多路输出开关电源的设计及应用原则 引言 对现代电子系统,即便是最简单的由单片机和单一I/O接口电路所组成的电子系统来讲,其电源电压一般也要由+5V,±15V或±12V等多路组成,而对较复杂的电子系统来讲,实际用到的电源电压就更多了。目前主要由下述诸多电压组合而成:+3.3V,+5V,±15V,±12V,-5 V,±9V,+18V,+24V、+27V、±60V、+135V、+300V、-200V、+600V、+1800V、+3000V、+5000V(包括一个系统中需求多个上述相同电压供电电源)等。不同的电子系统,不仅对上述各种电压组合有严格的要求,而且对这些电源电压的诸多电特性也有较严格的要求,如电压精度,电压的负载能力(输出电流),电压的纹波和噪声,起动延迟,上升时间,恢复时间,电压过冲,断电延迟时间,跨步负载响应,跨步线性响应,交叉调整率,交叉干扰等。 2多路输出电源 对于电源应用者来讲,一般都希望其所选择的电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误。仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。

从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux2等辅电路都处在失控之中。从控制理论可知,只有Vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说Vp在很大程度上只取决于基准电压和采样比例。对Vaux1、Vaux2而言,其精度主要依赖以下几个方面: 1)T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np3 2)辅助电路的负载情况。 3)主电路的负载情况。 注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了。 在以上3点中,作为一个具体的开关电源变换器,主变压器匝比已经设定,所以影响辅助电路输出电压精度最大的因素为主电路和辅电路的负载情况。在开关电源产品中,有专门的技术指标说明和规范电源的这一特性,即就是交叉负载调整率。为了更好地讲述这一问题,先将交叉负载调整率的测量和计算方法讲述如下。 2.1电源变换器多路输出交叉负载调整率测量与计算步骤 1)测试仪表及设备连接如图2所示。

单片开关电源及PCB设计毕业论文

单片开关电源及PCB设计毕业论文 目录 单片开关电源及PCB设计______________________________________________ I The design of Single-chip Switching Power Supply and it’s PCB__ I Abstract _______________________________________________________________ I 目录________________________________________________________________ 3第1章绪论_________________________________________________________ 5 1.1 概述 _______________________________________________________________ 5 1.2 开关电源的发展简况__________________________________________________ 5 1.3 开关电源的发展趋势__________________________________________________ 6第2章方案论证____________________________________________________ 8 2.1 概述 _______________________________________________________________ 8 2.2 系统总体框图________________________________________________________ 8 2.3 工作原理____________________________________________________________ 9 2.3.1 TOPSwitch-II的结构及工作原理____________________________________________ 9 2.3.2 单片开关电源电路基本原理_______________________________________________ 11第3章单片开关电源的设计_________________________________________ 13 3.1 概述 ______________________________________________________________ 13

解析开关电源电压输出低的原因和检修方法

解析开关电源电压输出 低的原因和检修方法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

解析开关电源电压输出低的原因和 检修方法 1、开关电源电压输出低的原因 (1)220V交流电压输入和整流滤波电路对开关管提供的工作电压不够,超出脉宽调整电路控制范围。 (2)负载电路存在过流引起开关电源负载加重而导致输出电压下降。 (3)开/关机切换错误,行扫描电路刚开始工作瞬间,开关电源即处于待机状态,此类故障适用于无预备电源的机器,CPu电源取自同一个电源,非副电源提供。 (4)开/关机接口电路末端因故障处于开机与待机之间的状态,从而导致开关电源输出电压低于正常值高于待机值。 (5)保护电路末端因故障进入导通状态,使电源进入弱振状态,引起开关电源输出电压下降。 (6)整流输出电路中二极管和滤波电容、限流电阻损坏引起输出电压低。 (7)脉宽调制电路故障,不能对开关电源输出电压的变化作出正确的响应,对开关管基极电压调整方向不对,从而造成开关电源输出电压低。 (8)正反馈电路中的正反馈电阻值变化,续流二极管性能变质或恒流源故障,使正反馈量不足,导致振荡周期变长,振荡频率下降,从而引起开关电源输出电压低。 (9)它激式开关电源因未得到行逆程脉冲而工作于低频状态,造成输出电压低。 2、判断故障的方法与步骤 从上述分析的原因看出,引起电压低的原因涉及到了开关电源自身的各个部分和与开关电源相关的所有电路,在检修时应先缩小故障范围。 (1)先测开关管c极电压,确认开关管供电正常。 (2)根据开关电源各个输出端电压判断故障。 开关电源有的输出端电压正常,有的低于正常值。故障在输出电压低的这个整流输出电路,应对电路中的限流电阻、整流二极管、滤波电容进行检查代换,若限流电阻发烫,说明负载过流,查负载。 开关电源各路输出均低。这种情况说明负载和整流输出电路均正常,故障在开关电源的正反馈电路、脉宽调整、开/待机电路、保护电路。 输出电压有的下降比例大,有的输出电压下降比例小。测量结果说明故障在输出电压下降比例大的电路。此时可断开此路负载,如果断开的是行电路,应接假负载。在断开负载后,再测开关电源各输出端电压,若恢复正常,可判断所断电路的负载有过流现象。若仍不正常,说明故障在该整流滤波电路。 3、断开主负载、接上灯泡,判断是否负载故障

300w开关电源设计(图纸)

TND313/D Rev 3, Sep-11 High-Efficiency 305 W ATX Reference Design Documentation Package ? 2011 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this reference design documentation package “AS IS” and the recipient assumes all risk associated with the use and/or commercialization of this design package. No licenses to ON Semiconductor’s or any third party’s Intellectual Property is conveyed by the transfer of this documentation. This reference design documentation package is provided only to assist the customers in evaluation and feasibility assessment of the reference design. The design intent is to demonstrate that efficiencies beyond 80% are achievable cost effectively utilizing ON Semiconductor provided ICs and discrete components in conjunction with other inexpensive components. It is expected that users may make further refinements to meet specific performance goals.

开关电源多路输出技术

开关电源多路输出技术控制方法综述 技术分类:电源技术 | 2009-07-20 华南理工大学文露谢运祥 0 引言 多路输出技术中一个重要性能指标就是负载交叉调整率的问题,我们通常采用变压器副边多个绕组的方法来实现多路输出。但是这种方法一般只采样一路主输出进行反馈调节控制,因此交叉调整性能较差。改善多路输出开关电源交叉调整率的方法可分为无源和有源两类。本文首先介绍了几种传统的多路输出技术,并对其进行了简单的分析和总结。重点介绍了两种新的多路输出技术:恒流源实现多路输出和PWM—PD多路输出技术。结合典型拓扑探讨了PWM—PD技术的应用前景。 l 传统的多路输出方法 1)无源调节 无源调节通过在次级增加一些简单的无源器件可以使负载交叉调整率得到一定的改善。无源调节包括耦合电感调节控制和加权电压反馈调节控制两种,如图1所示。前者通过将输出电感L1、L2绕在同一磁芯上,相当于增大了滤波电感,使辅输出稳压,从而使负载交错性能得到一定改善。加权电压反馈调节同时检测反馈几路输出电压加权和到控制电路中,通过合理设计各路输出反馈电压的加权因子,调整各路输出电压。这两种方法都存在调节误差。但它们实现起来比较简单,不增加电路的复杂性,适用于对输出电压精度要求较低的场合。

2)有源调节 有源调节也可称为次级后置装置调节,即通过在变压器副边加入一级有源调节装置对次级整流电路进行调整来实现对辅输出电压的调整。以正激电路为例,图2给出了五种不同类型的次级后置装置调节方式,他们具有各自的优缺点。表l给出了不同类型调节方式在电路结构、效率、性价比、调整率以及应用场合等方面的特性比较。

2 新颖的多路输出技术 1)恒流源实现多路输出技术 传统的多路输出技术存在交叉调整率较差或者电路过于复杂等问题,恒流源多路输出技术通过对几个控制开关的简单控制可很好的实现对不同负载的供电。 (1)工作原理 图3给出了恒流源实现多路输出的基本工作原理。如图所示,多个平行负载分别通过一个输出控制开关接在恒流源的后级,采用分时复用(TM)的方法,每个输出开关在一个开关周期内只有一段间隔时间与电流源连接,通过控制开关的开通和关断时间可以控制每路输出电容上的电压值,实现多路输出电压。该恒流源可以用平均电流控制型Buck,Buck—Boost,SEPIC,反激等单电感PWM DC—DC 变换器来实现,如果输入输出需要电气隔离则可用正激变换器拓扑。根据不同的电路拓扑,电路可工作在断续(DCM)模式,也可工作在连续 (CCM)模式,还能实现输出的双极性。

开关电源测试详细解说

开关电源测试详细解说当验证电源供应器的品质时,下列为一般的功能性测试项目,详细说明如下:一、功能(Functions)测试: ?输出电压调整(Hold-on Voltage Adjust) ?电源调整率(Line Regulation) ?负载调整率(Load Regulation) ?综合调整率(Conmine Regulation) ?输出涟波及杂讯(Output Ripple & Noise, RARD) ?输入功率及效率(Input Power, Efficiency) ?动态负载或暂态负载(Dynamic or Transient Response) ?电源良好/失效(Power Good/Fail)时间 ?起动(Set-Up)及保持(Hold-Up)时间 常规功能(Functions)测试 A. 输出电压调整: 当制造开关电源时,第一个测试步骤为将输出电压调整至规格范围内。此步骤完成后才能确保后续的规格能够符合。通常,当调整输出电压时,将输入交流电压设定为正常值(115Vac或230Vac),并且将输出电流设定为正常值或满载电流,然后以数字电压表测量电源供应器的输出电压值并调整其电位器(VR)直到电压读值位于要求之范围内。 B. 电源调整率: 电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。此项测试系用来验证电源供应器在最恶劣之电源电压环境下,如夏天之中午(因气温高,用电需求量最大)其电源电压最低;又如冬天之晚上(因气温低,用电需求量最小)其电源电压最高。在前述之两个极端下验证电源供应器之输出电源之稳定度是否合乎需求之规格。 为精确测量电源调整率,需要下列之设备: ?能提供可变电压能力的电源,至少能提供待测电源供应器的最低到最高之输入电压范围,(KIKUSUIPCR 系列电源能提供0--300VAC 5-1000Hz 的稳定交流电源,0---400V DC的直流电源)。 ?一个均方根值交流电压表来测量输入电源电压,众多的数字功率计能精确计量V A WPF。 ?一个精密直流电压表,具备至少高于待测物调整率十倍以上,一般应用5位以上高精度数字表。 ?连接至待测物输出的可变电子负载。 *测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,分别于低输入电压(Min),正常输入电压(Normal),及高输入电压(Max)下测量并记录其输出电压值。 电源调整率通常以一正常之固定负载(NominalLoad)下,由输入电压变化所造成其输出电压偏差率

RC缓冲电路snubber设计原理

RC缓冲电路snubber设计原理 RC 缓冲snubber 设计 Snubber 用在开关之间,图4 显示了RC snubber 的结构图,用RC 电路可以降低管子的峰值电压及关断损耗和降低电流振铃现象。我们可以轻松选择一个snubber Rs ,Cs 网络,但是我们需要优化设计以达到更好的缓冲效果 快速snubber 设计,为了达到Cs 〉Cp ,一个比较好的选择是Cs 选择两倍大小的Cp ,也就是两倍大小的开关管寄生电容及估算出来的LAYOUT 布板电容,对于Rs ,我们选择的标准是Rs=Eo/Io ,这表示通过电流流向Rs 的所产生的电压不能比输出电压还大。消耗在Rs 上的电压大小我们可以通过储存在Cs 上的能量来估计。下式表示了储存在电容上的能量。 当电容Cs 充放电的过程中,能量在电阻Rs 上消耗,而这个过程中在一个给定的开关频率下平均的功率损耗如下所得: 因为振铃的发生,实际的功耗比上式要稍微大一些。 如下将用实例来演示一遍以上的简化设计步骤,现在用IRF740 ,额定工作电流时Io=5A ,Eo=160V ,IRF740 的Coss=170pF ,布板寄生电容大概40pF ,两倍Cp 值大概420pF 左右,我们选择一个500V 的mike snubber 电容,标准的容值有390 和470pF ,我们选择比价接近的390pF , Rs=Eo/Io=32W ,开关频率fs 设为100kHz 的话,Pdiss 大概为1W 左右,选择一个寄生电感非常小的 2 W 的碳膜电阻作为Rs 。

如果这种简化而实际有效的设计方法还不能有效减小峰值电压,那么我们可以增加Cs ,或则使用如下的优化设计方法。 优化的RC 滤波器设计 在一些情况下必须降低峰值电压及功率损耗很严重,我们可以借鉴以下的优化snubber 设计方法,以下是W.McMurray 博士在一篇文章提出的经典的Rcsnubber 优化设计方法,如下讨论其精粹的设计步骤。 在以下讨论中我们需要如下表的定义:

一种多路输出开关电源控制器

一种多路输出开关电源控制器 [日期:2006-11-17] 来源:电源技术应用作者:瑞士商升特股份有限公司上海代表处周琛[字体:大中小] O 引言 SC2463是一个高性能多输出降压转换控制器。它可以被配置用在不同的电源管理应用中,比如有多路输出电压需求的ADSL电源,需要正负电压的混合信号电源,电脑调制解调器电源,基站电源,通用的多路输出电压的电源系统。 l 描述 SC2463提供了4.5V至30V的宽输入电压范围,两个可设置达700 kHz开关频率的开关转换器,能提供高达15A输出电流及低至0.5V输出电压。它还提供了两个正输出电压线性调节器。芯片TSS0P一28小封装极大地减小了线路板面积。 SC2463两个异相降压开关转换器可以减小输入电流纹波,允许使用更少的输入电容。高达700kHz的开关频率可以减少输出电压纹波并且降低噪音,同时还可以减小输出电感和电容的尺寸。其它的特性还包括软启动,电源正常指示和频率同步。如图l所示,电源VIN,PVCC和AVCC都给SC2463供电。其中AVCC为芯片内部振荡器、开关、低差压稳压器和电源正常电路提供偏置电压。PVCC用来驱动低端场效应管。当VIN高于14V时,需串联一个1100kΩ的电阻或一个外部PNP晶体管作为线性调节器,给AVC C和PVCC提供偏置电压。SC2463利用一个内部电流源和一个连在ILIM和AGND之间的外部电阻来调节通过场效应管的电流限流值。

如图2所示,SC2463启动时由一个5μA电流源给软启动管脚SS充电。当管脚SS电压达到O.5 V时,第一个开关转换器开始启动,误差放大器的参考电压随软启动信号开始上升。当管脚ss电压达到3 V时.将立刻被下拉到大约0 7V,此时第二个开关转换器开始按照第一开关转换器的形式进行软启动。当管脚SS电压第二次到达3V时,便会被第二次下拉至大约O.7V,此时两个正向LD0被启动。正向LDO的参考电压随管脚SS电压开始上升。管脚SS将会上拉至电源电压AVCC。此时间由管脚SS上的软启动电容值(C5)来控制。如果管脚SS被外部信号下拉至0.5 V以下,SC2463则不能工作。电源正常信号输出(POK)用来监测开关转换器中误差放大器的反馈电压(FB),如果这电压高于0.55V或低于O.45V,管脚POK便会被拉低,并且保持低态直到启动 结束。低端栅极驱动器由PVCC供电并提供1A的峰值电流。高端栅极驱动也能提供1A峰值电流。

基于单片机控制的开关电源及其设计

2.基于单片机控制的开关电源的可选设计方案 由单片机控制的开关电源, 从对电源输出的控制来说, 可以有三种控制方式, 因此, 可供选择的设计方案有三种: ( 1) 单片机输出一个电压( 经D/AC 芯片或PWM方式) , 用作开关电源的基准电压。这种方案仅仅是用单片机代替了原来开关电源的基准电压, 可以用按键设定电源的输出电压值, 单片机并没有加入电源的反馈环, 电源电路并没有什么改动。这种方式最简单。 ( 2) 单片机和开关电源专用PWM芯片相结合。此方案利用单片机扩展A/D 转换器, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 调整D/A 转换器的输出, 控制PWM芯片, 间接控制电源的工作。这种方式单片机已加入到电源的反馈环中, 代替原来的比较放大环节, 单片机的程序要采用比较复杂的PID 算法。 ( 3) 单片机直接控制型。即单片机扩展A/DC, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 输出PWM波, 直接控制电源的工作。这种方式单片机介入电源工作最多。 3.最优设计方案分析 三种方案比较第一种方案: 单片机输出一个电压( 经D/AC芯片或PWM方式) , 用作开关电源的基准电压。这种方案中, 仅仅是用单片机代替了原来开关电源的基准电压, 没有什么实际性的意义。第二种方案: 由单片机调整D/AC 的输出, 控制PWM芯片, 间接控制电源的工作。这种方案中单片机可以只是完成一些弹性的模拟给定, 后面则由开关电源专用PWM芯片完成一些工作。在这种方案中,对单片机的要求不是很高, 51 系列单片机已可胜任; 从成本上考虑,51 系列单片机和许多PWM控制芯片的价格低廉; 另外, 此方案充分解决了由单片机直接控制型

模电温控电路设计与仿真

水温测量与控制电路的设计与仿真 1设计任务与要求 温度测量,测量范围0~100 ℃; 控制温度±1 ℃; 控制通道输出为双向晶闸管或继电器,一组转换触点为市电(220V,10A)。 学习并运用proteus仿真软件,绘制电路图,进行基本的仿真实验对所设计的电路进行分析与调试。 2方案设计与论证 温度控制器是实现可测温度和控制温度的电路,通过对温度控制电路的设计、调试了解温度传感器的性能,学会在实际电路中的应用。进一步熟悉集成运算放大器的线性和非线性应用。 Proteus介绍: Proteus 软件是由英国 Labcenter Electronics 公司开发的EDA工具软件,已有近20年的历史,在全球得到了广泛应用。Proteus 软件的功能强大,它集电路设计、制版及仿真等多种功能于一身,不仅能够对电工、电子技术学科涉及的电路进行设计与分析,还能够对微处理器进行设计和仿真,并且功能齐全,界面多彩,是近年来备受电子设计爱好者青睐的一款新型电子线路设计与仿真软件。 Proteus软件和我们手头的其他电路设计仿真软件最大的不同即它的功能不是单一的。它的强大的元件库可以和任何电路设计软件相媲美;它的电路仿真功能可以和Multisim相媲美,且独特的单片机仿真功能是Multisim 及其他任何仿真软件都不具备的;它的PCB电路制版功能可以和Protel相媲美。它的功能不但强大,而且每种功能都毫不逊于Protel,是广大电子设计爱好者难得的一个工具软件。

Proteus具有和其他EDA工具一样的原理图编辑、印刷电路板(PCB)设计及电路仿真功能,最大的特色是其电路仿真的交互化和可视化。通过Proteus 软件的VSM(虚拟仿真模式),用户可以对模拟电路、数字电路、模数混合电路、单片机及外围元器件等电子线路进行系统仿真 Proteus软件由ISIS和ARES两部分构成,其中ISIS是一款便捷的电子系统原理设计和仿真平台软件,ARES是一款高级的PCB布线编辑软件。 Proteus ISIS的特点有: 实现了单片机仿真和SPICE电路仿真的结合。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真等功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。 具有强大的原理图绘制功能。 支持主流单片机系统的仿真。目前支持的单片机类型有68000系列、8051系列、AVR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。 提供软件调试功能。在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境,如Keil C51 uVision2等软件。 2.1温度控制系统的基本原理: 温度测量与控制原理框图如图下所示。本电路有温度传感器,K-OC变换、控制温度设置、数字电压表(显示)和放大器等部件组成。温度传感器的作用是把温度信号转换成电流信号或电压信号,K-OC变换将热力学温度K 转换成摄氏温度OC。信号经放大器放大和刻度定标后由数字电压表直接显示温度值,并同时送入比较器与预先设定的固定温度值进行比较,由比较器输出电平的高低变化来控制执行机构(如继电器)工作,实现温度的自动控制。 2.2AD590温度传感器简介: AD590是单片集成感温电流源,具有良好的互换性和线性性质,能够消

电气自动化+PWM型开关电源电路设计

1 引言 当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 1.1 什么是开关电源 电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是 直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环 节的则称开关电源。 1.2 开关电源基本工作原理 开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。 开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。 图1-1 PWM型开关电源原理框图

多路输出开关电源

课程设计说明书 程设计名称:电子技术课程设计 题目:多路输出开关电源 学生姓名: 专业: 学号: 指导教师: 日期:2010年 7 月 2 日 成绩

多路开关输出电源 摘要:在我们的身边,经常接触到很多关于电子线路的设备。在电子电路及设备中,一般都需要稳定的直流电源供电。所以直流稳压电源是电子系统中经常应用到的。本设计将通过多路输出直流稳压电源是设计说明稳压电路的工作原理和稳压的电源的指标及其测试方式。在电子线路设计中通常都需要电压稳定的直流电源供电,其往往采用交流电源经过转换得到的,其性能的好坏直接影响整个电子设备,一般电源主要由电源变压器, 整流电路,滤波电路和稳压电路四部分组成。一般地,开关电源大致由输入电路、变换器、控制电路、输出电路四个主体组成。 关键词:直流稳压电源, 电源变压器,整流电路,滤波电路,稳压电路。 Abstract:Around us, often exposed to a lot of equipment on the electronic circuit. Electronic circuits and devices, generally requires a stable DC power supply. Therefore, DC power supply is often applied to the electronic system's. This design will be through a multi-output DC power supply regulator circuit is designed to explain the principle and regulator of the power indicator and test methods. In the design of electronic circuits requiring voltage stability is usually DC power supply, which often use AC power through transform be of, the direct impact of their affect all electronic equipment, general power main You power transformer, rectifier, analog filter and regulator circuit composed of four parts. Keywords:DC regulated power supply,power transform,rectifying circuit,filter circuit,voltage stabilizing circuit.

基于单片机的开关电源设计

摘要 本设计由STC89S52单片机系统,PWM脉宽调制信号控制芯片TL494,开关电源Buck串联降压电路, A/D模块, D/A模块, 键盘输入和LCD显示输出模块,制作了一个输出电压为 5V-15V可调DC/DC模块构成的供电系统。电源模块由TL494控制Buck电流构成,通过电压反馈控制将输出电压稳压到所需要的电压。STC89C52单片机控制器采样输出电压,通过给电源模块一个调节信号,改变各电源模块的内部输出电压,从而实现输出稳定可调的电压。 关键词:STC89C52单片机; TL494; PWM脉宽调制信号; Buck电路

Abstract The design microcontroller system by STC89S52, PWM pulse width modulation signal control chip TL494 switching power supply Buck series buck circuit modules of the A / D, D / A module, keyboard input and LCD displays the output modules to produce an output voltage of 5V-15V adjustable power supply system of the DC / DC module. The power module is controlled by the TL494 Buck current is constituted by the voltage feedback control of the

开关电源维修技巧

开关电源的检修技巧 开关电源中保险熔断的直接原因:开关管\电源厚模块\整流二极管击穿\100uf/400v大电容击穿漏电,消磁电阻内部碎裂. 开关电源各输出端始终无电压输出的最常见原因:交流220v整流滤波电路中的保险电阻开路;开关管基极到100uf/400v大滤波电容正极之间的电阻开路. 开关电源只在开机瞬间有小电压输出的常见原因:行输出管击穿,开关电源中开关变压器一左的2.2uf~100uf电解电容失效`漏电 开关电源输出电压低的最常见原因:行输出变压器局部短路`脉宽调制电路中的三极管和二极管击穿`漏电`光耦合器件中的三极管漏电等. 造成光栅与图象S扭曲和有两条垂直方向移动黑带的原因:100UF?400V大滤波电容失效和容量下降. 造成光栅局部有彩斑的和图象局部彩色不对的原因:是开关电源交流220V输入电路中的消兹电阻开路. 开关电源无输出的检修技巧 1开关电源始终无电压输出的原因 开关电源始终无电压输出是指开关电源各输出端,在按电源开关开机后始终为0V,这种情况是由于开关电源未产生震荡所致.进一步证实的方法是测开关电源100UF/400V电容关机后的电压,若300V之后慢慢下降,则说明开关电源未产生振荡.开关电源未产生振荡的原因有: (1)开关管集电极未得到足够的工作电压 (2)开关管基极未得到启动电压和相关电路漏电 (3)开关管正反馈元件失效 2判断故障的方法和步骤 检修这类故障的首要任务是判断鼓障在上述三个部位中的哪个部位,具体方法是测开关管集电极,基极电压,可能有以下几种情况: (1)开关管集电极电压为0V和低于市电1.4倍,开关管没有正常的工作电压,如果有1.4倍的 电压,说明开关管集电极具备了正常的工作电压,说明AC220V及整流滤波电路工作正常. (2)开关管的基极电压为0V(包括开机瞬间)这种情况说明启动电路对开关管基极未提供启 动(导通)电压,或基极与发射极之间相关元件击穿,应对启动电路和开关管发射极及相关元件进行检查,若电压为0.6~0.7(包括开几瞬间),说明启动电路和开关管发射极元件正常,若在0.7V以上说明启动电路正常,但开关管发射结或其元件断路或阻值变大. (3)开关管具备导通条件:开关管基极电压为0.6~0.7V,集电极电压大于250V,说明开关管具 备了工作条件,故障在正反馈电路,包括正反馈电阻,电容,续流二极管及开关变压器正反馈绕组及其之间的连接应制板. 开关电源瞬间有电压出检修技巧 1瞬间电压输出故障原因 这种故障在按下启动开关的瞬间,开关电源某个或各个输出端电压有一个小的电压输出,然后降为0V,这种情况说明开关电源在加电的初始产生了振荡,但后由于过压,过流保护引起停振,或开关机接口电路加电初始为开机状态,但随CPU清零的结束而转入待机状态,引发这种情况的原因有: (1)开关电源因故输出电压比标准值高10V而引起过压保护 (2)负载过流引起保护动作

相关主题
文本预览
相关文档 最新文档