当前位置:文档之家› ANSYS热应力分析实例

ANSYS热应力分析实例

ANSYS热应力分析实例
ANSYS热应力分析实例

热流体在代有冷却栅的管道里流动,如图为其轴对称截面图。管道及冷却栅的材料均为不锈钢,导热系数为1.25Btu/hr-in-oF,弹性模量为28E6lb/in2泊松比为0.3。管内压力为1000 lb/in2,管内流体温度为450 oF,对流系数为1 Btu/hr-in2-oF,外界流体温度为70 oF,对流系数为0.25 Btu/hr-in2-oF。求温度及应力分布。

7.3.2菜单操作过程

7.3.2.1设置分析标题

1、选择“Utility Menu>File>Change Title”,输入Indirect thermal-stress Analysis of a cooling fin。

2、选择“Utility Menu>File>Change Filename”,输入PIPE_FIN。

7.3.2.2进入热分析,定义热单元和热材料属性

1、选择“Main Menu>Preprocessor>Element Type>Add/Edit/Delete”,选择PLANE55,设定单元选项为轴对称。

2、设定导热系数:选择“Main Menu>Preprocessor>Material Porps>Material Models”,点击Thermal,Conductivity,Isotropic,输入1.25。

7.3.2.3创建模型

1、创建八个关键点,选择“Main Menu>Preprocessor>Creat>Keypoints>On Active CS”,关键点的坐标如下:

3、设定单元尺寸,并划分网格:“Main Menu>Preprocessor>Meshtool”,设定global size为0.125,选择AREA,Mapped,Mesh,点击Pick all。

7.3.2.4施加荷载

1、选择“Utility Menu>Select>Entities>Nodes>By location>X coordinates,From Full”,输入5,点击OK,选择管内壁节点;

2、在管内壁节点上施加对流边界条件:选择“Main

Menu>Solution>Apply>Convection>On nodes”,点击Pick,all,输入对流换热系数1,流体环境温度450。

3、选择“Utility Menu>Select>Entities>Nodes>By location>X coordinates,From Full”,

输入6,12,点击Apply;

4、选择“Utility Menu>Sel ect>Entities>Nodes>By location>Y coordinates,Reselect”,输入0.25,1,点击Apply;

5、选择“Utility Menu>Select>Entities>Nodes>By location>Y coordinates,Also select”,输入12,点击OK;

6、在管外边界上施加对流边界条件:选择“Main

Menu>Solution>Apply>Convection>On nodes”,点击Pick,all,输入对流换热系数0.25,流体环境温度70。

7.3.2.5求解

1、选择“Utility Menu>Select>Select Everything”。

2、选择“Main Menu>Solution>Solve Current LS”。

7.3.2.6后处理

1、显示温度分布:选择“Main Menu>General Postproc>Plot Result>Nodal Solution>

Temperature”。

7.3.2.7重新进入前处理,改变单元,定义结构材料

1、选择“Main Menu>Preprocessor>Element Type>Switch Elem Type”,选择Thermal to Structure。

2、选择“Main Menu>Preprocessor>Element Type>Add/Edit/Delete”,点击Option,将结构单元设置为轴对称。

3、选择“Main Menu>Preprocessor>Material Porps>Material Models”,输入材料的EX为28E6,PRXY为0.3,ALPX为0.9E-5。

7.3.2.8定义对称边界条件

1、选择“Utility M enu>Select>Entities>Nodes>By location>Y coordinates,From Full”,

输入0,点击Apply;

2、选择“Utility Menu>Select>Entities>Nodes>By location>Y coordinates,Also select”,输入1,点击Apply;

3、选择“Main Menu>Solution>Apply>Displacement>Symmetry B.C. On Nodes”,点击Pick All,选择Y axis,点击OK;

7.3.2.8施加管内壁压力

1、选择“Utility Menu>Select>Entities>Nodes>By location>X coordinates,From Full”,输入5,点击OK;

2、选择“Main Menu>Solution>Apply>Pressure>On nodes”,点击Pick All,输入1000。

7.3.2.9设置参考温度

1、选择“Utility Menu>Select>Select Everything”。

2、选择“Main Menu>Solution>-Loads-Setting>Reference Temp”输入70。

7.3.2.10读入热分析结果

1、选择“Main Menu>Solution>Apply>Temperature>From Thermal Analysis>”,选择PIPE_FIN.rth。

7.3.2.11求解

选择“Main Menu>Solution>Solve Current LS”。

7.3.2.12后处理

选择“Main Menu>General Postpro>Plot Result>Nodal

Solution>Stress>Von Mises”。显示等效应力。

7.3.3等效的命令流方法

/filename,pipe_fin

/TITLE,Thermal-Stress Analysis of a cooling fin

/prep7!进入前处理

et,1,plane55!定义热单元

keyopt,1,3,1!定义轴对称

mp,kxx,1,1.25!定义导热系数

k,1,5!建模

k,2,6

k,3,12

k,4,12,0.25

k,5,6,0.25

k,6,6,1

k,7,5,1

k,8,5,0.25

a,1,2,5,8

a,2,3,4,5

a,8,5,6,7

esize,0.125!定义网格尺寸

amesh,all!划分网格

eplot

finish

/solu!热分析求解

nsel,s,loc,x,5!选择内表面节点

sf,all,conv,1,450!施加对流边界条件nsel,s,loc,x,6,12!选择外表面节点nsel,r,loc,y,0.25,1

nsel,a,loc,x,12

sf,all,conv,0.25,70!施加对流边界条件nsel,all

/pse,conv,hcoef,1

nplot

solve!求解生成PIPE_FIN.rth文件finish

/post1

plnsol,temp!得到温度场分布

finish

/prep7 !重新进入前处理

etchg,tts!将热单元转换为结构单元

plane42

keyopt,1,3,1!定义轴对称特性

mp,ex,1,28e6!定义弹性模量

mp,nuxy,1,0.3!定义泊松比

mp,alpx,1,0.9e-5!定义热膨胀系数

finish

/solu!进入结构分析求解

nsel,s,loc,y,0!选择对称边界

nsel,a,loc,y,1

dsym,symm,y!定义对称条件

nsel,s,loc,x,5!选择内表面

sf,all,pres,1000!施加压力边界条件

nsel,all

/pbc,all,1

/psf,pres,,1

nplot

tref,70!设定参考温度

ldread,temp,,,,,,rth!读入PIPE_FIN.rth节点温度/pbc,all,0

/psf,pres,,0分布

/pbf,temp,,1

eplot

solve!求解

finish

/post1,plnsol,s,eqv!得到等效应力

finish

7.4直接法热应力分析实例

7.4.1问题描述

两个同心圆管之间有一个小间隙,内管中突然流入一种热流体,求经过3分钟后外管表面的温度。已知条件:

管材弹性模量:2E11N/m2

热膨胀系数:5E-41/ oF

泊松比:0.3

导热系数:10W/m.oC

密度:7880Kg/m3

比热:500J/Kg.oC

外管外半径:0.131 m

外管内半径:0.121 m

内管外半径:0.12m

内管内半径:0.11m

流体温度:300oC

流体与内管内壁对流系数:300W/m2.oC

内、外管接触热导:0.1W/oC

7.4.2命令流方法

/filename,contact_thermal

/title,contact_thermal example

/prep7

et,1,13,4,,1! 选择直接耦合单元PLANE13,单元自由度为ux,uy,temp

! 定义为轴对称

et,2,48! 定义结构接触单元

keyopt,2,1,1! 设定接触单元的相应选项

keyopt,2,2,1

keyopt,2,7,1

r,2,2e11,0,0.0001,,,0.1! 定义接触单元实常数

mp,ex,1,2e11! 定义管材结构及热属性

mp,alpx,1,5e-5

mp,kxx,1,10

mp,dens,1,7880

mp,c,1,500

rect,0.11,0.12,0,0.02! 建模

rect,0.121,0.131,0,0.02

amesh,all

nsel,s,loc,x,0.11! 将内管内壁的X方向位移及温度耦合cp,1,ux,all

cp,2,temp,all

nsel,s,loc,x,0.12! 将内管外壁的X方向位移及温度耦合cp,3,ux,all

cp,4,temp,all

nsel,s.loc,x,0.121! 将外管内壁的X方向位移及温度耦合cp,5,ux,all

cp,6,temp,all

nsel,s,loc,x,0.131! 将外管外壁的X方向位移及温度耦合cp,7,ux,all

cp,8,temp,all

nsel,s,loc,y,0.02! 将内管顶部节点的Y方向位移及温度耦合nsel,r,loc,x,0,0.12

cp,9,uy,all

nsel,s,loc,y,0.02! 将外管顶部节点的Y方向位移及温度耦合nsel,r,loc,x,0.121,0.131

cp,10,uy,all

nsel,s,loc,x,0.12! 创建接触单元

cm,cont,node

nsel,s,loc,x,0.121

cm,targ,node

type,2

real,2

gcgen,cont,targ,3

/solu

antype,trans! 瞬态分析

tunif,20! 初始平均温度

tref,20! 参考温度

sfl,4,conv,300,,300! 内管内壁对流边界

sfl,6,conv,10,,20! 外管外壁对流边界

nsel,s,loc,y,0! 约束所有底边单元的Y向位移d,all,uy,0

time,180! 载荷步时间

deltime,10,5,15! 定义时间步长

outres,all,all

kbc,1

autots,on! 自动时间步长

allsel

solve! 求解

/post1

plnsol,temp! 显示温度分布

plnsol,s,eqv! 显示等效应力

ansys中的热分析

【转】热-结构耦合分析 知识掌握篇2009-05-31 14:09:19 阅读131 评论0 字号:大中小订阅 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分 布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析, 然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析. 21.1 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的 分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即 先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作 为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知 识,然后再学习耦合分析方法. 21.1.1 热分析基本知识 ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温 度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传 递方式.此外,还可以分析相变,有内热源,接触热阻等问题. 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换

ANSYS非稳态热分析及实例详解解析

本章向读者介绍非稳态热分析的基本知识, 主要包括非稳态热分析的应用、 非稳态热分析的基本步骤。 非稳态导热的基本概念 非稳态热分析的应用 非稳态热分析单元 分析的基本步骤 丄本章案例 钢球非稳态传热过程分析 不同材料金属块水中冷却的非稳态传热过程分析 高温铜导线冷却过程分析 7.1 非稳态热分析概述 物体的温度随时间而变化的导热过程称为非稳态导热。 根据物体温度随着时间的推移而变化的 特性可本章要点 非稳态热分析单兀、

以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。可见,非稳态热分析是有相当大的应用价值的。 ANSYS 11.0 及其相关的下属产品均支持非稳态的热分析。非稳态热分析确定了温度以及其它随时间变化的热参数。 7.1.1 非稳态热分析特性 瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。 瞬态热分析的基本步骤与稳态热分析类似。主要的区别是瞬态热分析中的载荷是随时间变化的。为了表达随时间变化的载荷,首先必须将载荷 - 时间曲线分为载荷步。对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。

ANSYS热应力分析经典例题

ANSYS热应力分析例题 实例1圆简内部热应力分折: 有一无限长圆筒,其核截面结构如图13—1所示,简内壁温度为200℃,外壁温度为20℃,圆筒材料参数如表13.1所示,求圆筒内的温度场、应力场分布。 该问题属于轴对称问题。由于圆筒无限长,忽略圆筒端部的热损失。沿圆筒纵截面取宽度为10M的如图13—2所示的矩形截面作为几何模型。在求解过程中采用间接求解法和直接求解法两种方法进行求解。间接法是先选择热分析单元,对圆筒进行热分析,然后将热分析单元转化为相应的结构单元,对圆筒进行结构分析;直接法是采用热应力藕合单元,对圆筒进行热力藕合分析。 /filname,exercise1-jianjie /title,thermal stresses in a long /prep7 $Et,1,plane55 Keyopt,1,3,1 $Mp,kxx,1,70 Rectng,0.1,0.15,0,0.01 $Lsel,s,,,1,3,2 Lesize, all,,,20 $Lsel,s,,,2,4,2 Lesize,all,,,5 $Amesh,1 $Finish /solu $Antype,static Lsel,s,,,4 $Nsll,s,1 $d,all,temp,200 lsel,s,,,2 $nsll,s,1 $d,all,temp,20 allsel $outpr,basic,all solve $finish /post1 $Set,last /plopts,info,on Plnsol,temp $Finish /prep7 $Etchg,tts Keyopt,1,3,1 $Keyopt,1,6,1 Mp,ex,1,220e9 $Mp,alpx,,1,3e-6 $Mp,prxy,1,0.28 Lsel,s,,,4 $Nsll,s,1 $Cp,8,ux,all Lsel,s,,,2 $Nsll,s,1 $Cp,9,ux,all Allsel $Finish /solu $Antype,static D,all,uy,0 $Ldread,temp,,,,,,rth Allsel $Solve $Finish /post1 /title,radial stress contours Plnsol,s,x /title,axial stress contours Plnsol,s,y /title,circular stress contours Plnsol,s,z /title,equvialent stress contours Plnsol,s,eqv $finish

ANSYS热分析指南与经典案例

第一章简介 一、热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。 热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。 二、ANSYS的热分析 ?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中 ANSYS/FLOTRAN不含相变热分析。 ?ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。 ?ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 三、ANSYS 热分析分类 ?稳态传热:系统的温度场不随时间变化 ?瞬态传热:系统的温度场随时间明显变化 四、耦合分析 ?热-结构耦合 ?热-流体耦合 ?热-电耦合 ?热-磁耦合 ?热-电-磁-结构耦合等

第二章 基础知识 一、符号与单位 W/m 2-℃ 3 二、传热学经典理论回顾 热分析遵循热力学第一定律,即能量守恒定律: ● 对于一个封闭的系统(没有质量的流入或流出〕 PE KE U W Q ?+?+?=- 式中: Q —— 热量; W —— 作功; ?U ——系统内能; ?KE ——系统动能; ?PE ——系统势能; ● 对于大多数工程传热问题:0==PE KE ??; ● 通常考虑没有做功:0=W , 则:U Q ?=; ● 对于稳态热分析:0=?=U Q ,即流入系统的热量等于流出的热量; ● 对于瞬态热分析:dt dU q = ,即流入或流出的热传递速率q 等于系统内能的变化。 三、热传递的方式 1、热传导 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热传导遵循付里叶定律:dx dT k q -='',式中''q 为热流

ABAQUS顺序热力耦合分析实例

ABAQUS顺序热力耦合分析实例此实例中需要确定一个冷却栅管的温度场分布。温度场的求解采用稳态热分析,在此之后还将进行热应力分析来求出冷却栅管在温度作用下产生的位移和应力分布。由于冷却栅管比较长,并且是轴对称结构,根据上述特点,可以简化有限元分析模型。此实例中使用国际单位制。 1、part中创建轴对称可变形壳体,大致尺寸为1,通过creat line创建一个封闭曲线(0.127,0) (0.304,0)(0.304,0.006)(0.152,0.006)(0.152,0.031)(0.127,0.031)(0.127,0) 使用creat Fillet功能对模型倒角处设置0.005的倒圆角。倒角后,模型并未改变,需要在模型树中,part下的Features右键,Regenerate,最终模型如下图所示。 2、在材料模块中定义密度7800,弹性模量1.93E11,泊松比0.3。所不同的是,热分析还需 要指定热传导系数以及比热。在Thermal里输入参数,热铲刀系数25.96,比热451。 3、创建截面属性以及装备部件,和普通的静力分析设置一样。 4、Step有所不同,分析类型仍为通用分析步,下面要更改为Heat Transfer。在Edit Step窗 口中,使用默认的瞬态分析(Transient),时长设置为3s。切换到Incrementatin进行相应的设置,如下图。

5、Load模块中,设置左边温度为100度,右边及上边温度为20度。Creat BC,类型选择 Other>Temperature。在纯粹的热传导分析方程中,没有位移项,因此不会发生刚体位移,这里也就不需要设置位移边界条件。 6、接下来划分网格,种子尺寸给0.005,单元类型需要在单元族中选择专门用来热分析的 Heat Transfer,查看下面确保使用的单元为DCAX4。使用结构化的全四边形网格划分方法。 7、到此,热分析的设置已经完成,可以提交计算,完成后,查看变量NT11即为节点温度。

ansys热分析

第三章稳态热分析 3.1稳态传热的定义 ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和 ANSYS/Professional这些产品支持稳态热分析。稳态传热用于分析稳定的热载荷对系统或部件的影响。通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。 稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。这些热载荷包括: 对流 辐射 热流率 热流密度(单位面积热流) 热生成率(单位体积热流) 固定温度的边界条件 稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。当然,如果在分析中考虑辐射,则分析也是非线性的。 3.2热分析的单元 ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。单元名采用大写,所有的单元都可用于稳态和瞬态热分析。其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。这些热分析单元如下: 表3-1二维实体单元 单元维数形状及特点自由度 PLANE35 二维六节点三角形单元温度(每个节点) PLANE55 二维四节点四边形单元温度(每个节点) PLANE75 二维四节点谐单元温度(每个节点) PLANE77 二维八节点四边形单元温度(每个节点) PLANE38 二维八节点谐单元温度(每个节点)

管道应力分析报告概述

管道应力分析概述 CAESARII软件介绍 CAESARII管道应力分析软件是由美国COADE公司研发的压力管道应力分析专业软件。它既可以分析计算静态分析,也可进行动态分析。CAESARII向用户提供完备的国际上的通用管道设计规范,使用方便快捷。交互式数据输入图形输出,使用户可直观查看模型(单线、线框,实体图)强大的3D计算结果图形分析功能,丰富的约束类型,对边界条件提供最广泛的支撑类型选择、膨胀节库和法兰库,并且允许用户扩展自己的库。钢结构建模,并提供多种钢结构数据库.结构模型可以同管道模型合并,统一分析膨胀节可通过标准库选取自动建模、冷紧单元/弯头,三通应力强度因子(SIF)的计算、交互式的列表编辑输入格式用户控制和选择的程序运行方式,用户可定义各种工况。 一、管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 二、管道应力分析的主要内容 管道应力分析分为静力分析和动力分析。 静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据; 5)管道上法兰的受力计算——防止法兰汇漏。 动力分析包括:

l)管道自振频率分析——防止管道系统共振; 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 三、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等; (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载; (5)地震荷载; (6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击: (7)两相流脉动荷载; (8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动; (9)机械振动荷载:如回转设备的振动。 四、管道应力分析的目的 1)为了使管道和管件内的应力不超过许用应力值; 2)为了使与管系相连的设备的管口荷载在制造商或国际规范(如 NEMA SM-23、API-610、API-6 17等)规定的许用范围内; 3)为了使与管系相连的设备管口的局部应力在 ASME Vlll的允许范围内; 4)为了计算管系中支架和约束的设计荷载;

Ansys 第 例瞬态热分析实例一水箱

第33例瞬态热分析实例——水箱 本例介绍了利用ANSYS进行瞬态热分析的方法和步骤、瞬态热分析时材料模型所包含的内容,以及模型边界条件和初始温度的施加方法。 33.1概述 热分析是计算热应力的基础,热分析分为稳态热分析和瞬态热分析,稳态热分析将在后面两个例子中介绍,本例介绍瞬态热分析。 33.1.1 瞬态热分析的定义 瞬态热分析用于计算系统随时间变化的温度场和其他热参数。一般用瞬态热分析计算温度场,并找到温度梯度最大的时间点,将此时间点的温度场作为热载荷来进行应力计算。 33.1.2 嚼态热分析的步骤 瞬态热分析包括建模、施加载荷和求解、查看结果等几个步骤。 1.建模 瞬态热分析的建模过程与其他分析相似,包括定义单元类型、定义单元实常数、定义材料特性、建立几何模型和划分网格等。 注意:瞬态热分析必须定义材料的导热系数、密度和比热。 2.施加载荷和求解 (1)指定分析类型, Main Menu→Solution→Analysis Type→New Analysis,选择 Transient。 (2)获得瞬态热分析的初始条件。 定义均匀的初始温度场:Main Menu→Solution→Define Loads→Settings→Uniform Temp,初始温度仅对第一个子步有效,而用Main Menu →Solution→Define Loads→Apply→Thermal→Temperature命令施加的温

度在整个瞬态热分析过程中均不变,应注意二者的区别。 定义非均匀的初始温度场:如果非均匀的初始温度场是已知的,可以用Main Menu→Solution→Define Loads→Apply→Initial Condit'n→Define 即IC命令施加。非均匀的初始温度场一般是未知的,此时必须先进行行稳态分析确定该温度场。该稳态分析与一般的稳态分析相同。 注意:要设定载荷(如已知的温度、热对流等),将时间积分关闭,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay;设定只有一个子步,时间很短(如(0.01s)的载荷步, Main Menu→Solution→Load Step Opts→Time/Frequenc→Time →Time Step。 (3)设置载荷步选项。 普通选项包括每一载荷步结束的时间、每一载荷步的子步数、阶跃选项等,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time-Time Step. 非线性选项包括:迭代次数(默认25),选择Main Menu→Solution→Load Step Opts→Nonlinear→Equilibrium Iter;打开自动时间步长,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step:将时间积分打开,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay. 输出选项包括:控制打印的输出,选择Main Menu→Solution→Load Step Opts→Output Ctrls→Solu Printout; 结果文件的输出,选择Main Menu →Solution→Load Step Opts→Output Ctrls→DB/Results File.

ANSYS稳态热分析的基本过程和实例

ANSYS稳态热分析的基本过程 ANSYS热分析可分为三个步骤: ?前处理:建模、材料和网格 ?分析求解:施加载荷计算 ?后处理:查看结果 1、建模 ①、确定jobname、title、unit; ②、进入PREP7前处理,定义单元类型,设定单元选项; ③、定义单元实常数; ④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可 以是恒定的,也可以随温度变化; ⑤、创建几何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。 2、施加载荷计算 ①、定义分析类型 ●如果进行新的热分析: Command: ANTYPE, STATIC, NEW GUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state ●如果继续上一次分析,比如增加边界条件等: Command: ANTYPE, STATIC, REST GUI: Main menu>Solution>Analysis Type->Restart ②、施加载荷 可以直接在实体模型或单元模型上施加五种载荷(边界条件) : a、恒定的温度 通常作为自由度约束施加于温度已知的边界上。 Command Family: D GUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperature b、热流率 热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。 注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要

生活中的材料力学实例分析

生活中的材料力学实例分析 一意义 材料力学主要研究杆件的应力、变形以及材料的宏观力学性能的学科。材料力学是固体力学的一个基础分支。它是研究结构构件和机械零件承载能力的基础学科。其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。 二对象 材料力学的研究通常包括两大部分:一部分是材料的力学性能(或称机械性能)的研究,材料的力学性能参量不仅可用于材料力学的计算,而且也是固体力学其他分支的计算中必不可少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆、压杆受弯曲(有时还应考虑剪切)的粱和受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为线弹性问题、几何非线性问题、物理非线性问题三类。 材料力学不仅在复杂机械工程中有重要的作用,在生活中也很常见。比如随处可见的桥梁,桥是一种用来跨越障碍的大型构造物。确切的说是用来将交通路线 (如道路、铁路、水道等)或者

其他设施 (如管道、电缆等)跨越天然障碍 (如

河流、海峡、峡谷等)或人工障碍 (高速公路、铁路线)的构造物。桥的目的是允许人、车辆、火车或船舶穿过障碍。桥可以打横搭着谷河或者海峡两边,又或者起在地上升高,槛过下面的河或者路,让下面交通畅通无阻。 三分析

如果在安全的前提下,将原来的四个桥墩和三个拱形拉索变为三个桥墩和两个拱形拉索。不仅可以节约大量的材料,降低成本,而且有美观。 四总结 因此,材料力学是一门很有用的学科,能够处理各种各样复杂的问题。只要注意观察,生活中处处有材料力学的踪影。利用材料力学的知识对我们身边的事物进行分析并加以改进,对我们的生活和社会的发展能起到积极的促进作用。 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

ANSYS非稳态热分析及实例详解解析

第7 章非稳态热分析及实例详解 本章向读者介绍非稳态热分析的基本知识,主要包括非稳态热分析的应用、非稳态热分析单元、非稳态热分析的基本步骤。 本章要点 非稳态导热的基本概念 非稳态热分析的应用 非稳态热分析单元 分析的基本步骤 本章案例 钢球非稳态传热过程分析 不同材料金属块水中冷却的非稳态传热过程分析 高温铜导线冷却过程分析

7.1 非稳态热分析概述 物体的温度随时间而变化的导热过程称为非稳态导热。根据物体温度随着时间的推移而变化的特性可以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。可见,非稳态热分析是有相当大的应用价值的。ANSYS 11.0及其相关的下属产品均支持非稳态的热分析。非稳态热分析确定了温度以及其它随时间变化的热参数。 7.1.1 非稳态热分析特性 瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。 瞬态热分析的基本步骤与稳态热分析类似。主要的区别是瞬态热分析中的载荷是随时间变化的。为了表达随时间变化的载荷,首先必须将载荷-时间曲线分为载荷步。对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。 7.1.2 非稳态热分析的控制方程 热储存项的计入将稳态系统变为非稳态系统,计入热储存项的控制方程的矩阵形式如下: []{}[]{}{}C T K T Q += 其中,[]{} C T 为热储存项。 在非稳态分析时,载荷是和时间有关的函数,因此控制方程可表示如下: []{}[]{}(){}C T K T Q t += 若分析为分线性,则各参数除了和时间有关外,还和温度有关。非线性的控制方程可表示如下: (){}(){}(){},C T T K T T Q T t +=???????? 7.1.3 时间积分与时间步长 1、时间积分 从求解方法上来看,稳态分析和非稳态分析之间的差别就是时间积分。利用ANSYS 11.0分析问题时,只要在后续载荷步中将时间积分效果打开,稳态分析即转变为非稳态分析;同样,只要在后续载荷步中将时间积分关闭,非稳态分析也可转变为稳态分析。 2、时间步长 两次求解之间的时间称为时间步,一般来说,时间步越小,计算结果越精确。确定时间步长的方法有两种: (1)指定裕度较大的初始时间步长,然后使用自动时间步长增加时间步。

基于ABAQUS的热应力分析

1.1基于ABAQUS的热应力分析 1.1.1 温度场数据处理 (1)打开INP_Generator.exe,出现如下软件界面: 图1.数据处理软件 (2)点击“浏览”按钮,选择由FLUENT导出的inp文件所在路径,如下图 所示: 图2.路径选择 (3)点击“生成”按钮,则在inp文件所在路径下自动生成包含多个温度场的 ABAQUS输入文件ABAQUSinputfile.inp。 图3.生成包含连续温度场INP文件

1.1.2 复材工装模板热应力分析 (1)打开ABAQUS,导入inp文件后,打开Tools菜单下“Set - Manager”, 如下图所示。检查是否有名为“PID6”的set,若没有则创建一个名为 “PID*”的set,set为模板整体。(“*”为任意数字或字母) 图4.创建SET (2)打开Plug-ins菜单下“CAC Project - Composite Analyse”,弹出如下界面。 在Step1标签中输入用到的材料名称并选择工作路径;在Step2中定义铺 层信息,可通过右键删除或添加行;按照Step3和Step4的提示,使用 ABAQUS/CAE自身功能完成剩余分析工作。 (a)

(b) (c) 图5.定义材料及铺层 (3)进入Load模块,定义垂直于模板表面平面部分的局部坐标系。选择“Tools” 菜单下“Datum”,Type选择“CSYS”Method选择“3Points”,然后默认点击“Continue”按钮。依次在模板表面选择坐标原点、X轴上点和XY面上的点,生成局部坐标。 图6.定义模板局部坐标系 (4)点击“Create Boundary Condition”按钮,弹出边界条件定义对话框。

一个经典的ansys热分析实例(流程序)

/PREP7 /TITLE,Steady-state thermal analysis of pipe junction /UNITS,BIN ! 英制单位;Use U. S. Customary system of units (inches) ! /SHOW, ! Specify graphics driver for interactive run ET,1,90 ! Define 20-node, 3-D thermal solid element MP,DENS,1,.285 ! Density = .285 lbf/in^3 MPTEMP,,70,200,300,400,500 ! Create temperature table MPDATA,KXX,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12 ! 指定与温度相对应的数据材料属性;导热系数;Define conductivity values MPDATA,C,1,,.113,.117,.119,.122,.125 ! Define specific heat values(比热) MPDATA,HF,2,,426/144,405/144,352/144,275/144,221/144 ! Define film coefficient;除144是单位问题,上面的除12也是单元问题 ! Define parameters for model generation RI1=1.3 ! Inside radius of cylindrical tank RO1=1.5 ! Outside radius Z1=2 ! Length RI2=.4 ! Inside radius of pipe RO2=.5 ! Outside pipe radius Z2=2 ! Pipe length CYLIND,RI1,RO1,,Z1,,90 ! 90 degree cylindrical volume for tank WPROTA,0,-90 ! 旋转当前工作的平面;从Y到Z旋转-90度;;Rotate working plane to pipe axis CYLIND,RI2,RO2,,Z2,-90 ! 角度选择在了第四象限;90 degree cylindrical volume for pipe WPSTYL,DEFA ! 重新安排工作平面的设置;另外WPSTYL,STAT to list the status of the working plane;;Return working plane to default setting BOPT,NUMB,OFF ! 关掉布尔操作的数字警告信息;Turn off Boolean numbering warning VOVLAP,1,2 ! 交迭体;Overlap the two cylinders /PNUM,VOLU,1 ! 体编号打开;Turn volume numbers on /VIEW,,-3,-1,1

应力分析及疲劳分析报告

预处理塔应力分析及疲劳分析报告 编制: 校对: 审核: 全国压力容器标准化技术委员会 一九九八年九月

一、载荷分析 1.用户数据 根据XX设计院所提供的设计图,计算基础数据如下: 预处理塔容器的结构参数见附图1: 2.计算条件 (1) 强度计算条件: 材料在计算温度下的常数: 材料在常温(20℃)下的常数: 注[1]:设计应力强度及弹性模量按JB4732-95

(2) 疲劳计算条件: 载荷与时间的关系示意如下: 时间

二、结构分析 根据预处理塔的结构特点,应进行上封头、下封头及筒体开 孔三部分的应力分析,分别建立力学模型如下: 1.上封头部分: (1)力学模型 根据上封头的结构特点和载荷特性,采用了轴对称的力学模型。 图1:预处理塔上封头力学模型 (2)边界条件 预处理塔上封头边界条件的位置和方向如图1所示。 位移边界条件:

与筒体相连且在Y=0处: Y=0 力边界条件: 壳体内压P=0.85MPa。 中心接管处的边界等效压力P=8.877MPa。 (3) 单元选择 采用ANSYS 5.4有限元分析软件提供的轴对称8节点等参元(82)进行网格划分(如图1)。 2. 下封头部分: (1)力学模型 根据下封头的结构特点和载荷特性,采用了轴对称的力学模型。

图2:预处理塔下封头力学模型 (2)边界条件 预处理塔下封头边界条件的位置和方向如图2所示。 位移边界条件: 裙座根部:?Y=0 力边界条件: 壳体内压P=0.85MPa。 中心接管处的边界等效压力P=8.93MPa, 托架处(壳内物料重)的边界等效压力P=1.54MPa, 筒体直边端处的边界等效压力P=2.72MPa, (3) 单元选择 采用ANSYS 5.4有限元分析软件提供的轴对称8节点等参元(82)进行网格划分(如图2)。 3.筒体开孔部分: (1)力学模型 根据筒体的结构特性和载荷特性,力学模型关于XOZ平面近似对称(无开孔部分为应力均匀区),关于YOZ平面对称,只需计算结构的四分之一。 (2) 边界条件 柱壳开孔边界条件的位置和方向如图3所示。 位移边界条件:轴对称约束;Z=0时,?Z=0 力边界条件:壳体内压P=0.85MPa;筒体端的边界等效应力为:52.91MPa, 筒体端的边界等效应力为:3.94 (3) 单元选择

ansys热分析例题

问题描述:一个30公斤重、温度为70℃的铜块,以及一个20公斤重、温度为80℃的铁块,突然放入温度为20℃、盛满了300升水的、完全绝热的水箱中,如图所示。过了一个小时,求铜块与铁块的最高温度(假设忽略水的流动)。 材料热物理性能如下:热性能单位制 铜铁水 导热系数W/m℃ 383 37 密度Kg/m 8889 7833 996 比热J/kg℃ 390 448 4185 菜单操作过程: 一、设置分析标题 1、选择“Utility Menu>File>Change Jobname”,输入文件名Transient1。 2、选择“Utility Menu>File>Change Title”输入Thermal Transient Exercise 1。 二、定义单元类型 1、选择“Main Menu>Preprocessor”,进入前处理。 2、选择“Main Menu>Preprocesor>Element Type>Add/Edit/Delete”。选择热平面单元plane77。 三、定义材料属性 1、选择“Main Menu>Preprocessor>Material Props>Material Models”,在弹出的材料定义窗口中顺序双击Thermal选项。 2、点击Conductivity,Isotropic,在KXX框中输入383;点击Density,在DENS框中输入8898;点击Specific Heat,在C框中输入390。 3、在材料定义窗口中选择Material>New Model,定义第二种材料。 4、点击Conductivity,Isotropic,在KXX框中输入70;点击Density,在DENS框中输入7833;点击Specific Heat,在C框中输入448。 5、在材料定义窗口中选择Material>New Model,定义第三种材料。 6、点击Conductivity,Isotropic,在KXX框中输入.61;点击Density,在DENS框中输入996;点击Specific Heat,在C框中输入4185。 四、创建几何模型 1、选择“Main Menu>Preprocessor>-Modeling->Create>-Areas->Retangle>By Dimensions”,输入X1=0, Y1=0, X2=, Y2=, 点击Apply;输入X1=, Y1=, X2= ,Y2=, 点击Apply;输入X1= Y1=, X2= Y2=+, 选择OK。 2、选择“Main Menu>Preprocessor>-Modeling->Operate>Booleans>Overlap”,选择Pick All。 3、选择“Utility Menu>Plotctrls>Numbering>Areas, on”。 4、选择“Utility Menu>Plot>Areas”。 五、划分网格 1、选择“Main Menu>Preprocessor>-Attributes->Define->All Areas”,选择材料1。 2、选择“Main Menu>Preprocessor>Meshing->Size Cntrls->-Manualsize->-Global->Size”,输入单元大小。 3、选择“Main Menu>Preprocessor>Meshing->Mesh->-Areas->Mapped>3 or 4 sided”,选择铜块。 4、选择“Main Menu>Preprocessor>-Attributes->Define->All Areas”,选择材料2。 5、选择“Main Menu>Preprocessor>Meshing->Mesh->-Areas->Mapped>3 or 4 sided”,选

Solidworks应力分析实例

基于Solidworks 软件的应力分析 Solidworks 中有限元分析插件CosMos/Works 分析零件的静力学性能,得出载荷分布情况,定性的分析极限载荷(这里指的是最大扭矩)下的应力,应变分布及其安全性能。 其分析流程如下: 1、建立一个简化的分析模型; 2、指定材料、元素和截面; 3、加约束和载荷; 4、设定网格; 5、执行分析; 6、结果显示; 7、生成研究报告。 分析对象 电机轴及啮合处的变速器输入轴,离合器花键轴及啮合处的离合器从动盘,电机轴和离合器花键轴之间的联接螺栓(M12x40,10.9级)。 材料 目前公司所用的变速器输入轴材料为20CrMnTi ,考虑其受力情况,材料不一致,其强度就会不一样,容易导致强度差的失效,因此根据目前情况,电机轴和离合器花键轴均选用20CrMnTi 。 20CrMnTi 用于制作渗碳零件,渗碳淬火后有良好的耐磨性和抗弯强度,有较高的低温冲击韧性,切削加工性能良好,承受高速、中载或重载以及冲击和摩擦的主要零件。 对于截面为15的样件,经过第一次淬火880℃,第二次淬火870℃,油冷;在经过回火200℃,水冷和空冷。得到的力学性能:抗拉强度MPa b 1080=σ,屈服强度MPa s 835=σ,伸长率(式样的标距等于5倍直径时的伸长率)%105=δ,断面收缩率%45=ψ,冲击韧度2/55cm J A kU =,硬度217HB 。

对于截面尺寸小于等于100的样件,经过调质处理,力学性能:抗拉强度 MPa b 615=σ,屈服强度MPa s 395=σ,伸长率%175=δ,断面收缩率%45=ψ, 冲击韧度2/47cm J A kU =。本分析还要使用到的参数:泊松比25.0=μ,抗剪模量G=7.938GPa ,弹性模量E=207GPa ,密度23/108.7m N ?=ρ。 螺栓联接受力分析 螺纹联接根据载荷性质不同,其失效形式也不同。受静载荷螺栓的失效形式多为螺纹部分的塑性变形或螺栓被拉断;受变向载荷螺栓的失效形式多为螺栓的疲劳断裂;对于受横向载荷的绞制孔用螺栓联接,其失效形式主要为螺栓杆被剪断,螺栓杆或连接孔接触面被挤压破坏。 对于10.9级M12的普通螺栓,屈服强度MPa s 900=σ,拧紧力矩T=120N.m 。 为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。 其拧紧扳手力矩T 用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩擦力矩T2,装配时可用力矩扳手法控制力矩。 公式: d * F *K =T2+T1=T 0 拧紧扳手力矩T=120N.m ,其中K 为拧紧力矩系数,0 F 为预紧力N ,d 为螺 纹公称直径12mm 。 摩擦表面状态 K 值 有润滑 无润滑 精加工表面 0.1 0.12 一般工表面 0.13-0.15 0.18-0.21 表面氧化 0.2 0.24 镀锌 0.18 0.22 粗加工表面 - 0.26-0.3

ANSYS热分析指南——ANSYS瞬态热分析

4.1瞬态传热的定义 ANSYS/Multiphysics , ANSYS/Mechanical, ANSYS/FLOTRAN ANSYS/Professional 这些产品支持瞬态热分析。瞬态热分析用于计算一个系统 的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场, 并将之作为热载荷进行应力分 析。许多传热应用一热处理问题,喷管,引擎堵塞, 管路系统,压力容器等,都包含瞬态热分析。 瞬态热分析的基本步骤与稳态热分析类似。 主要的区别是瞬态热分析中的载 荷是随时间变化的。为了表达随时间变化的载荷,可使用提供的函数工具描述载 荷?时间曲线并将该函数作为载荷施加(请参考《 ANSYS Basic Porcedures Guide 》中的“施加函数边界条件载荷”),或将载荷?时间曲线分为载荷步。 载荷?时间曲线中的每一个拐点为一个载荷步,如下图所示 : 图4-1用荷载步定义时变荷载 对于每一个载荷步,必须定义载荷值及时间值,同时还需定义其它载荷步选 项,如:载荷步为渐变或阶跃、自动时间步长等,定义完一个载荷步的所有信息 后,将其写为载荷步文件,最后利用载荷步文件统一求解。本章对一个铸件的分 析的实例对此有进一步说明。 4.2瞬态热分析中使用的单元和命令 瞬态热分析中使用的单元与稳态热分析相同,第三章对单元有简单的描述。 要了解每个单元的详细说明,请参阅《 ANSYS Eleme nt Refere nee 》。要了解每 个命令的详细功能,请参阅《ANSYS Comma nds Refere nce 。 4.3瞬态热分析的过程 瞬态热分析的过程为: 建模 施加荷载并求解 ANSYS 热分析指南(第四 章) 第四章瞬态热分析 Load ▲ Stepped (KBCJ) ■Stepped Steady

ANSYS稳态和瞬态分析步骤简述..

ANSYS 稳态和瞬态热模拟基本步骤 基于ANSYS 9.0 一、 稳态分析 从温度场是否是时间的函数即是否随时间变化上,热分析包括稳态和瞬态热分析。其中,稳态指的是系统的温度场不随时间变化,系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量: =0q q q +-流入生成流出 在稳态分析中,任一节点的温度不随时间变化。 基本步骤:(为简单起见,按照软件的菜单逐级介绍) 1、 选择分析类型 点击Preferences 菜单,出现对话框1。 对话框1 我们主要针对的是热分析的模拟,所以选择Thermal 。这样做的目的是为了使后面的菜单中只有热分析相关的选项。 2、 定义单元类型 GUI :Preprocessor>Element Type>Add/Edit/Delete 出现对话框 2 对话框2 (3-1)

点击Add,出现对话框3 对话框3 在ANSYS中能够用来热分析的单元大约有40种,根据所建立的模型选择合适的热分析单元。对于三维模型,多选择SLOID87:六节点四面体单元。 3、选择温度单位 默认一般都是国际单位制,温度为开尔文(K)。如要改为℃,如下操作GUI:Preprocessor>Material Props>Temperature Units 选择需要的温度单位。 4、定义材料属性 对于稳态分析,一般只需要定义导热系数,他可以是恒定的,也可以随温度变化。 GUI: Preprocessor>Material Props> Material Models 出现对话框4 对话框4 一般热分析,材料的热导率都是各向同性的,热导率设定如对话框5. 对话框5

相关主题
文本预览
相关文档 最新文档