当前位置:文档之家› 仿真在线-ANSYS热分析教程

仿真在线-ANSYS热分析教程

仿真在线-ANSYS热分析教程
仿真在线-ANSYS热分析教程

ANSYS非稳态热分析及实例详解解析

本章向读者介绍非稳态热分析的基本知识, 主要包括非稳态热分析的应用、 非稳态热分析的基本步骤。 非稳态导热的基本概念 非稳态热分析的应用 非稳态热分析单元 分析的基本步骤 丄本章案例 钢球非稳态传热过程分析 不同材料金属块水中冷却的非稳态传热过程分析 高温铜导线冷却过程分析 7.1 非稳态热分析概述 物体的温度随时间而变化的导热过程称为非稳态导热。 根据物体温度随着时间的推移而变化的 特性可本章要点 非稳态热分析单兀、

以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。可见,非稳态热分析是有相当大的应用价值的。 ANSYS 11.0 及其相关的下属产品均支持非稳态的热分析。非稳态热分析确定了温度以及其它随时间变化的热参数。 7.1.1 非稳态热分析特性 瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。 瞬态热分析的基本步骤与稳态热分析类似。主要的区别是瞬态热分析中的载荷是随时间变化的。为了表达随时间变化的载荷,首先必须将载荷 - 时间曲线分为载荷步。对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。

ANSYS热应力分析经典例题

ANSYS热应力分析例题 实例1圆简内部热应力分折: 有一无限长圆筒,其核截面结构如图13—1所示,简内壁温度为200℃,外壁温度为20℃,圆筒材料参数如表13.1所示,求圆筒内的温度场、应力场分布。 该问题属于轴对称问题。由于圆筒无限长,忽略圆筒端部的热损失。沿圆筒纵截面取宽度为10M的如图13—2所示的矩形截面作为几何模型。在求解过程中采用间接求解法和直接求解法两种方法进行求解。间接法是先选择热分析单元,对圆筒进行热分析,然后将热分析单元转化为相应的结构单元,对圆筒进行结构分析;直接法是采用热应力藕合单元,对圆筒进行热力藕合分析。 /filname,exercise1-jianjie /title,thermal stresses in a long /prep7 $Et,1,plane55 Keyopt,1,3,1 $Mp,kxx,1,70 Rectng,0.1,0.15,0,0.01 $Lsel,s,,,1,3,2 Lesize, all,,,20 $Lsel,s,,,2,4,2 Lesize,all,,,5 $Amesh,1 $Finish /solu $Antype,static Lsel,s,,,4 $Nsll,s,1 $d,all,temp,200 lsel,s,,,2 $nsll,s,1 $d,all,temp,20 allsel $outpr,basic,all solve $finish /post1 $Set,last /plopts,info,on Plnsol,temp $Finish /prep7 $Etchg,tts Keyopt,1,3,1 $Keyopt,1,6,1 Mp,ex,1,220e9 $Mp,alpx,,1,3e-6 $Mp,prxy,1,0.28 Lsel,s,,,4 $Nsll,s,1 $Cp,8,ux,all Lsel,s,,,2 $Nsll,s,1 $Cp,9,ux,all Allsel $Finish /solu $Antype,static D,all,uy,0 $Ldread,temp,,,,,,rth Allsel $Solve $Finish /post1 /title,radial stress contours Plnsol,s,x /title,axial stress contours Plnsol,s,y /title,circular stress contours Plnsol,s,z /title,equvialent stress contours Plnsol,s,eqv $finish

ANSYS热分析指南与经典案例

第一章简介 一、热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。 热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。 二、ANSYS的热分析 ?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中 ANSYS/FLOTRAN不含相变热分析。 ?ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。 ?ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 三、ANSYS 热分析分类 ?稳态传热:系统的温度场不随时间变化 ?瞬态传热:系统的温度场随时间明显变化 四、耦合分析 ?热-结构耦合 ?热-流体耦合 ?热-电耦合 ?热-磁耦合 ?热-电-磁-结构耦合等

第二章 基础知识 一、符号与单位 W/m 2-℃ 3 二、传热学经典理论回顾 热分析遵循热力学第一定律,即能量守恒定律: ● 对于一个封闭的系统(没有质量的流入或流出〕 PE KE U W Q ?+?+?=- 式中: Q —— 热量; W —— 作功; ?U ——系统内能; ?KE ——系统动能; ?PE ——系统势能; ● 对于大多数工程传热问题:0==PE KE ??; ● 通常考虑没有做功:0=W , 则:U Q ?=; ● 对于稳态热分析:0=?=U Q ,即流入系统的热量等于流出的热量; ● 对于瞬态热分析:dt dU q = ,即流入或流出的热传递速率q 等于系统内能的变化。 三、热传递的方式 1、热传导 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热传导遵循付里叶定律:dx dT k q -='',式中''q 为热流

ansys热分析

第三章稳态热分析 3.1稳态传热的定义 ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和 ANSYS/Professional这些产品支持稳态热分析。稳态传热用于分析稳定的热载荷对系统或部件的影响。通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。 稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。这些热载荷包括: 对流 辐射 热流率 热流密度(单位面积热流) 热生成率(单位体积热流) 固定温度的边界条件 稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。当然,如果在分析中考虑辐射,则分析也是非线性的。 3.2热分析的单元 ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。单元名采用大写,所有的单元都可用于稳态和瞬态热分析。其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。这些热分析单元如下: 表3-1二维实体单元 单元维数形状及特点自由度 PLANE35 二维六节点三角形单元温度(每个节点) PLANE55 二维四节点四边形单元温度(每个节点) PLANE75 二维四节点谐单元温度(每个节点) PLANE77 二维八节点四边形单元温度(每个节点) PLANE38 二维八节点谐单元温度(每个节点)

ANSYS结构分析教程篇

ANSYS结构分析基础篇 一、总体介绍 进行有限元分析的基本流程: 1.分析前的思考 1)采用哪种分析(静态,模态,动态...) 2)模型是零件还是装配件(零件可以form a part形成装配件,有时为了划分六 面体网格采用零件,但零件间需定义bond接触) 3)单元类型选择(线单元,面单元还是实体单元) 4)是否可以简化模型(如镜像对称,轴对称) 2.预处理 1)建立模型 2)定义材料 3)划分网格 4)施加载荷及边界条件 3.求解 4.后处理 1)查看结果(位移,应力,应变,支反力) 2)根据标准规范评估结构的可靠性 3)优化结构设计 高阶篇: 一、结构的离散化 将结构或弹性体人为地划分成由有限个单元,并通过有限个节点相互连接的离散系统。 这一步要解决以下几个方面的问题: 1、选择一个适当的参考系,既要考虑到工程设计习惯,又要照顾到建立模型的方便。 2、根据结构的特点,选择不同类型的单元。对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。 3、根据计算分析的精度、周期及费用等方面的要求,合理确定单元的尺寸和阶次。 4、根据工程需要,确定分析类型和计算工况。要考虑参数区间及确定最危险工况等问题。 5、根据结构的实际支撑情况及受载状态,确定各工况的边界约束和有效计算载荷。 二、选择位移插值函数 1、位移插值函数的要求 在有限元法中通常选择多项式函数作为单元位移插值函数,并利用节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式。 位移插值函数需要满足相容(协调)条件,采用多项式形式的位移插值函数,这一条件始终可以满足。

ANSYS稳态热分析的基本过程和实例

ANSYS稳态热分析的基本过程 ANSYS热分析可分为三个步骤: ?前处理:建模、材料和网格 ?分析求解:施加载荷计算 ?后处理:查看结果 1、建模 ①、确定jobname、title、unit; ②、进入PREP7前处理,定义单元类型,设定单元选项; ③、定义单元实常数; ④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可 以是恒定的,也可以随温度变化; ⑤、创建几何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。 2、施加载荷计算 ①、定义分析类型 ●如果进行新的热分析: Command: ANTYPE, STATIC, NEW GUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state ●如果继续上一次分析,比如增加边界条件等: Command: ANTYPE, STATIC, REST GUI: Main menu>Solution>Analysis Type->Restart ②、施加载荷 可以直接在实体模型或单元模型上施加五种载荷(边界条件) : a、恒定的温度 通常作为自由度约束施加于温度已知的边界上。 Command Family: D GUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperature b、热流率 热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。 注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要

有限元分析基础教程(ANSYS算例)(曾攀)

有限元分析基础教程Fundamentals of Finite Element Analysis (ANSYS算例) 曾攀 清华大学 2008-12

有限元分析基础教程曾攀 有限元分析基础教程 Fundamentals of Finite Element Analysis 曾攀 (清华大学) 内容简介 全教程包括两大部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。本书以基本变量、基本方程、求解原理、单元构建、典型例题、MATLAB程序及算例、ANSYS算例等一系列规范性方式来描述有限元分析的力学原理、程序编制以及实例应用;给出的典型实例都详细提供有完整的数学推演过程以及ANSYS实现过程。本教程的基本理论阐述简明扼要,重点突出,实例丰富,教程中的二部分内容相互衔接,也可独立使用,适合于具有大学高年级学生程度的人员作为培训教材,也适合于不同程度的读者进行自学;对于希望在MATLAB程序以及ANSYS平台进行建模分析的读者,本教程更值得参考。 本基础教程的读者对象:机械、力学、土木、水利、航空航天等专业的工程技术人员、科研工作者。

目录 [[[[[[\\\\\\ 【ANSYS算例】3.3.7(3) 三梁平面框架结构的有限元分析 1 【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较 3 【ANSYS算例】5.3(8) 平面问题斜支座的处理 6 【ANSYS算例】6.2(2) 受均匀载荷方形板的有限元分析9 【ANSYS算例】6.4.2(1) 8万吨模锻液压机主牌坊的分析(GUI) 15 【ANSYS算例】6.4.2(2) 8万吨模锻液压机主牌坊的参数化建模与分析(命令流) 17 【ANSYS算例】7.2(1) 汽车悬挂系统的振动模态分析(GUI) 20 【ANSYS算例】7.2(2) 汽车悬挂系统的振动模态分析(命令流) 23 【ANSYS算例】7.3(1) 带有张拉的绳索的振动模态分析(GUI) 24 【ANSYS算例】7.3(2) 带有张拉的绳索的振动模态分析(命令流) 27 【ANSYS算例】7.4(1) 机翼模型的振动模态分析(GUI) 28 【ANSYS算例】7.4(2) 机翼模型的振动模态分析(命令流) 30 【ANSYS算例】8.2(1) 2D矩形板的稳态热对流的自适应分析(GUI) 31 【ANSYS算例】8.2(2) 2D矩形板的稳态热对流的自适应分析(命令流) 33 【ANSYS算例】8.3(1) 金属材料凝固过程的瞬态传热分析(GUI) 34 【ANSYS算例】8.3(2) 金属材料凝固过程的瞬态传热分析(命令流) 38 【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI) 39 【ANSYS算例】8.4(2) 升温条件下杆件支撑结构的热应力分析(命令流) 42 【ANSYS算例】9.2(2) 三杆结构塑性卸载后的残余应力计算(命令流) 45 【ANSYS算例】9.3(1) 悬臂梁在循环加载作用下的弹塑性计算(GUI) 46 【ANSYS算例】9.3(2) 悬臂梁在循环加载作用下的弹塑性计算(命令流) 49 附录 B ANSYS软件的基本操作52 B.1 基于图形界面(GUI)的交互式操作(step by step) 53 B.2 log命令流文件的调入操作(可由GUI环境下生成log文件) 56 B.3 完全的直接命令输入方式操作56 B.4 APDL参数化编程的初步操作57

Ansys 第 例瞬态热分析实例一水箱

第33例瞬态热分析实例——水箱 本例介绍了利用ANSYS进行瞬态热分析的方法和步骤、瞬态热分析时材料模型所包含的内容,以及模型边界条件和初始温度的施加方法。 33.1概述 热分析是计算热应力的基础,热分析分为稳态热分析和瞬态热分析,稳态热分析将在后面两个例子中介绍,本例介绍瞬态热分析。 33.1.1 瞬态热分析的定义 瞬态热分析用于计算系统随时间变化的温度场和其他热参数。一般用瞬态热分析计算温度场,并找到温度梯度最大的时间点,将此时间点的温度场作为热载荷来进行应力计算。 33.1.2 嚼态热分析的步骤 瞬态热分析包括建模、施加载荷和求解、查看结果等几个步骤。 1.建模 瞬态热分析的建模过程与其他分析相似,包括定义单元类型、定义单元实常数、定义材料特性、建立几何模型和划分网格等。 注意:瞬态热分析必须定义材料的导热系数、密度和比热。 2.施加载荷和求解 (1)指定分析类型, Main Menu→Solution→Analysis Type→New Analysis,选择 Transient。 (2)获得瞬态热分析的初始条件。 定义均匀的初始温度场:Main Menu→Solution→Define Loads→Settings→Uniform Temp,初始温度仅对第一个子步有效,而用Main Menu →Solution→Define Loads→Apply→Thermal→Temperature命令施加的温

度在整个瞬态热分析过程中均不变,应注意二者的区别。 定义非均匀的初始温度场:如果非均匀的初始温度场是已知的,可以用Main Menu→Solution→Define Loads→Apply→Initial Condit'n→Define 即IC命令施加。非均匀的初始温度场一般是未知的,此时必须先进行行稳态分析确定该温度场。该稳态分析与一般的稳态分析相同。 注意:要设定载荷(如已知的温度、热对流等),将时间积分关闭,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay;设定只有一个子步,时间很短(如(0.01s)的载荷步, Main Menu→Solution→Load Step Opts→Time/Frequenc→Time →Time Step。 (3)设置载荷步选项。 普通选项包括每一载荷步结束的时间、每一载荷步的子步数、阶跃选项等,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time-Time Step. 非线性选项包括:迭代次数(默认25),选择Main Menu→Solution→Load Step Opts→Nonlinear→Equilibrium Iter;打开自动时间步长,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step:将时间积分打开,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay. 输出选项包括:控制打印的输出,选择Main Menu→Solution→Load Step Opts→Output Ctrls→Solu Printout; 结果文件的输出,选择Main Menu →Solution→Load Step Opts→Output Ctrls→DB/Results File.

一个经典的ansys热分析实例(流程序)

/PREP7 /TITLE,Steady-state thermal analysis of pipe junction /UNITS,BIN ! 英制单位;Use U. S. Customary system of units (inches) ! /SHOW, ! Specify graphics driver for interactive run ET,1,90 ! Define 20-node, 3-D thermal solid element MP,DENS,1,.285 ! Density = .285 lbf/in^3 MPTEMP,,70,200,300,400,500 ! Create temperature table MPDATA,KXX,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12 ! 指定与温度相对应的数据材料属性;导热系数;Define conductivity values MPDATA,C,1,,.113,.117,.119,.122,.125 ! Define specific heat values(比热) MPDATA,HF,2,,426/144,405/144,352/144,275/144,221/144 ! Define film coefficient;除144是单位问题,上面的除12也是单元问题 ! Define parameters for model generation RI1=1.3 ! Inside radius of cylindrical tank RO1=1.5 ! Outside radius Z1=2 ! Length RI2=.4 ! Inside radius of pipe RO2=.5 ! Outside pipe radius Z2=2 ! Pipe length CYLIND,RI1,RO1,,Z1,,90 ! 90 degree cylindrical volume for tank WPROTA,0,-90 ! 旋转当前工作的平面;从Y到Z旋转-90度;;Rotate working plane to pipe axis CYLIND,RI2,RO2,,Z2,-90 ! 角度选择在了第四象限;90 degree cylindrical volume for pipe WPSTYL,DEFA ! 重新安排工作平面的设置;另外WPSTYL,STAT to list the status of the working plane;;Return working plane to default setting BOPT,NUMB,OFF ! 关掉布尔操作的数字警告信息;Turn off Boolean numbering warning VOVLAP,1,2 ! 交迭体;Overlap the two cylinders /PNUM,VOLU,1 ! 体编号打开;Turn volume numbers on /VIEW,,-3,-1,1

ansys热分析例题

问题描述:一个30公斤重、温度为70℃的铜块,以及一个20公斤重、温度为80℃的铁块,突然放入温度为20℃、盛满了300升水的、完全绝热的水箱中,如图所示。过了一个小时,求铜块与铁块的最高温度(假设忽略水的流动)。 材料热物理性能如下:热性能单位制 铜铁水 导热系数W/m℃ 383 37 密度Kg/m 8889 7833 996 比热J/kg℃ 390 448 4185 菜单操作过程: 一、设置分析标题 1、选择“Utility Menu>File>Change Jobname”,输入文件名Transient1。 2、选择“Utility Menu>File>Change Title”输入Thermal Transient Exercise 1。 二、定义单元类型 1、选择“Main Menu>Preprocessor”,进入前处理。 2、选择“Main Menu>Preprocesor>Element Type>Add/Edit/Delete”。选择热平面单元plane77。 三、定义材料属性 1、选择“Main Menu>Preprocessor>Material Props>Material Models”,在弹出的材料定义窗口中顺序双击Thermal选项。 2、点击Conductivity,Isotropic,在KXX框中输入383;点击Density,在DENS框中输入8898;点击Specific Heat,在C框中输入390。 3、在材料定义窗口中选择Material>New Model,定义第二种材料。 4、点击Conductivity,Isotropic,在KXX框中输入70;点击Density,在DENS框中输入7833;点击Specific Heat,在C框中输入448。 5、在材料定义窗口中选择Material>New Model,定义第三种材料。 6、点击Conductivity,Isotropic,在KXX框中输入.61;点击Density,在DENS框中输入996;点击Specific Heat,在C框中输入4185。 四、创建几何模型 1、选择“Main Menu>Preprocessor>-Modeling->Create>-Areas->Retangle>By Dimensions”,输入X1=0, Y1=0, X2=, Y2=, 点击Apply;输入X1=, Y1=, X2= ,Y2=, 点击Apply;输入X1= Y1=, X2= Y2=+, 选择OK。 2、选择“Main Menu>Preprocessor>-Modeling->Operate>Booleans>Overlap”,选择Pick All。 3、选择“Utility Menu>Plotctrls>Numbering>Areas, on”。 4、选择“Utility Menu>Plot>Areas”。 五、划分网格 1、选择“Main Menu>Preprocessor>-Attributes->Define->All Areas”,选择材料1。 2、选择“Main Menu>Preprocessor>Meshing->Size Cntrls->-Manualsize->-Global->Size”,输入单元大小。 3、选择“Main Menu>Preprocessor>Meshing->Mesh->-Areas->Mapped>3 or 4 sided”,选择铜块。 4、选择“Main Menu>Preprocessor>-Attributes->Define->All Areas”,选择材料2。 5、选择“Main Menu>Preprocessor>Meshing->Mesh->-Areas->Mapped>3 or 4 sided”,选

Ansys模拟水结冰的热分析过程

Ansys模拟水结冰的热分析过程 一、问题描述: 对一茶杯水的结冰过程进行分析,水和茶杯的初始温度为0℃,环境温度为-10℃,杯子侧面和顶面的对流换热系数为12.5W/m^2·℃,杯子放在桌面上,假设桌面可以对杯子底面提供-10℃的温度载荷。计算3000s之后的温度分布。 模型如下: 茶杯底面外径54.41mm,内径50mm,高度85mm,顶面内径60mm,抽壳厚度为5mm(内部水的高度80mm)。 分析采用SI单位制,水的材料属性如下: 导热率:0.6 密度:1000 比热容:4200

焓值: 温度℃-10 -1 0 10 焓J/m^3 0 37.8e6 79.8e6 121.8e6 茶杯采用铁的材料属性: 导热率:70 密度:7833 比热容:448 二、问题分析: 本例采用70热单元进行分析,由于对称性,采用1/4模型进行建模分析。由于包含相变分析,因此水的焓值是必要的。假设温度0℃的水结成0℃的冰需要放出42000J/kg·℃的热量,通过定义焓值来实现。假设温度区间长度为1℃,因此温度低于-1℃,表示水已结成冰。本例通过apdl进行分析,方便输入及调试。 三、分析步骤: 1、定义工程名及标题 fini /cle !清除数据库 /filname.shuijiebing,1 !此处设置工作名 /title,lovz !此处设置标题 *afun deg !定义角度为度 2、进入前处理,定义单元及材料属性 /prep7 !进入前处理模块

et,1,70 !定义70单元 mp,kxx,1,0.6 !设置材料属性 mp,c,1,4200 mp,dens,1,1000 mptemp,1,-10,-1,0,10 mpdata,enth,1,1,0,37.8e6,79.8e6,121.8e6 !焓值定义mp,kxx,2,70 mp,dens,2,7833 mp,c,2,448 这里定义1号材料为水,2号材料为茶杯 3、定义参数 r1=50e-3 r2=60e-3 r3=54.41e-3 r4=65e-3 h1=80e-3 h2=85e-3 4、建模 wprot,,-90 !旋转工作平面 /pnum,volu,1 !打开体积显示 /view,1,1,1,1 !Iso视角 cone,r1,r2,0,h2,0,90 !建立水的1/4圆台模型

ANSYS热分析指南

ANSYS热分析指南 第一章简介 1.1热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,我们一般关心的参数有: 温度的分布 热量的增加或损失 热梯度 热流密度 热分析在许多工程应用中扮演着重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等等。通常在完成热分析后将进行结构应力分析,计算由于热膨胀或收缩而引起的热应力。 1.2ANSYS中的热分析 ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Professional、 ANSYS/FLOTRAN四种产品中支持热分析功能。ANSYS热分析基于由能量守恒原理导出的热平衡方程,有关细节,请参阅《ANSYS Theory Reference》。ANSYS使用有限元法计算各节点的温度,并由其导出其它热物理参数。 ANSYS可以处理所有的三种主要热传递方式:热传导、热对流及热辐射。1.2.1对流 热对流在ANSYS中作为一种面载荷,施加于实体或壳单元的表面。首先需要输入对流换热系数和环境流体温度,ANSYS将计算出通过表面的热流量。如果对流换热系数依赖于温度,可以定义温度表,以及在每一个温度点处的对流换热系数。 1.2.2辐射 ANSYS提供了四种方法来解决非线性的辐射问题: 辐射杆单元(LINK31) 使用含热辐射选项的表面效应单元(SURF151-2D,或SURF152-3D)

在AUX12中,生成辐射矩阵,作为超单元参与热分析 使用Radiosity求解器方法 有关辐射的详细描述请阅读本指南第四章。 1.2.3特殊的问题 除了前面提到的三种热传递方式外,ANSYS热分析还可以解决一些诸如:相变(熔融与凝固)、内部热生成(如焦耳热)等的特殊问题。例如,可使用热质点单元MASS71模拟随温度变化的内部热生成。 1.3热分析的类型 ANSYS支持两种类型的热分析: 1.稳态热分析确定在稳态的条件下的温度分布及其他热特性,稳态条件指热量随时间的变化可以忽略。 2.瞬态热分析则计算在随时间变化的条件下,温度的分布和热特性。 1.4耦合场分析 ANSYS中可与热分析进行耦合的方式有热—结构、热-电磁等。耦合场分析可以使用ANSYS中的矩阵耦合单元,或者在独立的物理环境中使用序惯荷载耦合。有关耦合场分析的详细描述,请参阅《ANSYS Coupled-Field Analysis Guide》。 1.5关于菜单路径和命令语法 在本指南中,您将会看到相关的ANSYS命令及其等效的菜单路径。这些参考的命令仅仅包括命令名,因为并不总是需要指定所有的参数,而且不同的参数组合会有不同的作用。有关ANSYS命令的更多的叙述,请参考《ANSYS Commands Reference》。 菜单路径将近可能完整得列出。对于多数情况,选择菜单就能够完成所需要的功能;但还有一些情况,选择文中所示菜单后会弹出一个菜单或是对话框,由此定义其他的选项来执行一些特定的任务。 第二章基础知识 2.1符号与单位

ANSYS基础教程—APDL基础

ANSYS基础教程—APDL基础 发表时间:2011-3-17 关键字:ANSYS ANSYS教程 APDL基础 信息化调查找茬投稿收藏评论好文推荐打印社区分享 本文主要介绍APDL基础功能,包括:定义参数、利用参数、获取数据库信息方面展开。 概述 ·APDL 是ANSYS 参数化设计语言的缩写,它是一种允许使用参数并能完成一系列任务的强大的程序语言。 ·使用APDL, 可以: –用参数而不是用数值输入模型尺寸,材料类型等。 –从ANSYS 数据库中获取信息, 比如节点位置或最大应力。 –在参数中进行数学运算,包括矢量和矩阵运算。 –把常用的命令或宏定义成缩写形式。 –建立一个宏使用if-then-else分支和do循环等来执行一系列任务。 A. 定义参数 ·用以下格式定义参数 Name=Value –可以在输入窗口或标量参数对话框中输入(Utility Menu > Parameters > Scalar Parameters...) –参数名不能超过8个字符。 –值可以是一个数值,一个以前定义过的参数,一个函数,一个参数表达式,或者一个字符串(用单引号括住)。

·例子: inrad=2.5 g=386 outrad=8.2 massdens=density/g numholes=4 circumf=2*pi*rad thick=outrad-inrad area=pi*r**2 e=2.7e6 dist=sqrt((y2-y1)**2+(x2-x1)**2) density=0.283 slope=(y2-y1)/(x2-x1) bb=cos(30) theta=atan(slope) pi=acos(-1) jobname=‘proj1’ 用*SET 看有用参数列表 ·以上例子是关于标量参数的, 它只有一个值—数字或者字符。 ·ANSYS 也提供数组参数, 它有若干个值。数字数组和字符数组都是有效的。字符数组在本教程中不讨论。

ANSYS传热分析实例汇总

实例1: 某一潜水艇可以简化为一圆筒,它由三层组成,最外面一层为不锈钢,中间为玻纤隔热层,最里面为铝层,筒内为空气,筒外为海水,求内外壁面温度及温度分布。 几何参数: 筒外径30 feet 总壁厚 2 inch 不锈钢层壁厚0、75 inch 玻纤层壁厚 1 inch 铝层壁厚0、25 inch 筒长200 feet 导热系数不锈钢8、27 BTU/hr、ft、o F 玻纤0、028 BTU/hr、ft、o F 铝117、4 BTU/hr、ft、o F 边界条件空气温度70 o F 海水温度44、5 o F 空气对流系数2、5 BTU/hr、ft2、o F 海水对流系数80 BTU/hr、ft2、o F 沿垂直于圆筒轴线作横截面,得到一圆环,取其中1度进行分析,如图示。 以下分别列出log文件与菜单文件。 /, Steady1 /title, Steady-state thermal analysis of submarine /units, BFT Ro=15 !外径(ft) Rss=15-(0、75/12) !不锈钢层内径ft) Rins=15-(1、75/12) !玻璃纤维层内径(ft)

Ral=15-(2/12) !铝层内径(ft) Tair=70 !潜水艇内空气温度 Tsea=44、5 !海水温度 Kss=8、27 !不锈钢的导热系数(BTU/hr、ft、oF) Kins=0、028 !玻璃纤维的导热系数(BTU/hr、ft、oF) Kal=117、4 !铝的导热系数(BTU/hr、ft、oF) Hair=2、5 !空气的对流系数(BTU/hr、ft2、oF) Hsea=80 !海水的对流系数(BTU/hr、ft2、oF) /prep7 et,1,plane55 !定义二维热单元 mp,kxx,1,Kss !设定不锈钢的导热系数 mp,kxx,2,Kins !设定玻璃纤维的导热系数 mp,kxx,3,Kal !设定铝的导热系数 pcirc,Ro,Rss,-0、5,0、5 !创建几何模型 pcirc,Rss,Rins,-0、5,0、5 pcirc,Rins,Ral,-0、5,0、5 aglue,all numcmp,area lesize,1,,,16 !设定划分网格密度 lesize,4,,,4 lesize,14,,,5 lesize,16,,,2 eshape,2 !设定为映射网格划分 mat,1 amesh,1 mat,2 amesh,2 mat,3 amesh,3 /SOLU SFL,11,CONV,HAIR,,TAIR !施加空气对流边界 SFL,1,CONV,HSEA,,TSEA !施加海水对流边界 SOLVE /POST1 PLNSOL !输出温度彩色云图

ANSYS_热分析(两个实例)有限元热分析上机指导书

第四讲 热分析上机指导书 CAD/CAM 实验室,USTC 实验要求: 1、通过对冷却栅管的热分析练习,熟悉用ANSYS 进行稳态热分析的基本过程,熟悉用直接耦合法、间接耦合法进行热应力分析的基本过程。 2、通过对铜块和铁块的水冷分析,熟悉用ANSYS 进行瞬态热分析的基本过程。 内容1:冷却栅管问题 问题描述:本实例确定一个冷却栅管(图a )的温度场分布及位移和应力分布。一个轴对称的冷却栅结构管内为热流体,管外流体为空气。冷却栅材料为不锈钢,特性如下: 导热系数: W/m ℃ 弹性模量:×109 MPa 热膨胀系数:×10-5 /℃ 泊松比: 边界条件: (1)管内:压力: MPa 流体温度:250 ℃ 对流系数 W/m 2℃ (2)管外:空气温度39℃ 对流系数: W/m 2℃ 假定冷却栅管无限长,根据冷却 栅结构的对称性特点可以构造出的有限元模型如图b 。其上下边界承受边界约束,管内部承受均布压力。 练习1-1:冷却栅管的稳态热分析 步骤: 定义工作文件名及工作标题 定义工作文件名:GUI: Utility Menu> File> Change Jobname ,在弹出的【Change Jobname 】对话框中输入文件名Pipe_Thermal ,单击OK 按钮。 定义工作标题:GUI: Utility Menu> File> Change Title ,在弹出的【Change Title 】对话框中2D Axisymmetrical Pipe Thermal Analysis ,单击OK 按钮。 关闭坐标符号的显示:GUI: Utility Menu> PlotCtrls> Window Control> Window Options ,在弹出的【Window Options 】对话框的Location of triad 下拉列表框中选择No Shown 选项,单击OK 按钮。 定义单元类型及材料属性 定义单元类型:GUI: Main Menu> Preprocessor> Element Type> Add/Edit>Delete 命令,弹出【Element Types 】对话框,单击Add 按钮,弹出【Library Type 】对话框,选择Thermal Solid Quad 8node 77选项,单击OK 按钮。 设置单元选项:单击【Element Type 】对话框的Options 按钮,弹出【Plane77 element type options 】对话框,在Element behavior 下拉列框中选择Axisymmetrical 选项,单击OK 按钮,单击Close 按钮。 设置材料属性:GUI: Main Menu> Preprocessor> Material Props> Material Models ,弹出【Define () ()

ANSYS热应力分析--精选实例.docx

ANSYS 热应力分析实例 当一个结构加热或冷却时,会发生膨胀或收缩。如果结构各部分之间膨胀收 缩程度不同,和结构的膨胀、收缩受到限制,就会产生热应力。 热应力分析的分类 ANSYS提供三种进行热应力分析的方法: 在结构应力分析中直接定义节点的温度。如果所以节点的温度已知,则可以 通过命令直接定义节点温度。节点温度在应力分析中作为体载荷,而不是节点自由度 间接法。首先进行热分析,然后将求得的节点温度作为体载荷施加在结构应 力分析中。 直接法。使用具有温度和位移自由度的耦合单元,同时得到热分析和结构应 力分析的结果。 如果节点温度已知,适合第一种方法。但节点温度一般是不知道的。对于大多数问题,推荐使用第二种方法—间接法。因为这种方法可以使用所有热分析的功能和结构分析的功能。如果热分析是瞬态的,只需要找出温度梯度最大的时间点,并将此时间点的节点温度作为荷载施加到结构应力分析中去。如果热和结构的耦合是双向的,即热分析影响结构应力分析,同时结构变形又会影响热分析(如大变形、接触等),则可以使用第三种直接法—使用耦合单元。此外只有第三种方法可以考虑其他分析领域(电磁、流体等)对热和结构的影响。 间接法进行热应力分析的步骤 首先进行热分析。可以使用热分析的所有功能,包括传导、对流、辐射和表 面效应单元等,进行稳态或瞬态热分析。但要注意划分单元时要充分考虑结构分

析的要求。例如,在有可能有应力集中的地方的网格要密一些。如果进行瞬态分析,在后处理中要找出热梯度最大的时间点或载荷步。 热单元结构单元 LINK32LINK1 LINK33LINK8 PLANE35PLANE2 PLANE55PLANE42 SHELL57SHELL63 PLANE67PLANE42 LINK68LINK8 SOLID79SOLID45 MASS71MASS21 PLANE75PLANE25 PLANE77PLANE82 PLANE78PLANE83 PLANE87PLANE92 PLANE90PLANE95 SHELL157SHELL63 重新进入前处理,将热单元转换为相应的结构单元,表7-1 是热单元与结构单元的对应表。可以使用菜单进行转换:

ANSYS入门教程

ANSYS入门教程;ANSYS的启动与退出 启动ANSYS 15.0 (1)快速启动:在Window系统中执行"开始>程序>ANSYS 15.0>Mechanical A PDL (ANSYS)"命令,如图1-9(a)所示菜单,就可以快速启动ANSYS 15.0,采用的用户环境默认为上一次运行的环境配置。 (2)交互式启动:在Windows系统中执行“开始> 程序> ANSYS 15.0 > Mec hanical APDL Product Launcher”命令,如图1-9(b)所示菜单,就是以交互式启动A NSYS 15.0。 建议用户选用交互式启动,这样可防止上一次运行的结果文件被覆盖掉,并且还可以重新选择工作目录和工作文件名,便于用户管理。 退出ANSYS 15.0 (1)命令方式:/EXIT。 (2)GUI路径:用户界面中用鼠标单击ANSYS Toolbar(工具条)中的“QUIT”按钮,或Utility Menu > File > EXIT,出现ANSYS 15.0程序退出对话框,如图1-10所示。 (3)在ANSYS 15.0 输出窗口单击关闭按钮。 注意: 采用第一种和第三种方式退出时,ANSYS直接退出ANSYS;而采用第二种方式时,退出ANSYS前要求用户对当前的数据库(几何模型、载荷、求解结果及三者的组合,或什么都不保存)进行选择性操作,因此建议用户采用第二种方式退出。

【精品文档】 2 ANSYS 15.0 的图形用户界面 启动ANSYS 15.0并设定工作目录和工作文件名后,将进入如图1-11所示的ANSY S 15.0的GUI 界面(Graphical User Interface ,图形用户界面),其主要包括以下几个部分。 1.菜单栏 包括文件操作(File )、选择功能(Select )、数据列表(List )、图形显示(Plot )、视图环境控制(PlotCtrls )、工作平面(Workplane )、参数(Parameters )、宏命令(Macro )、菜单控制(MenuCtrls )和帮助(Help )10个下拉菜单,囊括了ANSYS 的绝大部分系统环境配置功能。在ANSYS 运行的任何时候均可以访问该菜单。 2.快捷工具条

相关主题
文本预览
相关文档 最新文档