当前位置:文档之家› 最新8-曲线与方程汇总

最新8-曲线与方程汇总

最新8-曲线与方程汇总
最新8-曲线与方程汇总

8-曲线与方程

第二章圆锥曲线与方程

2.1 曲线与方程

2.1.1曲线与方程

教材分析

曲线与方程是人教A版高中数学选修2-1第二章“圆锥曲线与方程”第一节的内容,这一

节具有承上启下的作用,在前面必修2部分已经学习了“直线的方程”、“圆的方程”.曲线与

方程是它们的上位概念,学生的学习是上位学习.在已有学习的基础上,进行由“特殊”到“一般”的进一步抽象提升,引出一般意义上曲线与方程的关系,体验“数”与“形”的转化与结合,

领会解析几何的基本思想方法——坐标法.同时介绍“求曲线的方程”的通法,为后续学习圆

锥曲线等储备理论基础.

课时分配

本课时是曲线与方程的第一课时,主要解决的是曲线与方程的关系和曲线方程与方程曲线的概念,为下一步用方程研究曲线的性质做好铺垫.

教学目标

重点: 通过理解方程的解与曲线上的点一一对应的关系,理解曲线的方程、方程的曲线的概念;体会解析几何的核心思想方法——坐标法.

难点:由特殊的“直线与圆”的方程,抽象出一般的曲线与方程的概念.

知识点:能说出曲线的方程和方程的曲线的概念的定义,并结合具体例子对定义进行解释.

可以求出简单曲线的方程,画出简单方程的曲线.

能力点:用合适的方式解释曲线的方程的作用,说明解析法的价值.

教育点:结合直线、圆或者其他图形的方程的研究过程,解释求一般的曲线方程的步骤和过程.

自主探究点:把自己在理解或解决曲线的方程和方程的曲线问题过程中的经验、困难或者教训与老师和同学交流,获得更好的理解和方法的改进.

考试点:把曲线(图形)看成点运动的结果,把对一个整体图形的研究变为对图上任意点的特点的研究.

易错易混点:自觉按照规范的步骤分析解决相关问题,说明中的自变量范围的界定.

拓展点:链接高考.

教具准备实物投影机和粉笔

课堂模式诱思探究

一、创设情境

师:在必修2关于几何问题的学习中,我们讨论的对象是直线和圆,然而直线和圆我们在初中都做了非常系统、深入的研究,那么,与初中相比,高中主要做的应该是什么呢?

生:用解析的方法,用方程来研究.

师:那么借助直线或圆的方程我们都研究过哪些问题了?

生:直线的位置关系(如平行、相交、重合),直线与圆的位置关系、圆与圆的位置关系……

老师在学生回答的基础上从如下几个方面做总结提升:

第一,对比初、高中对直线和圆的研究,我们发现,研究的问题都是相似的,但是研究的方法不同.初中是借助平面几何图形复杂的推理论证解决问题,而高中是利用方程,凭借几条简单的数的运算法则解决问题的.

第二,在今后的学习中,我们会发现方程的作用很强大,利用方程我们可以研究更多的几何图形(曲线),对几何图形的认识会更加深入、更加细致.

师:本节课,我们将继续研究一般曲线与方程的关系,进一步体会曲线、方程两个不同领域的对象是怎样结合在一起的.

【设计意图】从学生的认知基础出发,讨论初中、高中在研究直线、圆两个几何对象的异同点.高中主要是对这些几何对象和它们间的关系用代数的、主要是方程的方法、方程的语言做了重新的描述,于是,这些几何对象、几何关系就成为了代数的对象、代数的关系,实现了几何问题代数化.把借助形象、综合的几何性质进行推理的问题变成了代数运算问题(机械化,借助于几条稳定的而可靠的运算性质得到更为丰富的结论),对对象的认识更加准确. 进一步激发学生对一般曲线与方程关系的研究兴趣.

二、探究新知

先请学生独立解决如下几个问题:

例1 写出下列曲线的方程

⑴第一、三象限角分线

⑵圆()4122

=+-y x 关于y 轴的对称图形 ⑶设动点M 与两条坐标轴的距离的积是1,求动点M 的轨迹方程.

例2 写出下列曲线的方程

-2

2y

x

o -22

学生独立解决的过程中教师进行巡视、观察,了解学生在解决问题过程中的智慧与困难,然后组织学生将自己的想法和困惑在全班交流.

师:大家觉得这些题目哪个最熟悉,解决起来很容易?

生:例1中前两个题目.

师:哪些题目看似熟悉,但又与我们之前学习的曲线不太一样?

生:例2的题目.

师:哪个解决起来最困难?

生:例1(3).

【设计意图】学生会根据自己对题目的熟悉程度,将问题分类,这些问题有旧有新,通过组织学生交流反思,引导学生不断认识自己的发展.

(1)对熟悉的曲线如何求出方程

师:好,那我们从大家认为最简单的问题说起.例1(1)的方程是什么?

生1:x y =

师:这个方程怎么得到的?

生1:第一、三象限角分线是直线,倾斜角是45?, 所以斜率是1.

师:只有斜率就确定直线了?

生1:直线过原点.

师:很好,她发现角平分线是一条直线,确定直线需要两个要素(一点一斜率或两点),她抓住了一点一斜率,确定了直线的方程.例1(2)的方程是什么?

生2:()4122

=++y x . 师:这个方程怎么得到的?

生2:由已知圆的方程求出圆心和半径,再根据对称性求出所求圆的圆心坐标为()0,1-,半径不变.

师:好,圆()4122

=++y x 关于y 轴的对称图形还是圆,他抓住了确定圆的两个要素:圆心和半径得到了对称后圆的方程.

师:大家为什么觉得这两个题目比较简单,容易写出方程?

生:图形比较明确,就是熟悉的直线和圆.

师:对于我们熟悉的曲线(如直线、圆),找到确定这些几何对象的要素(直线:一点一斜率;圆:圆心、半径)利用待定系数的方法就可以直接写出方程了.

(2)对看似熟悉,但不“完整”的曲线如何求出方程

师:哪些题目看似熟悉,但又与我们之前学习的曲线不太一样?

生:例2的题目.

师:好,那我们把大家的答案一起交流一下.例2(1)的方程是什么?

生3:)0(1≠=y x .

师:为什么要加一个限制条件?

生3:因为图像与x 轴的交点被抠掉了.在方程中就要把0,1==y x 这个解去掉. 师:如果不加限制,这个方程所表示的曲线是什么?

生3:垂直于x 轴的整条直线!

师:例2(2)的方程是什么?

生4:)10(01≤≤=-+x y x .

师:为什么要加这个范围?

生4:图形是线段,是直线的一部分.在方程中就要给x 加限制.

师:能不能不给x 加限制,只给y 加限制?如10≤≤y .

生:可以,它们是一一对应的.

师:我也看到有的同学把限制条件写成0≥x 或1≤x ,这样可以吗?

生:不行,这样方程代表的是射线不是线段.

师 :例2(3)的方程是什么?

生:)10,10(122≤≤≤≤=+y x y x .

师:为什么刚才只给一个变量加以限制,现在要加两个?

生:一个x 对应两个y .

圆锥曲线与方程练习题

《圆锥曲线与方程》单元测试 姓名_____________ 学号__________ 成绩____________ 一、选择题:本大题共10小题,每小题5分,共50分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.直线过抛物线24y x =的焦点,与抛物线交于A(x 1, y 1)、B(x 2, y 2)两点,如果x 1 + x 2 = 6,那么AB 等于 ( ) A.10 B.8 C.7 D.6 2.已知双曲线12222=-b y a x 的一条渐近线方程为x 43 y =,则双曲线的离心率为 ( ) A.35 B.34 C.45 D.23 3.以(-6,0),(6,0)为焦点,且经过点(-5,2)的双曲线的标准方程是( ) A. 1201622=-y x B.1201622=-x y C.1162022=-y x D.116 2022=-x y 4.方程 22 125-16x y m m +=+表示焦点在y 轴上的椭圆,则m 的取值范围是 ( ) A.1625m -<< B.9162m -<< C.9252m << D.92 m > 5.过双曲线22149 x y -=的右焦点F 且斜率是32的直线与双曲线的交点个数是( ) A.0个 B.1个 C.2个 D.3个 6.抛物线2y x =上的点到直线24x y -=的最短距离是( ) A.35 B.553 C.552 D.105 3 7.抛物线x y 122=截直线12+=x y 所得弦长等于( ) A. 15 B.152 C. 2 15 D.15 8.设12,F F 是椭圆164942 2=+y x 的两个焦点,P 是椭圆上的点,且3:4:21=PF PF ,则 21F PF ?的面积为( ) A.4 B.6 C.22 D.24 9.如图,圆O 的半径为定长r ,A 是圆O 外一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和直线OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线

“圆锥曲线与方程”复习讲义

“圆锥曲线与方程”复习讲义 高考《考试大纲》中对“圆锥曲线与方程”部分的要求: (1) 圆锥曲线 ①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. ②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. ③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. ④了解圆锥曲线的简单应用. ⑤ 理解数形结合的思想. (2)曲线与方程:了解方程的曲线与曲线的方程的对应关系. 第一课时 椭 圆 一、基础知识填空: 1.椭圆的定义:平面内与两定点F 1 ,F 2的距离的和__________________的点的轨迹叫做椭圆。 这两个定点叫做椭圆的_________ , 两焦点之间的距离叫做椭圆的________. 2.椭圆的标准方程:椭圆)0b a (1 b y a x 22 22>>=+的中心在______,焦点在_______轴上, 焦点的坐标分别是是F 1 ______,F 2 ______; 椭圆)0b a (1 b x a y 22 22>>=+的中心在______,焦点在_______轴上,焦点的坐标 分别是F 1 _______,F 2 ______. 3.几个概念:椭圆与对称轴的交点,叫作椭圆的______.a 和b 分别叫做椭圆的______长和______长。 椭圆的焦距是_________. a,b,c 的关系式是_________________。 椭圆的________与________的比称为椭圆的离心率,记作e=_____,e 的范围是_________. 二、典型例题: 例1.(2006全国Ⅱ卷文、理)已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦 点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 例2.(2007全国Ⅱ文)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( ) (A) 3 1 (B) 3 3 (C) 2 1 (D) 2 3 例3.(2005全国卷III 文、理)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) A B C .2 D 1 例4.(2007重庆文)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线04y 3=++x 有且仅有一个交点,则椭圆的长轴长为( ) (A )23 (B )62 (C )72 (D )24 三、基础训练: 1.(2007安徽文)椭圆142 2 =+y x 的离心率为( ) (A ) 23 (B )4 3 (C ) 22 (D )3 2 2.(2005春招北京理)设0≠abc ,“0>ac ”是“曲线c by ax =+2 2为椭圆”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件 3.(2004福建文、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆

高中数学考点-曲线与方程

9.5曲线与方程 1.曲线与方程 一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)______________________________________; (2)______________________________________. 那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 2.求曲线方程的一般步骤 (1)建立适当的__________,用有序实数对(x,y)表示曲线上____________M的坐标; (2)写出__________________的点M的集合:P={M | p(M)}; (3)用__________表示条件p(M),列出方程f(x,y)=0; (4)化方程f(x,y)=0为____________形式; (5)说明以化简后的方程的________为坐标的________都在曲线上. 注:步骤(5)可以省略不写,如有特殊情况,可以作适当说明,另外,也可以根据情况省略步骤(2). 3.求曲线的轨迹方程的常用方法 (1)直接法:直接利用条件建立x,y之间的关系f(x,y)=0.也就是:建系设点、列式、代换、化简、证明,最后的证明可以省略,必要时加以说明. (2)定义法:先根据条件得出动点的轨迹是某种已知的曲线,再由曲线的定义直接写出动点的轨迹方程. (3)待定系数法:已知所求的曲线类型,先根据条件设出曲线方程,再由条件确定其待定系数. (4)相关点法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而变化,并且Q(x0,y0)又在某已知曲线上,首先用x,y表示x0,y0,再将x0,y0代入已知曲线得到要求的轨迹方程. (5)交轨法:动点P(x,y)是两动直线(或曲线)的交点,解决此类问题通常是通过解方程组得到交点(含参数)的坐标,再消去参数求出所求的轨迹方程. (6)参数法:当动点P(x,y)的坐标之间的关系不易找到,可考虑将x,y均用一中间变量(参数)表示,得参数方程,再消去参数得方程f(x,y)=0. (4)、(5)两种方法本质上也是参数法,只不过是多参数的参数方程或是隐性式的参数方程. 自查自纠 1.(1)曲线上点的坐标都是这个方程的解 (2)以这个方程的解为坐标的点都是曲线上的点 2.(1)坐标系任意一点(2)适合条件p (3)坐标(4)最简(5)解点 方程x2+xy+x=0表示的曲线是()

(完整word)19圆锥曲线与方程(中职数学春季高考练习题)

学校______________班级______________专业______________考试号______________姓名______________ 数学试题 圆锥曲线与方程 . 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟, 考试结束后,将本试卷和答题卡一并交回. . 本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01. 第Ⅰ卷(选择题,共60分) 30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项 . 设12F F 、 为定点,126F F =,动点M 满足128MF MF +=,则动点M 的轨迹是 A .椭圆 B .直线 C .圆 D .线段 . 若抛物线焦点在x 轴上,准线方程是3x =-,则抛物线的标准方程是 A .2 12y x = B .2 12y x =- C .2 6y x = D .2 6y x =- . 已知椭圆方程为 22 1916 x y +=,那么它的焦距是 A .10 B .5 C .7 D .27 . 抛物线2 6y x =-的焦点到准线的距离为 A .2 B .3 C .4 D .6 . 若椭圆满足4a =,焦点为()()0303-,,, ,则椭圆方程为 A . 22 1167 x y += B . 22 1169x y += C . 22 1167y x += D . 22 1169 y x += . 抛物线2 40y x +=上一点到准线的距离为8,则该点的横坐标为 A .7 B .6 C .7- D .6- . 一椭圆的长轴是短轴的2倍,则其离心率为 A .34 B . 32 C . 22 D .12 8. 椭圆的一个焦点与短轴的两个端点的连线互相垂直,则该椭圆的离心率是 A . 12 B . 32 C . 2 D . 14 9. 椭圆 22 1164 x y +=在y 轴上的顶点坐标是 A .()20±, B .()40±, C .()04±, D .()02±, 10. 若双曲线的焦点在x 轴上,且它的渐近线方程为3 4 y x =± ,则双曲线的离心率为 A . 54 B . 53 C . 7 D . 7 11. 椭圆 22 1169 x y +=与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,则AB 等于 A .5 B .7 C . 5 D .4 12. 如果椭圆22 221x y a b +=经过两点()()4003A B ,、,,则椭圆的标准方程是 A . 221259 x y += B . 22 1163x y += C . 22 1169x y += D . 22 1916 x y += 13. 双曲线2 2 44x y -=的顶点坐标是 A .()()2020-,、, B .()()0202-,、, C .()()1010-,、, D .()()0101-,、, 14. 若双曲线22 221x y a b -=的两条渐近线互相垂直,则该双曲线的离心率是 A .2 B . 3 C . 2 D .32 15. 双曲线 22 1169 x y -=的焦点坐标为 A .()40±, B .()30±, C .()50±, D .()

高中数学圆锥曲线与方程教案

高中数学圆锥曲线与方 程教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 2.1 求曲线的轨迹方程(新授课) 一、教学目标

知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).

9.8曲线与方程

8 曲线与方程 一、选择题(每小题7分,共35分) 1.f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 2.方程(x -y )2+(xy -1)2=0的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点 D .以上答案都不对 3.如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一 动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设 CD 与OM 交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .圆 4.有一动圆P 恒过定点F (a,0)(a >0)且与y 轴相交于点A 、B ,若△ABP 为正三角形,则点 P 的轨迹为( ) A .直线 B .圆 C .椭圆 D .双曲线 5.到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平 面内的轨迹是( ) A .直线 B .椭圆 C .抛物线 D .双曲线 二、填空题(每小题6分,共24分) 6.过点P (1,1)且互相垂直的两条直线l 1与l 2分别与x 、y 轴交于A 、B 两点,则AB 中点M 的轨迹方程为____________. 7.点P 到点(1,1)和到直线x +2y =3的距离相等,则点P 的轨迹方程为____________. 8.P 是椭圆b y a x 2222 =1上任意一点,F F 2 1,是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是______________. 9.已知两条直线l 1:2x -3y +2=0和l 2:3x -2y +3=0,有一动圆(圆心和半径都动)与l 1、 l 2都相交,且l 1、l 2被圆截得的弦长分别是定值26和24,则圆心的轨迹方程是____________.

圆锥曲线与方程测试题(带答案)

圆锥曲线与方程 单元测试 时间:90分钟 分数:120分 一、选择题(每小题5分,共60分) 1.椭圆12 2 =+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A . 41 B .2 1 C .2 D .4 2.过抛物线x y 42 =的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则||AB 等于( ) A .10 B .8 C .6 D .4 3.若直线y =kx +2与双曲线62 2 =-y x 的右支交于不同的两点,则k 的取值范围是( ) A .315(- ,)315 B .0(,)315 C .315(-,)0 D .3 15 (-,)1- 4.(理)已知抛物线x y 42 =上两个动点B 、C 和点A (1,2)且∠BAC =90°,则动直线BC 必过定点( ) A .(2,5) B .(-2,5) C .(5,-2) D .(5,2) (文)过抛物线)0(22 >=p px y 的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若 p x x 321=+,则||PQ 等于( ) A .4p B .5p C .6p D .8p 5.已知两点)4 5,4(),45 ,1(--N M ,给出下列曲线方程:①0124=-+y x ;②32 2=+y x ;③ 122 2=+y x ;④12 22=-y x .在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) (A )①③ (B )②④ (C )①②③ (D )②③④ 6.已知双曲线122 22=-b y a x (a >0,b >0)的两个焦点为1F 、2F ,点A 在双曲线第一象限的图 象上,若△21F AF 的面积为1,且2 1 tan 21= ∠F AF ,2tan 12-=∠F AF ,则双曲线方程为( ) A .1351222=-y x B .1312522=-y x C .1512322 =-y x D .112 5322=-y x 7.圆心在抛物线)0(22 >=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( ) A .04 1 22 2 =- --+y x y x B .01222=+-++y x y x C .01222=+--+y x y x D .04 122 2=+--+y x y x

圆锥曲线与方程 知识点详细

椭圆 1、椭圆的第一定义:平面一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121 F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对 称中心称为椭圆的中心。 (2)围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆 122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。 a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值围是)10(<>),且已知椭 圆的准线方程为2 a x c =±,试推导出下列式子:(提示:用三角 函数假设P 点的坐标e PM PF PM PF == 2 21 1

最新9-8曲线与方程(理)汇总

9-8曲线与方程(理)

一、选择题 1.到点F (0,4)的距离比它到直线y =-5的距离小1的动点M 的轨迹方程为( ) A .y =16x 2 B .y =-16x 2 C .x 2=16y D .x 2=-16y [答案] C [解析] ∵动点M 到点F (0,4)的距离比它到直线y =-5的距离小1,∴动点M 到点F (0,4)的距离与它到直线y =-4的距离相等.根据抛物线的定义可得点M 的轨迹是以F (0,4)为焦点,以直线y =-4为准线的抛物线,其标准方程为x 2=16y ,故选C. 2.(2012·山东实验中学模拟)已知两点M (-2,0),N (2,0),点P 满足PM →·PN → =0,则点P 的轨迹方程为( ) A.x 216 +y 2=1 B .x 2+y 2=4 C .y 2-x 2=8 D .x 2+y 2=8 [答案] B [解析] 设点P 的坐标为(x ,y ),即PM →·PN → =(-2-x ,-y )·(2-x ,-y )=-4+x 2+y 2=0,即得点P 的轨迹为x 2+y 2=4.

3.(2012·珠海模拟)方程(x +y -1)x 2+y 2-4=0,表示的曲线是( ) A .一直线与一圆 B .一直线与一半圆 C .两射线与一圆 D .两射线与一半圆 [答案] C [解析] 由式可知??? x +y -1=0x 2+y 2-4≥0,或x 2+y 2-4=0,前者表示直线x +y -1=0在圆x 2+y 2=4上及圆外的部分,后者表示圆x 2+y 2=4,所以选C. 4.(2012·山东潍坊)已知圆x 2+y 2=4,过点A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程为( ) A .(x -1)2+y 2=4(-1≤x <12 ) B .(x -1)2+y 2=4(0≤x <1) C .(x -2)2+y 2=4(-1≤x <12 ) D .(x -2)2+y 2=4(0≤x <1) [答案] D [解析] 由圆的几何性质知,BC 的中点到A 与圆心连线的中点的距离为2,即方程为(x -2)2+y 2=4,又中点在圆内,∴0≤x <1. 5.F 1、F 2是椭圆x 2a 2+y 2 b 2=1(a >b >0)的两焦点,P 是椭圆上任一点,过一焦点引∠F 1PF 2的外角平分线的垂线,则垂足Q 的轨迹为( )

圆锥曲线与方程练习题及答案解析

圆锥曲线与方程练习题及答案解析 一、选择题 1.(2013?呼和浩特高二检测)椭圆x225+y2169=1的焦点坐标为( ) A.(5,0),(-5,0) B.(0,5),(0,-5) C.(0,12),(0,-12) D.(12,0),(-12,0) 【解析】由c2=a2-b2求出c 的值.因为169>25,所以焦点在y轴上.因为c2=169-25=144,所以c=12,所以焦点坐标为(0,12),(0,-12).故选C. 【答案】C 2.已知椭圆的两个焦点的坐标分别是(0,-3)和(0,3),且椭圆经过点(0,4),则该椭圆的标准方程是( ) A.x216+y27=1 B.y216+x27=1 C.x225+y216=1 D.y225+x29=1 【解析】∵椭圆的焦点在y轴上,∴可设它的标准方程为y2a2+x2b2=1(a>b>0).∵2a=++-=8,∴a=4,又c=3,∴b2=a2-c2=16-9=7,故所求的椭圆的标准方程为y216+x27=1. 【答案】 B 3.(2013?福州高二检测)已知A(0,-1)、B(0,1)两点,△ABC 的周长为6,则△ABC的顶点C的轨迹方程是( ) A.x24+y23= 1(x≠±2) B.y24+x23=1(y≠±2) C.x24+y23=1(x≠0) D.y24 +x23=1(y≠0) 【解析】∵2c=|AB|=2,∴c=1,∴|CA|+|CB|=6-2=4=2a,∴顶点C的轨迹是以A、B为焦点的椭圆(A、B、C 不共线).因此,顶点C的轨迹方程y24+x23=1(y≠±2).【答案】 B 4.如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是( ) A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1) 【解析】椭圆方程可化为x22+y22k=1,依题意2k>2,∴0

曲线与方程(轨迹方程)

高二数学第二章曲线与方程学案 学习目标: 1、理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 2、掌握求曲线的方程的方法及一般步骤; 学习重点:理解曲线和方程的概念,掌握求曲线的方程的方法及一般步骤; 学习难点:曲线和方程概念的理解; 学习过程: 完成教学目标1:理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 新授知识:曲线的方程与方程的曲线的概念 一般地,在直角坐标系中,如果其曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点; 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 例1、判断下列结论的正误并说明理由 (1)过点A (3,0)且垂直于x 轴的直线为x=3 ; (2)到x 轴距离为2的点的轨迹方程为y=2 ; (3)到两坐标轴距离乘积等于1的点的轨迹方程为xy=1 ; 练习:1、到两坐标轴距离相等的点组成的直线方程是0=-y x 吗? 2、已知等腰三角形三个顶点的坐标是)3,0(A ,)0,2(-B ,)0,2(C ,中线O AO (为原点)的 方程是0=x 吗?为什么? 3、若曲线C 上的点的坐标满足方程(,)0f x y =,则下列说法正确的是( ) A.曲线C 的方程是(,)0f x y = B.方程(,)0f x y =的曲线是C C.坐标不满足方程(,)0f x y =的点都不在曲线C 上 D.坐标满足方程(,)0f x y =的点都在曲线C 上 例2、已知方程252 2=+by ax 的曲线经过点)3 5,0(A 和点)1,1(B ,求a 、b 的值。 练习:已知方程 2 2 25x y +=表示的曲线C 经过点)A m ,求m 的值。 完成教学目标2:掌握求曲线的方程的方法及一般步骤; 类型一:待定系数法求轨迹方程(设出标准方程,根据题意求出a ,b ,p ) 例1:已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O , 且0=?,||2||=,求椭圆的方程。 练习:已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.求椭圆C 的标准方程; 类型二:直接法求轨迹方程(根据题目条件,直译为关于动点的几何关系,即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。注意:是否应该建立适当的坐标系) 例2:已知点F(1,0),直线l:x =-1,P为平面上的动点,过点P作直线l的垂线,垂 足为点Q,且FQ FP QF QP ?=?,求动点P的轨迹C的方程; **练习:已知动点M 到定点A (1,0)与到定直线l :x=3的距离之和等于4,求动点M 的轨迹方程,并说明轨迹是什么曲线?

第二章圆锥曲线与方程教案

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 四、课时分配 本章教学时间约需9课时,具体分配如下: 2.1 曲线与方程约1课时 2.2 椭圆约2课时 2.3 双曲线约2课时 2.4 抛物线约2课时 直线与圆锥曲线的位置关系约1课时 小结约1课时 2.1 求曲线的轨迹方程(新授课) 一、教学目标 知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义

观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

圆锥曲线与方程复习资料

高中数学选修2-1 第二章 圆锥曲线与方程 知识点: 一、曲线的方程 求曲线的方程(点的轨迹方程)的步骤:建、设、限、代、化 ①建立适当的直角坐标系; (),M x y 及其他的点; ③找出满足限制条件的等式; ④将点的坐标代入等式; ⑤化简方程,并验证(查漏除杂)。 二、椭圆 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12 F F )的点的轨迹称为椭圆。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。()12222MF MF a a c +=> 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 第一定义 到两定点21F F 、 的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >) 第二定义 到一定点的距离和到一定直线的距离之比为常数e ,即 (01)MF e e d =<< 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c

3、设M 是椭圆上任一点,点M 到F 对应准线的距离为1d ,点M 到F 对应准线的距离为2d ,则121 2 F F e d d M M ==。 常考类型 类型一:椭圆的基本量 1.指出椭圆36492 2 =+y x 的焦点坐标和离心率. 【变式1】椭圆 116 252 2=+y x 上一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离=________ 【变式2】椭圆 125 162 2=+y x 的两个焦点分别为21F F 、,过2F 的直线交椭圆于A 、B 两点,则1ABF ?的周长1ABF C ?=___________. 【变式3】已知椭圆的方程为11622 2=+m y x ,焦点在x 轴上,则m 的取值范围是( )。

圆锥曲线与方程测试题及答案

2013-2014学年度第二学期3月月考 高二数学试卷 满分:150分,时间:120分钟 一、选择题:(本大题共12小题,每小题5分,共60分) 1、抛物线y 2=-2px (p>0)的焦点为F ,准线为l ,则p 表示 ( ) A 、F 到准线l 的距离 B 、F 到y 轴的距离 C 、F 点的横坐标 D 、F 到准线l 的距离的一半 2.抛物线22x y =的焦点坐标是 ( ) A .)0,1( B .)0,4 1 ( C .)8 1,0( D .)4 1,0( 3.离心率为 3 2 ,长轴长为6的椭圆的标准方程是 ( )A .22195x y + = B .22195x y +=或22 159x y += C .2213620x y + = D .2213620x y +=或22 12036 x y += 4、焦点在x 轴上,且6,8==b a 的双曲线的渐近线方程是 ( ) A .043=+y x B .043=-y x C .043=±y x D . 034=±y x 5、以椭圆1582 2=+y x 的焦点为顶点,椭圆的顶点为焦点的双曲线的方程为 ( ) A .15322=-y x B .13522=-y x C .181322=-y x D .15 1322=-y x 6.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( ) A.y x 292-=或x y 342= B.x y 2 9 2-=或y x 3 42= C.y x 3 4 2 = D.x y 2 92 - = 7.抛物线2 2y px =的焦点与椭圆22 162 x y + =的右焦点重合,则p = ( ) A .4 B .4- C .2 D . 2- 8、双曲线112 42 2=-y x 的焦点到渐近线的距离为 ( ) A . 1 B .2 C .3 D .32 9.以椭圆 22=1169144 x y +的右焦点为圆心,且与双曲线22 =1916x y -的渐近线相切的圆方程是

曲线与方程,圆的方程

曲线与方程、圆的方程 江苏 郑邦锁 1.曲线C 的方程为:f(x,y)=0?曲线C 上任意一点P (x 0,y 0)的坐标满足方程f(x,y)=0,即f (x 0,y 0)=0;且以f(x,y)=0的任意一组解(x 0,y 0)为坐标的点P (x 0,y 0)在曲线C 上。 依据该定义:已知点在曲线上即知点的坐标满足曲线方程;求证点在曲线上也只需证点的坐标满足曲线方程。求动点P(x,y)的轨迹方程即求点P 的坐标(x,y)满足的方程(等式)。求动点轨迹方程的步骤:①建系,写(设)出相关点的坐标、线的方程,动点坐标一般设为(x,y),②分析动点满足的条件,并用等式描述这些条件,③化简,④验证:满足条件的点的坐标都是方程的解,且以方程的解为坐标的点都满足条件。 [举例1] 方程04)1(22=-+-+y x y x 所表示的曲线是: ( ) A B C D 解析:原方程等价于:???≥+=--4 0122y x y x ,或422=+y x ; 其中当01=--y x 需422-+y x 有意义,等式才成立,即422≥+y x ,此时它表示直 线01=--y x 上不在圆422=+y x 内的部分,这是极易出错的一个环节。选D 。 [举例2] 已知点A (-1,0),B (2,0),动点M 满足2∠MAB=∠MBA ,求点M 的轨迹方程。 解析:如何体现动点M 满足的条件2∠MAB=∠MBA 是解决本题的关键。用动点M 的坐标体现2∠MAB=∠MBA 的最佳载体是直线MA 、MB 的斜率。 设M (x ,y ),∠MAB=α,则∠MBA=2α,它们是直线 MA 、MB 的倾角还是倾角的补角,与点M 在x 轴的上方 还是下方有关;以下讨论: ① 若点M 在x 轴的上方, ,0),90,0(00>∈y α 此时,直线MA 的倾角为α,MB 的倾角为π-2α, ,2 )2tan(,1tan -=-+==∴x y x y k MA απα (2090≠α) ,2tan )2tan(ααπ-=- ,)1(11222 2+-+?=--∴x y x y x y 得: 132 2 =-y x ,∵1,>∴>x MB MA .

高考数学圆锥曲线与方程知识点梳理

高考数学圆锥曲线与方程知识点梳理 一、方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。 点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上?f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上?f(x 0,y 0)≠0。 两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点?{ ),(0),(002001==y x f y x f 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没 有实数解,曲线就没有交点。 二、圆 1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 2、方程: (1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2 圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2 (2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2 ,2(E D --半径是2 422F E D -+。配方,将方程x 2+y 2 +Dx+Ey+F=0化为 (x+ 2D )2+(y+2 E )2=4 4F -E D 22+ ②当D 2+E 2-4F=0时,方程表示一个点(- 2D ,-2 E ); ③当D 2+E 2-4 F <0时,方程不表示任何图形.

第8讲 曲线与方程

第8讲 曲线与方程 基础知识整合 1.曲线与方程 在平面直角坐标系中,如果某曲线C (看作满足某种条件的点的集合或轨迹)上的点与一个二元方程的实数解建立了如下的关系: (1)曲线上点的坐标都是01这个方程的解; (2)以这个方程的解为坐标的点都在02曲线上. 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 2.曲线的交点 设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组??? F 1(x ,y )=0, F 2(x ,y )=0的03实数解,若此方程组无解,则两曲 线无交点. 3.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系; (2)设点——设轨迹上的任一点P (x ,y ); (3)列式——列出动点P 所满足的关系式; (4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为关于x ,y 的方程式,并化简; (5)证明——证明所求方程即为符合条件的动点轨迹方程. 1.“曲线C 是方程f (x ,y )=0的曲线”是“曲线C 上的点的坐标都是方程f (x ,y )=0的解”的充分不必要条件. 2.求轨迹问题常用的数学思想 (1)函数与方程思想:求平面曲线的轨迹方程就是将几何条件(性质)表示为动点坐标x ,y 的方程及函数关系.

(2)数形结合思想:由曲线的几何性质求曲线方程是“数”与“形”的有机结合. (3)等价转化思想:通过坐标系使“数”与“形”相互结合,在解决问题时又需要相互转化. 1.(2019·云南质量检测)已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为() A.x2+y2=2 B.x2+y2=4 C.x2+y2=2(x≠±2) D.x2+y2=4(x≠±2) 答案 D 解析MN的中点为原点O,易知|OP|=1 2|MN|=2,得P的轨迹是以原点O 为圆心,2为半径的圆,除去与x轴的两个交点,即顶点P的轨迹方程为x2+y2=4(x≠±2),故选D. 2.(2019·金华模拟)已知点P是直线2x-y+3=0上的一个动点,定点M(-1,2),Q是线段PM延长线上的一点,且|PM|=|MQ|,则Q点的轨迹方程是() A.2x+y+1=0 B.2x-y-5=0 C.2x-y-1=0 D.2x-y+5=0 答案 D 解析设Q(x,y),则P为(-2-x,4-y),代入2x-y+3=0,得Q点的轨迹方程为2x-y+5=0. 3.已知平面内有一条线段AB,其长度为4,动点P满足|P A|-|PB|=3,O为AB的中点,则|OP|的最小值为() A.1 B.3 2 C.2 D.3 答案 B 解析以AB的中点为原点,中垂线为y轴建立直角坐标系,P点的轨迹为双曲线,得c=2,a=1.5,所以|OP|min=a=1.5.

相关主题
文本预览
相关文档 最新文档