当前位置:文档之家› 仿蝇复眼视觉系统中大视场图像的拼接

仿蝇复眼视觉系统中大视场图像的拼接

遥感图像裁剪与拼接

遥感图像拼接(镶嵌)与裁剪 一、实验目的与要求 图像镶嵌指在一定数学基础控制下,把多景相邻遥感图像拼接成一个大范围、无缝的图像的过程,在ENVI中提供了透明处理、匀色、羽化等功能。实验要求可以用ENVI解决镶嵌颜色不一致、接边以及重叠区等问题。 图像裁剪的目的是将研究之外的区域去除。常用的方法是按照行政区划边界或者自然区域边界进行图像裁剪;在基础数据生产中,经常还要进行标准分幅裁剪。ENVI的图像裁剪过程,可分为规则裁剪和不规则裁剪。实验要求学生们学会通过ENVI软件对下载的地区图像进行裁剪和拼接,将南京区域裁剪出来。通过本次实验,初步熟悉ENVI和ARCGIS软件,为今后环境遥感学习奠定基础。 二、实验内容与方法 1 实验内容 1)图像拼接:ENVI的图像拼接功能提供交互式的方式将没有地理坐标或者有地理坐标的多幅图像合并,生成一幅单一的合成图像。 2)图像裁剪:通常按照行政区划边界或自然区划边界进行图像剪裁,在基础数据生产中,还经常要进行标准分幅裁剪。

2 实验方法 1)图像拼接 最新ENVI提供了全新的影像无缝镶嵌工具Seamless Mosaic,所有功能集成在一个流程化的界面,它可以: ?控制图层的叠放顺序 ?设置忽略值、显示或隐藏图层或轮廓线、重新计算有效的轮廓线、选择重采样方法和输出范围、可指定输出波段和背景值 ?可进行颜色校正、羽化/调和 ?提供高级的自动生成接边线功能、也可手动编辑接边线 ?提供镶嵌结果的预览 使用该工具可以对影像的镶嵌做到更精细的控制,包括镶嵌匀色、接边线功能和镶嵌预览等功能。 2)图像裁剪 (1)规则分幅裁剪,是指裁剪图像的边界范围是一个矩形,这个矩形的范围获取途径包括行列号、左上角和右下角两点坐标、图像文件、ROI/矢量文件; (2)不规则分幅裁剪,是指裁剪图像的边界范围是一个任意多边形。任意多边形可以是事先生成的一个完整的闭合多边形区域,可以是一个手工绘制的ROI(感兴趣区)多边形,也可以是ENVI支持的矢量文件。

ENVI中用矢量图裁剪栅格图

在arcview下裁剪矢量图 找到了一副全国的矢量图,最小单位是省,但是我只是需要新疆自治区区域的矢量图,所以必须得把新疆的从全国的里面剪出去。 电脑重装不久,还没来得及装上ArcGIS,只是有一个ArcView,这样只能在ArcView中操作了。操作步骤是这样的。 1、View下加载全国矢量图 2、新建一个theme 3、对全国矢量图start editing——选中新疆省并且在edit菜单下copy feature——stop editing 全国矢量图 4、对new theme start editing——edit 菜单下的paste——保存为xinjiang.shp就可以了 完成了,新疆的矢量图被单独提取出来。 ENVI中用矢量图裁剪栅格图(不规则裁剪) 接上一篇帖子,帖子名——在Arcview中裁剪矢量图 用刚刚裁剪下来的新疆矢量图来把Spot4 VGT SE-Asian 图像的新疆部分剪裁下来。数据:矢量数据为xinjiang.shp 栅格数据为CHN_NDV_19980401.img 步骤如下: 1、打开栅格数据:File-- Open Image,打开CHN_NDV_19980401.img 2、打开矢量数据:File -- Open Vector,打开xinjiang.shp 。在弹出的Import Vector Files Parameters 对话框选择正确的投影类型。然后OK之后ENVI自动将矢量文件转为EVF格式。这里一定要注意矢量图的投影与栅格的完全一致,才可以。 3、将矢量数据转为ROI:在Availabel Vectors List选择数据,在File 选择Export Layers to ROI,然后在Select Data File to Associate with new ROIS 中选择需要裁减的栅格数据,再在Export EVF Layers to ROI中选择Convert all records of an EVF layer to one ROI,点击OK。转成xinjiang.roi了。 4、裁剪栅格数据:在ENVI主菜单Basic Tools 中选择Subset Data via ROIs,在Select Input File to Subset via ROI 中选择需要裁减的栅格数据,OK。然后出现Spatial Subset via ROI Param...对话框,在Slect Input ROIs 中选择建立的xinjiang.roi。保存为xj19980401.img。 Mask pixels outside of ROI ?这个选项,如果选择No ,则是以包括ROI在内的最小矩形范围裁剪,得到的结果数据也是矩形。如果选择Yes,则需要在Mask Background Value 后给出ROI 范围外的数据值,默认是0 (该值自己随意设定),这样得到的结果就是把新疆地区裁剪下来,周围的值是黑色的0值。 arcview软件。

基于图像预处理的二维码识别技术的研究概要

基于图像预处理的二维码识别技术的研究 摘要:随着计算机科学技术的发展,自动识别技术得到了广泛的应用。在众多自动识别的技术中,条码技术已经成为当今主要的计算机自动识别技术之一。为解决条码信息容量有限的问题,九十年代以来出现一种新的条码——二维码。 二维码是指在平面二维方向上,使用某种特定的几何图形按一定规律分布的黑白相间的,用以记录信息的符号。在代码编制上巧妙地利用构成计算机内部逻辑基础的“0”、“1”比特流的概念,使用若干个与二进制相对应的几何形体来表示文字数值信息,通过图象输入设备或光电扫描设备自动识读以实现信息自动处理:它具有条码技术的一些共性:每种码制有其特定的字符集;每个字符占有一定的宽度;具有一定的校验功能等。同时还具有对不同行的信息自动识别功能、及处理图形旋转变化等特点。 二维码主要分为两大类:一是堆叠式是二维码,其主要代表是pdf417;二是矩阵式二维码,主要包括QR码和Data Matrix码。在现代商业活动中,二维码以其低成本、快速识读、含有大量信息而广泛应用于各个行业,如:产品防伪/溯源、广告推送、网站链接、数据下载、商品交易、定位/导航、电子凭证、车辆管理、信息传递、名片交流、wifi共享等,人们通过手机二维码的扫描软件就可以轻松获得二维码中所储藏的信息。 对QR码进行识别需要使用采集设备采集的图像,但图像的采集过程中由于受到各种因素(如光照不均匀、拍摄角度、二维码有褶皱等)的影响,可能导致二维码图像背景有各种噪声,收到的图像可能存在几何畸变或者图像有阴影,从而导致识读设备很难识读,给解码带来相当大的困难。因此,如何对收集到的图像进行适当的去噪和校正已成为二维码识别的关键问题[1]。 本文主要针对异常QR码以及Data Matrix码的识别进行描述,先表明二维码识别要解决的问题、任务和框架,并对现有方法进行阐述,最后讨论二维码识别技术仍需解决的问题,并展望看其未来研究方向。 1.二维码识别的概念框架 随着二维码的广泛使用,二维码被广泛认知,当人们遇到二维码扫描失败的时候,对其产生的影响也是巨大的,人们会怀疑是不是产品是假的,或者是有诈骗信息,但其主要问题可能是: 1)二维码的扫描不够精确; 2)不是真的二维码图形;

计算机视觉与图像理解

计算机视觉与图像理解 摘要 精确的特征跟踪是计算机视觉中的许多高层次的任务,如三维建模及运动分析奠定了基础。虽然有许多特征跟踪算法,他们大多对被跟踪的数据没有错误信息。但是,由于困难和空间局部性的问题,现有的方法会产生非常不正确的对应方式,造成剔除了基本的后处理步骤。我们提出了一个新的通用框架,使用Unscented转换,以增加任意变换特征跟踪算法,并使用高斯随机变量来表示位置的不确定性。我们运用和验证了金出武雄,卢卡斯- Tomasi 的跟踪功能框架,并将其命名为Unscented康莱特(UKLT)。UKLT能跟踪并拒绝不正确的应对措施。并证明对真假序列的方法真确性,并演示UKLT能做出正确不误的判断出物体的位置。 1.简介 在计算机视觉,对问题反映的准确性取决于于图像的准确测定。特征跟踪会随时间变化对变化的图像进行处理,并更新每个功能的变化作为图像的位置判断。重要的是所选择图像的功能,有足够的信息来跟踪,而且不遭受光圈问题的影响。[1] 在金出武雄,卢卡斯- Tomasi(康莱特)是最知名的跟踪和研究方法之一。它采用一对匹配准则刚性平移模型,它是相当于窗口强度的平方差之和最小化的基础。特征点的正确选择,可大大提高算法的性能。[3] Shi与Tomasi 将初始算法考虑仿射模型,并提出了技术监测的功能对质量进行跟踪。如果第一场比赛中的图像区域之间和当前帧残留超过阈值时,该功能将被拒绝。在随后的工作中,对模型进行了扩展且考虑了光照和反射的变化。 不幸的是,这些算法没有考虑在跟踪的不确定性,和估计的可靠性。如果我们能够考虑到这些问题,我们将能从混乱的数据中提取出更准确的数据。在没有不确定性特设技术条件下,有些研究员试图从中提取有用的数据但是结果都不能令人满意。但是理论上有声音的不确定性为特征跟踪,是可以应用于不同的功能类型的方法。 在一个闭塞,模糊,光照变化的环境中,即使是最复杂的特征跟踪算法一败涂地无法准确跟踪。这些问题导致错误的匹配,就是离群值。虽然有几种方法来减轻异常值的影响,但是其计算成本通常较高[7] [8]。[9]采用随机抽样一致性[10]的方法来消除图像序列异常值。Fusiello提出的康莱特,增加了一种自动拒绝规则功能,所谓的X84。虽然有许多离群排斥的方法,但没有一个单一的算法,尽管该算法在所有情况下都表现良好。 在本文中我们将研究范围扩大,运用高斯随机变量(GRVs)与Unscented变换(SUT 的),计算在一个非线性变换的分布传播,运用标准康莱特算法。采用随机变量来描述图像特征的位置和它们的不确定性既提高了精度又提高了鲁棒性的跟踪过程。虽然我们不知道什么是真正的分布,被测系统为我们提供了理论保证,前两个时刻的估计是正确的。另外,使用异常检测被测样品确定性使我们没有增加任何额外费用。 2.不确定度表示 我们现在引入一个新的通用框架,增强了任意特征跟踪算法,以代表和跟踪高斯随机变量(GRVs)功能的位置。然后,我们说明它可以被应用到最常用的方法,康莱特之一[1]。 GRVs是一种用于图像的特征定位概率分布函数描述的不错选择。他们有一个简单易懂的数学公式(平均向量和协方差矩阵)和紧凑的计算实施。他们也有一个确切的封闭使用的线性代数运算的代数线性变换的制定,并以此作为其参数表示的两个分布的第一时刻。Haralick [13]虽然提出了在计算机视觉中使用协方差传递,但他只考虑一阶线性化。 易用性外,还出现了一些有效的文献,它质疑从本地的图像灰度信息测量协方差是否可以代表的功能位置的不确定性[6]。

机器人视觉传感技术及应用doc汇总

机器人视觉传感技术及应用 摘要:机器人视觉技术是指机器人工作时通过视觉传感器对环境物体获取视觉信息,让机器人识别物体来进行各种工作。本文介绍了机器人技术中所常用的视觉传感器的种类、结构。原理和功能。介绍了弧焊机器人视觉传感技术较为前沿的一些应用和研究,包括焊缝跟踪和获取熔池信息。简要说明了视觉技术在农业采摘机器人方面的应用。 关键词:机器人、视觉、弧焊、采摘机器人 1.绪论 机器人视觉是使机器人具有视觉感知功能的系统。机器人视觉可以通过视觉传感器获取环境的一维、二维和三维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置及各种状态。机器人视觉视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。根据功能不同,机器人视觉可分为视觉检验和视觉引导两种,广泛应用于电子、汽车、机械等工业部门和医学、军事领域。 2. 机器人常用的视觉传感器 2.1光电二极管与光电转换器件 图2.1是pn型光电二级管的结构。如果让光子射入半导体的pn结边界耗尽层,就会激励起新的空穴。利用电场将空穴和电子分离到两侧,就可以的到与光子量成比例的反向电流。Pn型元件的优点是暗电流小,所以被广泛用于照度计和分广度计等测量装置中。

图2.1 pn型光电二极管结构 在高响应的发光二极管中pin结型与雪崩型。前者在pn结边界插入一个本征半导体i 层取代其耗尽层。给它施加反向偏压,可以减少结电容,获得高速响应;而后者是在pn结上加100伏左右的反向偏置电压产生强电场,激励载流子加速,与原子碰撞产生电子雪崩现象。这些高速型二极管的响应速度很快,能用于高速光通信等。 2.2 PSD PSD(Position Sensitive Detector,位置敏感探测器)是测定入射光位置的传感器,由发光二级管、表面电阻膜、电极组成。入射光产生的光电流通过电阻膜到达元件两端的电极,流入各个电极的电流与电阻值存在对应关系,而电阻值又与光的入射位置及到各个电极距离成比例,因此根据电流值就能检测到光入射的位置。PSD元件中有一维和二维两种,它们都具有高速性,但要注意入射到开口部分的散射光的影响。 2.3CCD图像传感器 电荷耦合器件(CCD:Charge Coupled Device)图像传感器是由多个光电二极管传送储存电荷的装置。它有多个MOS(Metal Oxide Semiconductor)结构的电极,电荷传送的方式是通过向其中一个电极上施加与众不同的电压,产生所谓的势阱,并顺序变更势阱来实现的。根据传送电荷需要的脉冲信号的个数,施加电压的方法有两相方式和三相方式。 CCD图像传感器有一维形式的,是将发光二极管和电荷传送部分一维排列制成的。此外还有二维形式的,它可以代替传统的硒化镉光导摄像管和氧化铅光电摄像管二维传感器。二维传感器属于水平和垂直传送电荷传感器,传送方式有行间传送、帧—行间传送、帧传送及全帧传送四种方式。 图2.2所示为行间传送方式,采取一维摄像区域(接收部分)与传送区域平行布置结构

简述遥感技术系统的组成

简述遥感技术系统的组成-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1、简述遥感技术系统的组成。 2、目标地物的电磁波,信息获取,信息接受,信息处理,信息应用。 3、 2 。遥感影像变形的主要原因是什么? 4、a) 遥感平台位置和运动状态变化的影响 5、b) 地形起伏的影响 6、c) 地球表面曲率的影响 7、d) 大气折射的影响 8、e) 地球自转的影响 9、3、遥感影像地图的主要特点是什么? 10、a)丰富的信息量 11、b)直观性强 12、c)具有一定的数学基础 13、d)现实性强 14、4、遥感图像计算机分类中存在的主要问题是什么? 15、a)未充分利用遥感图像提供的多种信息 16、b)提高图像分类精度受到限制 17、(1)大气状况的影响 18、(2)下垫面的影响 19、(3)其他因素的影响 20、5、简要回答计算机辅助遥感制图的基本过程 21、a)遥感影像信息选取与数字化 22、b)地理基础底图的选取与数字化 23、c)遥感影像几何纠正与图像处理 24、d)遥感影像镶嵌与地理基础底图拼接 25、e)地理地图与遥感影像的复合 26、f)符号注记层的生成 27、g)影像地图图面配置 28、h)影像地图的制作与印刷 29、1、微波遥感的特点有哪些(5分) 30、(1)全天候、全天时工作 31、(2)对某些地物有特殊的波谱特征 32、(3)对冰、雪、森林、土壤等有一定的穿透能力 33、(4)对海洋遥感有特殊意义 34、(5)分辨率较低,但特性明显 35、2、遥感影像地图的主要特点是什么( 36、6分) 37、丰富的信息量;直观性强;具有一定的数学基础;现实性强 38、3、遥感影像解译的主要标志是什么( 39、6分) 40、直接解译标志:形状、颜色、图形、纹理、大小、阴影;间接解译标 志:相关关系。 41、4、遥感图像计算机分类中存在的主要问题是什么( 42、6分)

《图像理解与计算机视觉》习题

《图像理解与计算机视觉》习题 1. 一幅图像的象素灰度级为256、大小为1024×1024的图象的数据量多少MB?假设网络的平均传输速率为1Mbit/s,需要多少秒才能传送完毕?每个像素可以用8比特表示。 解答:图像的数据量是1024×1024×8/8=1 MB,需要8 秒才能传送完毕。 2. 通过你对生活的观察,举出一个书本描述之外的图像处理应用的领域和例子。 解答: 医院CT检查,等。 I f x y z t的各个参数的具体含义,反映的图像类型有多 3. 请说明图像亮度函数(,,,,) 少? 解答: I f x y z t中,(x,y,z)是空间坐标,λ是波长,t 是时间,I 是 图像数学表达式(,,,,) 光点(x,y,z)的强度(幅度)。上式表示一幅运动(t) 的、彩色/多光谱(λ) 的、立体(x,y,z)图像。 I f x y z t表示一幅运动(t) 的、彩色/多光谱(λ) 的、立体(x,y,z)图像。对 (,,,,) 于静止图像,则与时间t 无关;对于单色图像(也称灰度图像),则波长λ为一常数;对于平面图像,则与坐标z 无关,故f(x,y)表示平面上的静止灰度图像,它是一般图像I f x y z t的一个特例。 (,,,,) 4. 色彩具有哪几个基本属性,表述这些属性的含义。 解答: 色相(H):色相是与颜色主波长有关的颜色物理和心理特性,它们就是所有的色相,有时色相也称为色调。 饱和度(S):饱和度指颜色的强度或纯度,表示色相中灰色成分所占的比例,用0%-100%(纯色)来表示。 亮度(B):亮度是颜色的相对明暗程度,通常用0%(黑)-100%(白)来度量。 5. 请解释马赫带效应。 解答: 所谓“马赫带效应(Mach band effect)”是指视觉的主观感受在亮度有变化的地方

20807ENVI影像拼接裁剪

一、无缝拼接(ENVI) 1.通过open打开要拼接的两幅影像。 2.然后在Toolbox/Mosaicking/Seamless Mosaic,会出现Seamless Mosaic下面的对话框: 3.通过上述对话框左上角的加号+选择要拼接的两幅影像,点击OK:

4.进行匀色操作:在匀色Color Correction操作中,勾选预览Show Preview;勾选Histogram Matching,此时自行选择Histogram Matching勾选预览Show Preview;勾选Histogram Matching,此时自行选择Histogram Matching。 5.羽化处理:选择Seamlines点击Auto Generate Seamlines进行自动羽化,如果羽化结果颜色基本一致,则导出结果即可

6.导出结果:在Export中选择输出形式及输出位置,点击finish,拼接完成。 二、矢量裁剪(ArcGIS+ENVI) (1)已知全国矢量图,在ArcGIS中提取出北京市的矢量边界图: 1.在ArcGIS中打开全国范围的矢量图,与被裁剪的影像进行对比,查看其投影系及显示方式是否一致:

2.不一致,先把全国矢量图的十进制形式转化为度分秒形式:视图/数据框属性(或鼠标在图像显示区域右击选择数据框属性),并在弹出的对话框中将十进制转化为度分秒形式,其 弹出数据框属性对话框如下:

3.提取北京市的矢量边界图:编辑器/开始编辑,鼠标点击要去除的边界,通过删除键进行删除,最后只剩下北京市的边界图。 4.导出北京市边界图:ArcTool/转换工具/转为Shape file/要素类转Shape file,在弹出的对话框中选择要转换的文件及输出地址,点击确定。

计算机视觉期末复习

一、 1.什么是计算机视觉?理解计算机视觉问题的产生原理。 研究用计算机来模拟生物视觉功能的技术学科。具体来说,就是让计算机具有对周围世界的空间物体进行 传感、抽象、分析判断、决策的能力,从而达到识别、理解的目的。 2.直方图的均衡化 处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。直方 图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。直方图均衡化就是 把给定图像的直方图分布改变成“均匀”分布直方图分布。 是将原图像通过某种变换,得到一幅灰度直方图更为均匀分布的新图像的方法。设图像均衡化处理后,图像的直方图 是平直的,即各灰度级具有相同的出现频数,那么由于灰度级具有均匀的概率分布,图像看起来就更清晰了。 二、 1.常见的几何变换:平移T x为点(x,y)在x方向要平移的量。 旋转 变尺度:x轴变大a倍,y轴变大b倍。 2.卷积掩膜技术:(,) (,)(,)(,) m n f i j h i m j n g m n =-- ∑∑ 对应相乘再相加掩膜的有效应用——去噪问题 3. 均值滤波器(低通):抑制噪声 主要用于抑制噪声,对每一个目标像素值用其局部邻域内所有像素值的加权均值置换。con命令高斯滤波器:一个朴素的道理,距离目标像素越近的点,往往相关性越大,越远则越不相干。所以,高斯 滤波器根据高斯函数选择邻域内各像素的权值 medfilt1 。 区别方法是:高通滤波器模板的和为0,低通滤波器模板的和为1 常用的非线性滤波器:中值滤波;双边滤波;非局部滤波 4.边缘检测算子:通过一组定义好的函数,定位图像中局部变换剧烈的部分(寻找图像边缘)。主要方法有:Robert 交叉梯度,Sobel梯度,拉普拉斯算子,高提升滤波,高斯-拉普拉斯变换(都是高通滤波器) 1100 cos sin0 [1][1]sin cos0 001 x y x y θθ θθ - ?? ? = ? ? ?? 1100 00 [1][1]00 00 a x y x y b ab ?? ? = ? ? ?? (,) 1 [,][,] k l N h i j f k l M∈ =∑ ? ? ? ? ? ? ? = 1 1 1 ]1 [ ]1 [ 1 1 y x T T y x y x

欧姆龙视觉传感器的技术特点

欧姆龙视觉传感器的产品特点以及技术特点 一.产品特点 在生产现场,通过采用视觉传感器检测零部件,可避免次品外流。视觉传感器主要由捕捉检查对象物体(拍摄)用的摄像头以及处理图像的控制器组成。通过摄像头捕捉图像信息,检测拍摄对象的数量、位置关系、形状等特点,用于判断产品是否合格或将检验数据传送给机器人等其它生产设备。例如,在检查电视或手机用微小电子零部件的电极污迹方面,每分钟可检测数以千计的零部件。还可用于检测手机操作部分的伤痕、污迹以及印刷效果等。 2006年1月欧姆龙独立开发的视觉传感器FZ3,凝聚了"逼真色彩合成技术",是世界首台可实现1,677万色的彩色图像处理产品。与过去采用单色处理方式的图像处理相比,识别能力提高了约65,000倍。可识别单色方式无法辨别的微妙色彩差异,从而能更高精度地检测缺陷及对象物体。同时,应用"高动态范围图像处理技术",首次实现了检测装置商品化。即使对于汽车发动机的结构件或者锂电池的外观等视觉传感器最棘手的光泽金属表面的零部件,它也能以鲜明的画面进行精确检测并判断优劣。 二.技术特点 1、逼真色彩合成技术。凭借逼真色彩合成技术,识别能力比单色方式提高了大约65,000倍。 生产现场视觉传感器的检测目标,是通过画面来检测零部件的外观尺寸及其质量,与使用普通数码摄像头相比,要求更精确、更高速的图像处理。为此,在生产现场较为普遍的是采用信息量较少的单色方式处理图像。即使是在彩色摄像头得到普及之后,仍然将捕捉到的彩色画面通过控制器转换成单色信号,再进行图像处理。但这种方式只能用单色的256级灰度层次体现对象物体。例如,在蓝色的检查对象物体上粘有深蓝色的污迹或伤痕时,虽然人眼能够分辨优劣,但由于单色图像处理的深浅度(对比度)等级层次少,导致无法区分产品的优劣。领悟到这种单色图像处理局限及问题的欧姆龙,全新开发了能实现彩色图像处理的运算法则,这就是逼真色彩合成技术。它能够将彩色图像分解为红、绿、蓝各256级层次,总共为1677万种色彩成分,并根据各种颜色的层次差对不同的颜色进行定义,从而创造出可根据定义检测图像结构类似点以及图像变化点的运算法则。与仅有256级灰度层次识别的单色图像处理方式相比,逼真色彩合成方式的识别能力提高了大约65,000倍。通过这种方式,能够以单色图像处理方式相同的速度,高精度地检测原来无法辨别的微妙色差。 2、高动态范围图像处理技术。高动态范围图像处理技术,明暗拍摄领域比过去扩大了5,000倍。 以图像处理方式确保检验精度的关键,在于"如何稳定地捕捉鲜明画面"。虽然通过采用逼真色彩合成技术,能够高精度地对几乎所有对象物体进行检测,但是对于金属等表面有光泽的对象物体的检测,仍然是一大课题。由于金属表面的反光率较高,如果反光过大,画面就会出现晕影导致高光溢出。相反,如果光线太暗就会形成块状的黑斑,很难稳定捕捉鲜明的画面。即使是昼夜光线变化等微小的外来乱射光,也会产生影响。为此,在选择照明器具种类及角度调试方面,需要花费相当长的时间。 针对这种情况,旨在开发出不受外部照明环境光线影响,能稳定捕捉最佳画面的方法,欧姆龙展开了研发。其结果是,在视觉传感器FZ3中采用了能将多幅画面高速合成为一幅鲜明图像的高动态范围图像处理技术,并首次将其应用于生产现场。 高动态范围图像处理技术能自动改变快门速度,拍摄多幅亮度不同的画面,同时自动筛选适当与不适当的部位,将多幅画面高速合成为一幅动态范围宽广的图像。通过采用这一技

人工复眼成像三维定位系统设计

第41卷第5期 光电工程V ol.41, No.5 2014年5月Opto-Electronic Engineering May, 2014 文章编号:1003-501X(2014)05-0089-06 人工复眼成像三维定位系统设计 刘艳1,2,苟健2,尹韶云3,董小春2, 史立芳2,邓启凌2,杜春雷3,石瑞英1 ( 1. 四川大学物理科学与技术学院微电子学与固体电子学系,成都 610064; 2. 中国科学院光电技术研究所,成都 610209; 3. 中国科学院重庆绿色智能技术研究院,重庆 401122 ) 摘要:本文提出了一种简单、实用,基于人工复眼成像的三维定位系统,给出了人工复眼系统高精度定位机理,建立了人工复眼成像三维定位系统设计方法。系统采用平面阵列相机作为系统成像主体结构,每个子相机作为复眼的子眼,子眼以正四边形阵稀疏方式排布,采用平行光轴设计,构造出稳定可靠的光学结构,使计算结果更为精确。通过多重方向视差关系得出几何约束条件,采用多方向性、选择性立体匹配算法,建立计算模型,实现高精度定位。制备了1套子相机数目为9的原理样机,完成了三维定位测试实验,实验获得定位精度为2.53×10-4 rad。 关键词:人工复眼;三维定位;高精度;立体匹配;多目视觉 中图分类号:TH741 文献标志码:A doi:10.3969/j.issn.1003-501X.2014.05.015 Design of Three-dimensional Orientation System Based on Artificial Compound Eye Imaging LIU Yan1,2,GOU Jian2,YIN Shaoyun3,DONG Xiaochun2, SHI Lifang2,DENG Qiling2,DU Chunlei3,SHI Ruiying1 (1. Department of Microelectronics and Solid State Electronics, Sichuan University, Chengdu 610064, China; 2. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; 3. Chongqing Institute of Green and Intelligent of Chinese Academy of Sciences, Chongqing 401122, China ) Abstract: A simple and practical three-dimensional orientation system is presented based on image formation of planar artificial compound eye. The principle of high-precision orientation with artificial compound eye was given and a design method for the three-dimensional orientation system was proposed. Planar camera array was taken as the structure of the imaging system. Sub-cameras ranged to be a square as sub-eyes of the compound eye. Simple and stable optical geometry were produced by camera array and parallel optical axis arranging, which make the results more accurate. Geometric constraints were brought by multiple directional parallaxes. The calculating model was built by multi-directional and selective stereo matching arithmetic to realize high-precision orientation. A nine-camera sample system was fabricated for testing experiments. The positioning accuracy of the experiment is 2.53e-4 rad. Key words: artificial compound-eye; three-dimensional orientation; high precision; stereo matching; multi-camera vision 收稿日期:2014-03-25;收到修改稿日期:2014-04-01 基金项目:国家自然科学基金(61007024、61271150);中科院支撑项目(A11K030);预研基金(A11K018)资助项目 作者简介:刘艳(1988-),女(汉族),四川南充人。硕士研究生,主要研究工作是人工复眼成像定位与算法。E-mail: sissilau210@https://www.doczj.com/doc/7c3320149.html,。 通信作者:石瑞英(1963-),女(汉族),河南民权人。教授,博导,主要研究方向为半导体器件及其辐照效应。E-mail: ruiyshi@https://www.doczj.com/doc/7c3320149.html,。 https://www.doczj.com/doc/7c3320149.html,

最新3D视觉传感技术研究进展汇总

3D视觉传感技术研究 进展

3D视觉传感技术研究进展 1 引言 毫无疑问,视觉是人获取信息的主要器官。在当前的视觉系统中,3D立体成像成为研究热点,无需配戴立体眼镜就能观看立体图像成为视觉系统的发展方向。目前所谓的3D游戏和电影,实际上并非真正的3D影像。这是因为拍摄电影时使用的是单镜头的摄像机,制作的游戏使用的是3D软件技术,并且目前显示的屏幕是2D,因此从制作到显示都是平面的。3D图像信息的获取都是基于某种图像传感器获取、量化图像信息,这些图像传感器有直接获取可见光的图像,也有间接通过检测辐射、红外线、X射线、或者超声波来获取图像信息。不同的传感器技术有不同的分辨率、精度和噪声,因此从图像传感器获取的信息中提取有用信号进行分析成为广大科技工作者的研究课题。 3D视觉传感器具有广泛的用途,比如多媒体手机、网络摄像、数码相机、机器人视觉导航、汽车安全系统、生物医学图像分析、人机界面、虚拟现实、监控、工业检测、无线远距离传感、显微镜技术、天文观察、海洋自主导航、科学仪器等等。这些不同的应用均是基于3D视觉图像传感器技术。特别是3D影像技术在工业控制、汽车自动导航中具有急迫的应用。 通过分析发现,发现目前研究3D影像技术主要集中在基于CCD或者CMOS图像传感器的3D实现方法、图像处理和显示的研究,真正开展3D视觉传感器研究的很少。 本文在分析各种3D影像技术的方法上,提出一种新的3D视觉传感器新技术,并重点讨论3D新影像技术的关键技术之一的视觉图像摄取器件的原理和实现方法。与传统的3D视觉传感器技术相比,具有结构简单、实现方便、价格低廉的优点,便于便携式多媒体设备的应用。 2 3D立体成像原理 3D信号是一个三维坐标的空间信号。在一个精确视觉的定义中,3D影像应该是一个拥有三个空间分量的图像。但是,从广义上讲,视频信号序列可以考虑作为一个3D信号,其中包括两维的空间变量和一个一维的时间分量。在真正的3D视频信号中,其图像是一个拥有三个空间分量的影像;有时,广义上讲3D视频信号可以看作是4维空间信号,拥有三个空间分量和一个时间分量。 图1表示人的眼睛3D成像原理。人的眼睛看到的景象是一种具有层次和深度的立体影像。人两眼水平分开在两个不同的位置上,当人眼在观察一个三维物体的时候,两个眼睛观察的物体图像是不一样的,存在一个像差,两幅

2---遥感图像拼接

ERDAS 遥感图像拼接 **** 2010-10

目录 培训目的: (1) 培训内容: (1) 1无剪切线图像拼接 (1) 1.1启动图像拼接工具 (1) 1.2加载拼接图像 (2) 1.3图像叠置组合 (4) 1.4图像匹配设置 (5) 1.5运行M OSAIC工具 (7) 1.6退出M OSAIC工具 (8) 2 有剪切线图像拼接 (9) 2.1拼接准备工作,设置输入图像范围 (9) 2.2启动图像拼接工具 (11) 2.3加载拼接图像 (11) 2.4确定相交区域 (13) 2.5绘制剪切线 (14) 2.6定义输出图像 (16) 2.7运行拼接功能 (17) 2.8退出图像拼接工具 (18)

培训目的: 通过本次培训,掌握遥感图像拼接的基本方法和步骤,理解遥感图像拼接的意义。 培训内容: 将具有地理参考的若干幅互为邻接的遥感图像合并成一幅统一的新图像。首先选择其中的一幅作为标准图像;其次,以此图像为基准,确定拼接方案和重叠区;接着,进行色调调整;最后,对相邻图像进行拼接。 我们分两种情况,进行具体操作: 无剪切线的图像拼接; 有剪切线的图像拼接。 1无剪切线图像拼接 下面以彩色卫星图像为例,经过色调调整后,进行无剪切线的图像拼接。具体操作步骤如下: 1.1 启动图像拼接工具 在ERDAS图标面板菜单条选择Main | Data Preparation | Mosaic Images | Mosaic Tool命令,打开Mosaic Tool对话框(图1)。或者在ERDAS图标面板工具条选择Data Prep图标| Mosaic Images | Mosaic Tool命令,打开Mosaic Tool对话框(图1)。 1

目标定位仿生复眼视觉系统成像位置计算

收稿日期:2013-04-05;修订日期:2013-05-03 基金项目:国家自然科学基金(61275011);国家自然科学基金(51005222) 作者简介:王小蕾(1976-),女,硕士生,主要从事信号检测方面的研究。Email:wxl-20062006@https://www.doczj.com/doc/7c3320149.html, 导师简介:王克逸(1962-),男,教授,博士生导师,博士后,主要从事近场光学和微光学的教学和科研方面的研究。 Email:kywang@https://www.doczj.com/doc/7c3320149.html, 目标定位仿生复眼视觉系统成像位置计算 王小蕾,王克逸,曹兆楼,闫培正,郭方 (中国科学技术大学精密机械与精密仪器系,安徽合肥230027) 摘要:用于目标定位的仿生复眼视觉系统,目标成像位置的精确计算是提高系统定位精度的关键。文章从像斑能量分布的角度出发,介绍了一种较为适于复眼成像位置计算的方法:能量对称法。该方法以主光线在像斑上的坐标定义像斑重心,以主光线像点是像斑能量对称中心的原理来获得像斑重心(即像斑位置)。文中以仿生复眼视觉系统的简化模型为研究对象,应用能量对称法对理论模拟像斑和实验像斑进行了实际计算,计算表明理论像斑位置可以通过能量对称法准确得到;利用实验像斑位置计算入射光线角度也达到了较为理想的计算精度。文中采用传统的灰度重心法同步计算,与新方法形成对比。关键词:目标定位;复眼;像斑重心;能量;灰度重心法中图分类号:TP391.4;TP391.9文献标志码:A 文章编号:1007-2276(2013)12-3433-07 Location of the target image for compound eye system Wang Xiaolei,Wang Keyi,Cao Zhaolou,Yan Peizheng,Guo Fang (Department of Precision Machinery &Instrumentation,University of Science and Technology of China,Hefei 230027,China)Abstract:Accurate calculation of the spotlight center position on the image is important to improve target localization accuracy for compound eye system.A method of calculating the spotlight position was introduced based on the symmetric property of the energy field.The position of main light on the image was defined as the position of the light spot on the image,and can be get by calculating the point of the spot energy centre on the image.Simulation and real images were used both with gray gravity method and energy method respectively,and the results show that energy method agrees with ideal position.Incident angle was calculated from the position of the image spot,the result shows energy method is also better than gray gravity method. Key word:target position;compound eye;spotlight center position;energy;gray gravity 第42卷第12期 红外与激光工程2013年12月Vol.42No.12Infrared and Laser Engineering Dec .2013

浅谈视觉传感器

浅谈视觉传感技术 王恋 (重庆理工大学,贵州省安顺市561009) 摘要:随着科学技术的发展,传感器的研究和应用变得越来越重要,它成为获取信息的重要技术手段,针对不同的应用传感器技术也分为:光电传感技术、光纤传感技术、视觉传感技术、生表面波传感技术、生物传感技术、化学传感技术、前沿传感技术这七大类传感技术,本文将着重介绍视觉传感技术。视觉传感技术因其硬件成本的显著降低,性能的极大提升以及具备了大规模推广的条件得到了绝大多数研究者和工业生产者的青睐,这为视觉传感技术的发展前景奠定了基础,但同时也存在测量精度问题,视觉传感器对环境的高要求也是视觉传感器需要解决的问题,只有提高了测量精度问题和适应环境变化的问题才能使得视觉传感器更具有竞争力和自身优势。 关键词:信息;传感技术;视觉传感技术;测量精度;适应环境 On visual sensing technology Wang Lian (Chongqing University of technology,Anshun City,Guizhou Province,561009,China) Abstract:With the development of science and technology,research and application of the sensor becomes more and more important,it has become an important technical means to obtain information,according to the application of different sensor technologies are also divided into:photoelectric sensor technology,optical fiber sensing technology,visual sensing technology, surface wave sensor technology,biological sensor technology,chemical sensing technology,the sensor technology frontier seven kinds of sensing technology,this paper will focus on the visual sensing technology.Because the visual sensing technology significantly reduce the hardware cost,greatly enhance the performance and have a large-scale promotion of the conditions have been most researchers and industrial producers favor,which laid the foundation for future vision sensing technology,but there are also problems of measurement accuracy,the problem of the high requirement of visual sensor is also a visual environment the sensor needs to be solved,only to improve the measurement accuracy and to adapt the change of environment problems in order to make the visual sensor has more advantages and competitiveness Key words:Information;sensing technology;vision sensing technology;measurement accuracy;adaptation to the environment 0引言 视觉源于生物界获取外部环境信息的一种方式,是自然界生物获取信息的最有效手段,是生物智能的核心组成之一。人类80%的信息都是依靠视觉获取的,基于这一启发研究人员开始为机械安装“眼睛”使得机器跟人类一样通过“看”获取外界信息,由此诞生了一门新兴学科——计算机视觉,人们通过对生物视觉系统的研究从而模仿制作机器视觉系统,尽管与人类视觉系统相差很大,但是这对传感器技术而言是突破性的进步。视觉传感器技术的实质就是图像处理技术,通过截取物体表面的信号绘制成图像从而呈现在研究人员的面前。视觉传感技术的出现解决了其他传感器因场地大小限制或检测设备庞大而无法操作的问题,由此广受工业制造界的欢迎。本文通过对比视觉传感技术的优缺点以及发展趋势来展示视觉传感技术的兴起和应用。 1视觉传感技术概述 视觉传感技术是传感技术七大类中的一个,视觉传感器是指[1]:通过对摄像机拍摄到的图像进行图像处理,来计算对象物的特征量(面积、重心、长度、位置等),并输出数据和判断结果的传感器。视觉传感器具有从一整幅图像捕获光线的数以千计的像素。图像的清晰和细腻程度通常用分辨率来衡量,以像素数量表示。在捕获图像之后,视觉传感器将其与内存中存储的基准图像进行比较,以做出分析。它是基于生物视觉和计算机视觉所提出的。视觉传感器是50年代后期出现的,发展十分迅速,是机器人中最重要的传感器之一。机器人视

相关主题
文本预览
相关文档 最新文档