当前位置:文档之家› 电厂kv埗陈线开关跳闸事件分析报告

电厂kv埗陈线开关跳闸事件分析报告

电厂kv埗陈线开关跳闸事件分析报告
电厂kv埗陈线开关跳闸事件分析报告

电厂2 2 0 k V 埗陈线2 8 5 0 开关跳闸事件分析报告

1、事件经过

(1) 2008年6月9日,220kV埗陈线、# 9B高备变挂IM运行,220kV埗万线、# 1、# 2主变挂IIM 运行,220kV母联开关2012合闸运行、两母线并列运行,# 1 2机运行于220kVIIM , # 3、# 4机正常备用。

( 2) 17:19:20 时,主控室灯光闪烁两下,检查埗陈线2850 开关跳开,埗陈线电压为0,埗陈线电流为0。

3)17:20 时,检查# 1、# 2机运行正常,机组没受影响;检查厂用电运行正常,厂用电没受影响

(4) 17:30时,检查埗陈线2850开关本体正常,埗陈线间隔SF6压力正常,间隔无异常

(5)17:33时,检查DCS网控保护画面有“埗陈线重合闸动作”、“埗陈线保护出口跳闸”、“埗陈

线保护起动失灵动作”、"埗万线保护起动失灵动作”报警,查DCS埗陈线C相电流在跳闸前由191A

突然上升到355A,埗陈线2850开关跳闸后电流为0。

( 6) 17:45 时,检查埗陈线光纤保护动作依次有“电流差动保护”、“重合闸动作”、“电流差动保

护”、“距离加速”、“零序加速”,高频保护动作依次有“纵联距离动作”、“纵联距离方向”、“重合闸动作”、“距离加速”、“纵联距离动作”、“零序加速”。

(7) 17:56时,中调告知,埗陈线对侧开关已强送成功,令同期合上220kV埗陈线2850开关

(8) 18:01 时,检查埗陈线电压正常,同期合上埗陈线2850 开关,检查潮流分布正常,线路运行正常,# 1 、

# 2 机运行正常。

2、原因分析

1)埗陈线2850 开关跳闸分析:

埗陈线C相线路发生故障,C相电压突然降低,电流突然增大,A相、B相电压,电流不变,埗陈线零

序电压、零序电流增大,从而导致光纤电流差动保护动作、高频纵联距离、纵联零序保护动作跳开 C 相开关,C相开关跳开后,重合闸保护动作合上C相开关,但重合闸时故障仍然存在,后加速保护起

动跳开埗陈线2850三相开关,重合闸不成功,埗陈线2850 开关事故跳闸,保护动作正确合理。

2)埗陈线2850 开关保护动作分析:

在电网有效接地系统中线路正常运行或三相短路时均无零序电流,当发生单相接地故障后,就会有零序电流和零序电压出现。

当埗陈线C相故障接地时,C相电压、电流的变化导致零序电压、零序电流的产生,所以埗陈线高频纵联零序保护动作正确。

在埗陈线正常运行时,差动回路电流流过的电流为零(实际上由于电流互感器的特性不可能完全一致等原因,在正常运行时,差动回路中仍有不平衡电流流过,但因不平衡电流很小,差动继电器不会动作)。但当埗陈线单相接地时,在差动回路中由于电流方向的改变,导致差动继电器有电流流过,导致差动继电器动作。由上可见,光纤电流差动保护动作正确。

高频保护测得故障距离为13.9km,光纤保护测得故障距离为8.1km,这都是因为距离的测量是根据定的公式计算得到的,则阻抗继的数据只供参考,并不是绝对的。电器或整个距离测量回路任何一点微小的误差都可能影响到距离测量,所以测量得到的数据只供参考。

(3)埗陈线跳闸就地巡线处得知,埗陈线C相有一处旁边有树木较高,并且较接近C相线路,由此可确认,因当时可能风吹或其它原因,使埗陈线C相电缆吹近树木而导致C相线路放电,产生接地故障,使埗陈线C相

故障跳闸,而从本厂高频保护及光纤保护动作结果来看,动作结果都是正确。

3、防范措施

(1)协调东莞供电局,加强电厂两线路的巡检工作,发现问题立即解决,以将事故消灭在盟牙状态。

2)加强网控及GIS 设备定期维护工作,确保线路高频保护及光纤保护良好正常运行。3)加强对线路的定期清扫工作,防止其他事故的发生。

输电线路故障跳闸原因分析报告模板)

输电线路故障跳闸原因分析报告(模板) XX月XX日XXXkVXXX线路故障跳闸原因分析报告(模板) 1 线路概况 1.1 简介(电压等级、线路名称、线路变更情况、线路长度、杆塔数、海拔、地形、地质、建设日期、投运日期、资产单位、建设单位、设计单位、施工单位、运行单位) 1.2设计气象条件 1.3 故障点基本参数 1.3.1杆、塔型。 1.3.2导、地线型号。 1.3.3 绝缘子(生产厂家、生产日期、绝缘子型式、外绝缘配置) 。 1.3.4基础及接地。 1.3.5线路相序。 1.3.6线路通道内外部环境描述。 2 保护动作情况 保护动作描述、重合闸动作情况、保护测距情况、重合不成功强送电情况、抢修恢复时间。 3 故障情况 3.1 根据保护测距计算的故障点 3.2 现场实际发现的故障情况 3.3 现场测试情况 4 故障原因分析 4.1 近期运检情况 4.2 气象分析故障(当日天气情况) 4.3 故障点地形、地貌 4.4 测试分析(雷电定位、接地电阻测量、绝缘子检测、绝缘子盐密和灰密(绝缘子污秽程度) 、复合绝缘子憎水性、绝缘试验情况、在线监测等) 4.5设计校验(故障点基本参数、绝缘配置、防雷保护角、鸟刺加装、弧垂风偏校验) 4.6现场走访情况 (向故障点周边群众了解故障当时的天气、外部环境变化、异响、弧光等) 4.7其它故障排除情况(故障排除法) 5 故障分析结论 6 暴露的问题 7 防范措施 7.1 已采取措施 7.2 拟采取措施(具体措施、措施落实责任人、措施落实时限) 附件一:现场故障现象(故障周边环境、故障点受损部件、引发故障的外部物件)图片 附件二:现场故障测试图片 附件三:现场故障处理图片 附件四:相关资质单位的试验鉴定报告 附件五:保护动作及故障录波参数 附件六:参加故障分析人员名单 单位:日期:

厂区10KV架空线路跳闸事故的分析与防范措施(新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 厂区10KV架空线路跳闸事故的分析与防范措施(新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

厂区10KV架空线路跳闸事故的分析与防范 措施(新版) 焦化厂厂区高压供电线路的可靠与否,对确保焦炉安全生产和煤气外供具有十分重要的作用。这里通过对一起10KV架空线路瓷瓶受化工生产漂浮污染物的侵蚀,导致绝缘击穿爬弧引跳闸事故的分析,以引起焦化企业从事生产,设备,规划设计和安全管理部门的重视,从诸多环节上采取防范措施,避免类似事故的发生。 1事故现象 1999年3月26日生期五凌晨5:50分,江苏镇江焦化厂总降变电所至厂生产区的一路10kV114#架空线路突然发生跳闸,总降变电所114#开关柜上速断装置动作,速断信号掉牌,信号灯出现闪光,总控盘上光字牌显示10kV配电装置事故跳闸。据此,当班值班电工判断该114线路上出现短路故障。此时,在10kV114线上受电力的

为动为车间配电房电房1台S7-1000kVA变压器,运行负荷当时为550kW,供电范围为一炼焦分厂、化工分厂和机炉车间。当114线路发生短路故障时,短路故障波及正在运行的117线路,使117线路瞬间电压下降,导致117线路供电的二炼焦分厂、余热锅炉等用电设备跳闸,停电约15min。 114线路故障后,厂调度协调将114线上的负荷转至117线路上运行,至晨6:15分本厂生产恢复正常。 2事故分析 该跳闸事故发生后当天,厂设备科立即组织调查,上午机炉车间反应,凌晨该车间大夜班操作工在5:50分左右发现厂区114-4#电杆上有很亮的放电火光(电弧光),此放电火光出现后,该机炉车间即发生停电。设备科同时在当天迅速组织10多名电工先后对厂区114架空线路的所有电杆、金具和总降出线电缆、闸刀以及由114线供电的4个车间配电房的进线闸刀、金具、避雷器进行了全面检查和更换。上述各个配电房进线电气设备及电缆经查确认无问题后,我们将4个配电房的杆上进线闸刀全部拉开,对该线路绝缘测试,

10KV线路跳闸的主要原因

2、故障跳闸原因分析 (1)漯河供电公司郊区10KV线路大都分布在野外、点多、线长、面广、受季节性影响的特点比较明显,6-8月这3个月累计跳闸达109次,占线路跳闸总数的%,期间正是迎峰度夏高峰期,雷雨大风天气多、温度高、湿度大、树木生长旺盛,易于发生各类跳闸故障。 (2)从各类故障跳闸比例中可以看出,因线路配电设备自身原因,占线路跳闸总数的31%为最高,分析其原因有以下几点: 一是80%以上的线路设备是农网前两期时代的产物,受当时资金及技术条件的限制,工程标准起点低,网架结构薄弱,装备水平差,近年来负荷发展快,导线截面小,极易引发线路故障,如跳闸次数最多的商农线、姬工线等大都因负荷电流大,而烧坏刀闸和烧断跳线弓子等故障。 二是由于线路年久失修,加之部分线段污染严重,一遇恶劣天气易发生绝缘子击穿放电、避雷器击穿损坏、跌落保险熔管烧毁、引流线断落等故障引起跳闸。 三是线路导线80%以上为裸体线,档距大,弧垂超标,遇大风时易造成导线舞动,引发相间短路故障。 四是由于郊区负荷年增长率在35%以上,配电变压器的增容布点远远跟不上负荷的发展速度,由此屡屡造成因配变过负烧毁引起线路跳闸,据调查统计2011年烧毁各类型号的变压器62台,烧毁配变的主要原因固然有设备过负方面的(如某些厂家的变压器短时过载能力较差),但也有管理方面的,所烧毁的变压器80%以上是因三相负荷不平衡引起单相线圈烧毁。 (3)因用户配电设备原因,占线路跳闸总数的%。仅次于公用线路配电设备,分析其原因在于乡镇供电所对专变用户的设备疏于管理。 (4)因外力破坏原因占线路跳闸总数的%。如因司机违规驾驶撞击电杆,高架车挂断导线,施工取土挖断电缆等事故,如3月7日9点零7分Ⅰ姚工线被吊车撞断杆子,导致线路短路跳闸。

电厂发变组跳闸事件分析报告

电厂发变组跳闸事件分 析报告 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

电厂#2发变组跳闸事件分析报告1、事件经过 (1)2006年6月29日前,#02高厂变低压套管底部已渗油多日,属原安装质量问题,但因保质期未过,要等厂家来人解决,故此缺陷一直未处理。为安全起见,从6月26日起将厂用电倒至#9B高备变,#02高厂变转热备用。6月29日下午厂家来人,在履行完工作票手续后,准备处理此缺陷。 (2)事件前,#2机运行参数无异常。16:13时#2发电机在运行中突然跳闸退出运行,#2发电机出口开关502和#2主变220kV侧开关2202 跳开,灭磁开关跳闸,主汽门关闭。检查#2发变组保护屏和#02高厂变保护屏,有“高厂变压力释放”、“灭磁开关联跳”、“主汽门关闭”等信号。DCS有远控-5OPC动作报警,汽机最高转数达3160rpm。值班员迅速对汽机打闸。 (3)电气专工到达现场,检查所有报警信息后,意识到在处理#02高厂变缺陷时,没有将有关的保护退出,于是将#02高厂变所有保护退出。16:40时汽机重新挂闸成功,16:43时汽机重新并网。 2、原因分析

(1)电气检修工作班成员、厂家技术服务人员在处理#02高厂变低压套管底部渗油时,由于没有意识到#02高厂变的保护没有退出,工作中不慎,误碰了变压器顶部压力释放器的开关,引起压力释放器保护动作,从而引发一系列开关动作,造成机组跳机。这是此次事故的直接原因。(查看事故报警记录,从动作时间上的顺序判断,引起#2机发变组跳闸的原因就是“高厂变压力释放”动作造成的。) (2)由于在处理#02高厂变缺陷工作前考虑不周,在填写处理#02高厂变渗油的工作票时,没有填写二次设备及回路工作安全技术措施单,致使#02高厂变的相关保护没有及时退出。这是造成此次事故的主要原因。 (3)运行人员在接到处理#02高厂变渗油的工作票后,没有认真审核,对不完善的安措没有给予及时补充,造成不完善的工作票发出,这也是此次事故发生的主要原因。 3、暴露问题 (1)员工在实际的工作中没有很好的执行工作票制度,工作票从签发到许可都没有很好的把关。工作票签发人、工作负责人、工作许可人,这

第三季度:10kV配网线路跳闸调研报告

XX电网10kV配网线路跳闸 调研报告 10kV配电线路是县级供电企业电力设施的重要组成部分,它们担负着向城乡供电的重要任务,由于长期处于露天情况下运行,又具有点多、线长、面广等特点,10kV线路和设备发生故障不但给供电企业造成经济损失、影响广大居民的正常生产和生活用电,而且在很大程度上也反映出我们的优质服务水平。根据我公司配电网络的实际运行状况,对今年1-8月期间所发生的10kV配电运行事故进行分类统计分析,找出存在的薄弱点,积极探索防范措施,这对于提高配电网管理水平具有重要意义。本调研报告只针对属公司资产或运维的线路,不含属用户资产的供电线路或小水电上网线路。 一、总体情况分析 截止2015年8月底,属公司运维10kV公用配电线路共计64条, 10kV配电线路累计故障跳闸停电146条次(不含重合闸成功次数,计划检修停电次数),平均故障停电次数为2.28次/条;故障跳闸呈以下特点: (一)从故障性质上分:主要有单相接地和相间短路。 1-8月公司配网共发生单相接地60条次,占全部故障的41.1%;相间短路86条次,占全部故障的58.9%。

(二)从设备产权性质上分:公司资产(运维线路)故障和用户资产故障。 1-8月公司资产(运维线路)范围内发生故障90条次,占全部故障的62%,其中单相接地故障35条次占23.9%,相间短路55条次占37.7%;用户资产发生故障56条次,占全部故障的38%,其中单相接地故障25条次占17.1%,相间短路30条次占20.5%。 (三)从主线、支线上分: 1-8月公司配网主干线发生故障停电19条次,占全部故障的13%,其中单相接地故障9条次占6%,相间短路故障10条次占7%;支线发生故障126条次,占全部故障的87%,其中单相接地故障51条次占34.9%,相间短路故障75条次占51.3%。 (四)从故障因素上分: 1、设备自身故障跳闸42条次,占全部故障的28.7%;其中:导线故障条8条次,避雷器故障4条次,变压器故障5条次,断路器故障1条次,绝缘子故障4条次,电缆故障2条次,故障原因不明(没有查出明显故障点)18条次。 2、树障跳闸18条次,占全部故障的12.3%; 3、自然灾害造成跳闸83条次,占全部故障的56.8%;其中:导线故障18条次,避雷器故障22条次,变压器故障

电气事故案例分析--1.

电气事故案例分析题 (2) 一、运行人员擅自传动发变组保护装置,造成机组跳闸 (2) 二、擅自解除闭锁带电合接地刀闸 (3) 三、安全措施不全电除尘内触电 (4) 四、带负荷推开关 (5) 五、野蛮操作开关,导致三相短路 (6) 六、小动物进入电气间隔,造成机组跳闸 (7) 七、PT保险熔断造成机组跳闸 (8) 八、励磁整流柜滤网堵塞,造成机组跳闸 (9) 九、励磁变温度保护误动,造成机组跳闸 (10) 十、6KV电机避雷器烧损,发变组跳闸 (11) 十一、MCC电源切换,机组跳闸 (12) 十二、励磁机过负荷反时限保护动作停机 (13) 十三、220千伏A相接地造成差动保护动作停机 (14) 十四、查找直流接地,造成机组跳闸 (15) 十五、查找直流接地,造成机组跳闸 (16) 十六、检修工作不当,造成机组跳闸 (17) 由于人员工作不当,229出线与220kV下母线距离过近放电,引起保护动作。 (17) 十七、主变差动保护误动 (18) 十八、主变冷却器全停使母线开关跳闸 (19) 十九、试验柴油发电机造成机组停运 (20) 二十、定冷水冷却器漏泄,定子接地保护动作停机 (21)

电气事故案例分析题 一、运行人员擅自传动发变组保护装置,造成机组跳闸 事件经过 1月8日某厂,#3发电机有功85MW。运行人员XX一人到#3发-变组保护屏处学习、了解设备,进入#3发-变组保护A柜WFB-802模件,当查看“选项”画面时,选择了“报告”,报告内容为空白,又选择了“传动”项,想查看传动报告,按“确认”键后,出现“输入密码”画面,再次“确认”后进入保护传动画面,随后选择了“发-变组差动”选项欲查看其内容,按“确认”键,#3发-变组“差动保护”动作出口,#3发-变组103开关、励磁开关、3500开关、3600开关掉闸,3kV5段、6段备用电源自投正确、水压逆止门、OPC保护动作维持汽机3000转/分、炉安全门动作。 原因分析: 1.在机组正常运行中,运行人员在查看3号发-变组微机保护A柜“保护传动”功能时,越权操作,造成发- 变组差动保护出口动作。是事故的主要原因。 2.继电保护装置密码设置为空,存在人员误动的隐患。是事故的次要原因。 3.运行人员无票作业,且未执行操作监护制度。 暴露问题: 1、违反《集团公司两票管理工作规定》,无票作业。 2、集团公司《防止二次系统人员三误工作规定》执行不到位,继电保护密码管理存在漏洞。 3、运行人员安全意识不牢固,盲目越权操作。 4、运行人员技术水平不高,对操作风险无意识。 采取措施: 1、加强对运行人员的技术培训,并吸取此次事故的教训。 2、认真对照集团公司《防止二次系统人员三误工作规定》进行落实、整改,进一步完善制度。 3、加强“两票”管理,各单位要严格执行《集团公司两票管理工作规定》,严禁无票作业。 4、发电部加强对运行人员安全教育和遵章守纪教育及技术培训,并认真吸取此次事故的教训,不要越限操作。 5、继电保护人员普查所有保护设备,凡有密码功能的一律将空码默认形式改为数字密码。完善警告标志,吸 取教训。完善管理制度,加强设备管理。

电厂发电机失磁保护动作跳闸事件分析报告

电厂#2发电机失磁保护动作跳闸事件分析报告1、事件经过 2006年03月27日9:23时,#2汽轮发电机失磁保护动作跳闸,但在#1电子间#2汽机保护屏前未见任何保护动作信号,询问在场的运行人员答复已将保护屏跳闸信号复归。检查动作记录报文,其中有失磁保护动作与TV断线。于是拉开#1PT刀闸,检查1PT的一次保险和二次接线无开路现象,检查#2PT二次空开下桩头接线B相松动,将其紧固。因怀疑PT一次保险质量不良,用保险丝与1PT一次保险并联后,推上#1PT刀闸,重新起励,控制屏上显示励磁为FCR 方式,检查励磁屏上两通道均有PT断线告警,将其复归(在检查PT 回路拉开1PT刀闸时发出),再次起励升压并网成功。 2、原因分析 (1)保护屏内故障报文,因CPUO和CPUE的报文一样,CPUE的时间更接近实际时间,故以CPUE的报文作为分析依据,相关故障报文如下:

09:17:25:306失磁保护动作t1(0.5s) 09:17:26:303失磁保护动作t2(1s) 09:17:28:291主汽门关闭 09:18:48:463发电机3W定子接地TV1断线 09:18:35:541发电机3U0定子接地TV1断线 09:19:00:393发电机逆功率TV1断线 09:19:01:388发电机失磁保护TV1断线 可知故障是因#2发电机失磁引起失磁保护动作跳开发电机出口开关502,联跳主汽门。综合检查情况,基本可排除PT断线的因素造成,PT断线保护可闭锁,励磁也可切换到手动通道,保护出口前无PT断线信号,TV1断线信号是在发电机开关跳闸甩负荷后发出的,为甩负

荷时系统冲击引起(3W、3U0定子接地同理),现场检查PT也未开路,从失磁保护报文看,保护启动正确,当时检测到的参数已达到动作范围。 (2)造成失磁的原因由于分析素材不足,难以作出准确的判断,但可能是: ①励磁装置自行误动作减磁或灭磁。 ②不排除有人在触摸屏检查时误按“灭磁开关跳闸”按键。(正常时黑屏) 3、暴露问题 (1)保护屏上信号复归过快,不利于故障分析。 (2)运行励磁投切方式无记录。

配电线路跳闸的原因分析及防范措施

配电线路跳闸的原因分析及防范措施 摘要:故障的情况下进行开关合闸,但常因过流保护动作跳闸而无法正常送电。现场情况表明,对这类存在开关异常跳闸状况的线路进行合闸送电瞬间,电流表指针往往大幅度偏转,然后又在较短的时间内返回到正常值。合闸冲击电流过大会导致过流保护动作跳闸,更为严重的是,有的线路只能将线路分段后逐段送电。 一跳闸原因: 1 管理原因: (1)外力破坏:电力线路受外力破坏易造成倒杆断线恶性事故,严重威胁电网安全运行。 (2)盗窃设施:电力线路多为金属材料,受价格上涨因素,犯罪分子偷盗电力设施,案发前必然先造成线路跳闸停电后实施犯罪。 (3)车辆撞杆:线路延公路两侧架设方案仍是目前普遍推行的首选方案,它便于施工与接火跳线,但随着车辆快速增长,违章行车直接撞击电杆事故也呈上升趋势。 (4)杆根取土:修路、建房、烧砖等取用土时,对架设在田间地头电杆地段进行取土,破坏了电杆基础,造成电杆倾斜倒塌。 (5)破坏拉线:组立在农村耕地上带有接线的电杆,因其不便于农机作业和农作物的收种,从而擅自拆除拉线,引起电杆倒塌。 (6)焚烧农作物秸秆:每年农作物收割之后,废弃在耕地中或堆积在田间地头、公路两侧的秸秆就地焚烧而引起线路跳闸。 (7 短路:人为因素较多,大都是缺乏电力保护常识而引发障碍。重点有:风筝、过街宣传横幅,彩带等绕线;金属丝抛挂,此类故障多集中在村庄附近和空旷地段;架空导线飞鸟短路,地下电缆出线裸露部分小动物短路。 (8线路巡查不到位:线路的安全管理重点在线路上,线路巡查工作必须要认真仔细,并要正确巡查所有设备,确保线路设备保持良好的运行状态。 (9 路薄弱点不清:没有标定危险部位与薄弱环节,遇到负荷高峰期,线路连接薄弱点放电发热烧断导线。 二原因:

(完整word版)漏电跳闸原因分析

0前言 漏电保护器在人身安全、设备保护和防止电气火灾等方面起着重要的作用。由于它使用安全方便得到广泛应用,而使用中也存在这样那样的问题、笔者从使用者的角度介绍它的相关知识和注意事项故障处理。 漏电保护器又叫漏电开关、它有电磁式、电子式等几种: 1漏电保护器的工作原理 1.1电磁式漏电保护器的工作原理 主要由高导磁材料(坡莫合金)制造的零序电流互感器、漏电脱扣器和常有过载及短路保护的断路器组成、全部另件安装在一个塑料外壳中。被保护电路有漏电或人体触电时,只要漏电或触电电流达到漏电动作电流值。零序电流互感器的二次绕组就输出一个信号,并通过漏电脱扣器使断路器在0.1秒内切断电源,从而起到漏电和触电保护作用。当被保护的线路或电动机发生过载或短路时,断路器中的电磁式液压延时脱扣器中热元件上的双金属片发热动作、使开关分闸,切断电源。 1.2电子式漏电保护器的工作原理 主要由零序电流互感器,集成电路放大器,漏电脱扣器及常有过载和短路保护的断路器组成。被保护电路有漏电或人体触电时,只要漏电或触电电流达到漏电动作电流值,零序电流互感器的二次绕组就输出一个信号,经过集成电路放大器放大后,使漏电脱扣器动作驱动断路器脱扣,从而切断电源起到漏电和触电保护作用。如果使用兼有过压保护是利用分压原理取得过电压信号,使可控硅导通,切断电源。 2漏电断路器的选用原则 2.1根据使用目的和电气设备所在的场所来选择 漏电断路器用于防止人身触电,应根据直接接触和间接接触两种触电防护的不同要求来选择。 2.1.1直接接触触电的防护 因直接接触触电的危害比较大,引起的后果严重,所以要选用灵敏度较高的漏电断路器,对电动工具、移动式电气设备和临时线路,应在回路中安装动作电流为30 mvA,动作时间在0.1 s之内的漏电断路器。对家用电器较多的居民住宅,最好安装在进户电能表后。 如果一旦触电容易引起二次伤害(比如高空作业),应在回路中安装动作电流为15 mA,动作时间在0.1 s之内的漏电断路器。对于医院中的电气医疗设备,应安装动作电流为6 mA,动作时间在0.1 s之内的漏电断路器。

县供电公司2011-2015年配电网设备故障分析报告

2011-2015年配电网设备故障分析报告 国网高台县供电公司 2016年5月

一、概述 由于2011年至2013年度高台县供电公司尚未直管,省市公司配电网专业管理未延伸至县公司,2014年之前高台县供电公司配电网故障详细基础数据按照规定只做一年保存,未做长期保留,且统计口径不齐、失去了参考分析的价值。 2014年高台县10千伏配电网设备基本情况为: 至2014年底,高台县供电公司共管辖10千伏线路43条1413.12千米;10千伏配电线路按照在运时间,运行10年以内的共7条,197.16公里;运行10-20年的共7条,229.81公里;运行20年以上线路29条,983.15公里。 2014年配网基本故障情况为: 2014年1至12月份,配网故障154次(其中:重合成功118次、接地2次,重合不成功34次),线路平均每百公里跳闸次数10.89次,年平均跳闸3.581次/条。全年累计故障停电时间63.71小时,平均每百公里4.51小时。 引起线路跳闸的主要原因:鸟害46次(29.9%)、外力破坏26次(16.9%)、树障21次(13.7)、运维责任17次(11.01%)、用户侧原因44次(28.5%)。鸟害、外力破坏和用户设备原因,是造成全年跳闸的三大主要因素。 2015年高台县10千伏配电网设备基本情况为: 至2015年底,高台县供电公司共管辖10千伏线路43条1444.57千米;0.4千伏线路1031.3公里;配电变压器配电台区2588台22.12万千伏安,为城乡8.2万户客户供电。

10千伏配电线路按照在运时间,高台县供电公司共管辖10千伏线路43条1444.57千米;10千伏配电线路按照在运时间,运行10年以内的共7条,231.61公里;运行10-20年的共7条,229.81公里;运行20年以上线路29条,983.15公里。 2015年配网基本故障情况为:2015年1至12月份,配网故障203次(其中:重合成功135次、接地15次,重合不成功53次),1至9月份跳闸195次,占全年96.05%,10月至12月跳闸8次,占全年3.03%。线路平均每百公里跳闸次数14.05次,年平均跳闸4.72次/条。全年累计故障停电时间78.86小时,平均每百公里5.46小时,重合闸不成功跳闸和接地导致线路故障停电平均每次1.48小时。 引起线路跳闸的主要原因:鸟害82次(40.49%)、外力破坏43次(21.18%)、树障33次(16.25%)、运维责任22次(10.83%)、用户侧原因23次(11.33%)。鸟害、外力破坏和树障,是造成全年跳闸的三大主要因素。 2014年至2015年配电线路总体情况: 表1 国网高台县供电公司配电线路总体情况 二、故障原因分析 (一)故障总体情况

至配网跳闸分析报告

2014年1至11月份配网跳闸分析报告 一、总体情况分析 截止2014年年11月底, 10kV公用配电线路共计65条,10kV配电线路累计故障跳闸238条次,平均跳闸次数为次/条;与去年302条次相比减少66条次,同比降低%。其中:设备跳闸80条次,占全部故障的%;去年同期设备跳闸123条次,占全部故障的%,同比下降了%。 树障跳闸44条次,占全部故障的%;去年同期树障跳闸50条次,占全部故障的%,同比下降了%。 外力跳闸25条次,占全部故障的%;去年同期外力跳闸29条次,占全部故障的%,同比下降了%。 其它类跳闸89条次,占全部故障的%;去年同期其它类跳闸95条次,占全部故障的%同,比上升了%。10kV配网主干线故障停电的主要原因依次为设备原因、树障因素、外力因素、其它类因素。(见饼状图) 二、配网线路跳闸情况

截止11月底,10千伏主干线故障238条次,比去年同期减少64条次(见柱状图4) 三、暴露问题 (一)配网主干及分支线路故障238条次。 1、其中因设备影响引起的故障为80条次,占配网故障的%,具体分类(见柱状图)。 经过对设备影响引起的故障原因分析发现:占前三位的依次为导线原因23次、变压器原因22次、避雷器原因12次。主要原因:一是我局10千伏配网设备大部分是农网一期以前的线路,当时建设标准低、线径细。二是近几年负荷增长迅速,配电设备长期在大负荷、重过负荷运行,老化严重,故障较多。三是设备

接地装置运行时间长,连接点氧化、锈蚀严重,连接不紧密。四是管理因素:有部分配变未按照规程要求合理配置高压熔丝、低压熔断器和断路器。有个别杆塔裂纹严重、倾斜或缺失拉线。有配变高压避雷器更换安装不规范,直接捆绑或直接安装到变压器上。有未及时发现修路或建房造成导线对地安全距离不够现象。 2、因树障影响引起的故障为44条次,占配网故障的%,具体分类(见柱状图)。 经过对树障影响引起的故障原因分析发现:主要原因:一是我局10千伏配网线路通道内还存在树障未清理现象,特别是偏远偏僻地方。二是近几年我县部分乡镇开展林木加工富民政策,村民大面积种植速生杨,造成部分10千伏配网线路通道外侧超高树木较多。 3、因外力影响引起的故障为25条次,占配网故障的%,具体分类(见柱状图)。

线路跳闸原因分析报告

线路跳闸原因分析报告 线路跳闸原因分析报告随着科技的发展迅猛,无线网络也进入家家户户,不管城市还是农村,居民生活对用电质量的要求提高,根据国家要求,现在每年计划的停电次数在逐渐减少,同时在发生故障之后能够及时处理设备,恢复用户用电。 1 配网线路跳闸原因分析 1.1 外力的破坏 配网线路一般放置于比较复杂的环境中,不可避免的要面对来自大自然的外力干扰,经调查外力的损坏占总比例高达30.2%,例如:狂风的破坏、暴雨的洗刷、雾霾的覆盖、寒冬暴雪的侵蚀,种种外力因素都可使线路的绝缘层遭到破坏导致绝缘层老化、变质,从而发生绝缘层断裂保护力下降等现象,最终导致跳闸。由此可见,外力的破坏也成为配网线路跳闸的一大因素[1]。 1.2 用户的原因 用户对于设备的监督检查管理力度不够,也可导致线路的绝缘能力下降,供电管理部门的检查力度不夠也可引发故障,各项监管工作做不到位,使各种问题和存在的隐患都可导致配网线路的损坏。一些用户存在对知识的匮乏,缺乏对配网线路规定的额定电压等级的认知,随意使用设备,从而导致设备故障。用户自身原因或者监管不够的原因占发生故

障总比例的17%,这些都是不可忽视的重要因素。 1.3 设备的缺陷 工作人员对于线路检查不够认真,态度随意,不能及时发现、处理问题,且发现问题不及时处理,都为设备造成缺陷致使引发跳闸。检修人员不按照规定的周期检查,也没有对设备进行清扫和处理,导致设备运行老化、卡涩、变形等异常。一旦发生异常,都可引发设备故障,导致跳闸。 1.4 绝缘子串闪络放电引发的原因 导致绝缘子串闪络的因素之一就是过电压,例如:配网系统自身的暂态过电压、供电的高峰期瞬间过电压等,四面八方的过电压叠加都可使电压值迅速上升,一旦超过系统的额定电压值,就会导致绝缘子串闪络问题,引发对地方电及短路等故障。如果绝缘子的绝缘度不达标质量不合格时,都可引发短路、跳闸。 2 配网线路跳闸治理措施 2.1 防范外力的破坏 外力损坏是引发配网线路跳闸的外部因素最重要的原因,因此就需要加大力度排除这种干扰因素,保护好配网线路及设备的安全。例如:预防恶劣天气带来的损坏,在经常发生冰雪覆盖的区域做调查,收集冰雪覆盖情况、冰凌的性质、结冻的高度、冰凌出现的月份和次数等。这些都可作为在改造线路时候的参考因素,且加强对积雪的处理,可避免

电厂机盘车跳闸事件分析报告

电厂机盘车跳闸事件分 析报告 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电厂#1机盘车跳闸事件分析报告1、事件经过 (1)2005年5月31日00:00时,#1燃机盘车正常运行,环境温度33度,转速128RPM,LTTH50.5度,88BT-1、2、88VG-1、2均断电位, 88QA、88QV、88QB-2、88WC-1运行,油箱负压0.7kPa,未发现异常。 (2)01:24时,主控室#1机上发出报警,现场检查88CR转速变0, 88QA、88QB、88QV运行正常,油箱负压0.7KPA,轮机间及辅机间的门均关闭,88BT-1、2及88VG-1、2均断电,轴承金属温度正常,轮机间最高温度253度,TMGV67.7度,QAP5.8BAR,QGP1.17BAR,厂用电电压、电流正常,但是试启高盘未成功。 此后检查发现88BT-2全关,88BT-1的出口挡板未全关,有20度左右的开度。考虑到轮机间温度较高,有可能产生了刮缸,将88TG拉至检修位,强制L62CD为“1”,将其静置,白班再做处理。 (3)MARKV报警如下:

01:23:47COOLDOWNTROUBLE 01:24:06HPSPEED-ZEROSPEED 01:24:06CRANKINGMOTORSTATUS 01:24:36TURBSHFTFAILURETOBREAKTUBINEAWAY 01:24:36TURBINESHUTDOWN 从报警分析,在燃机转速为0后,88CR自动启动,但大轴未转动,启转失败;另外从前两个报警可以看出,燃机从60rpm到0rpm只用了49秒的时间(盘车故障这个报警是当燃机在盘车状态下,转速降到了2%以下延时30秒才出现,从报警到转速为0rpm是19秒,加上30秒),故分析是主机动静部分产生了摩擦,造成盘车停运。 2、原因分析 经过分析,具体原因为燃机本体由于冷却不均造成动、静部件间隙过小,产生刮缸现象,使盘车停止运行。 3、防范措施

配电线路跳闸分析及整改办法

配电线路跳闸分析及整改办法 发表时间:2018-11-11T11:32:26.123Z 来源:《电力设备》2018年第20期作者:张海军 [导读] 摘要:配电线路安全是我国用电安全中的重要部分,线路跳闸可能带来一些不良的影响,应当引起重视。 (身份证号码:1528011971****0914 巴彦淖尔电业局/巴彦供电分局内蒙古巴彦淖尔 015000) 摘要:配电线路安全是我国用电安全中的重要部分,线路跳闸可能带来一些不良的影响,应当引起重视。随着中国经济建设的快速发展,电力体系的配电线路取得了极大进步,但在配电线路的维护方面还存在部分不足。例如,因为受到人为或自然因素的影响,配电线路跳闸情况严重影响到配电线路的功率输送。为提升配电线路的供电可靠性,降低跳闸次数,分析研究配电线路常见跳闸因素,并提出相应的对策。 关键词:配电线路;电力体系;可靠性 1 配电线路发生跳闸现象的规律分析 配电线路出现跳闸故障存在一定的客观规律与外界因素。只有正确掌握有关的知识与把握规律,才有利于使用相关措施实施防范。配电线路因线路走向复杂、供电状况复杂以及设备的质量不同等,加上自身面广、点多和线长的特征,易受地理、气候等外界环境的影响而出现跳闸故障。比如,某区域对配电线路出现跳闸情况进行统计,其全年出现跳闸35次,占区域总跳闸64次的54.7%,其中在4次大型故障中出现跳闸的配电线路共8条。可见,出现跳闸故障的因素在于一些配电线路上,它们有的应用时间已久,自身已经严重老化,再加上恶劣天气、环境影响,往往会出现频繁跳闸故障。所以,为了安全运行配电线路,降低跳闸次数,必须合理改造线路,增强维护,消除隐患。配电线路出现跳闸的状况也有时间上的规律。比如,某部门统计,每年的5~7月份是出现配电线路跳闸的高峰时期,而其他月份出现故障的次数极少。容易看出,配电线路出现跳闸故障具有季节性,和外界气候的影响紧密有关。 2 常见的配电线路故障跳闸原因分析 2.1人为因素 配电线路安放在部分偏远的乡村、野外,且大部分在露天的环境下工作,造成部分人存在偷电心理。部分窃电者常常不考虑也许会发生的安全事故,破坏配电变压器,造成了严重的事故。当前,许多地区不重视配网管理,对维护电网的技术人员要求不高。许多技术人员专业知识不高,责任心不强,不可以及时做好配网的检验工作,造成部分已经磨损非常严重的电线不能被及时发现,从而引发安全事故。 2.2自然灾害 大风多会导致线路共振舞动,导致相间短路。同时,线路设备在迎风面水平方向力作用下,悬垂绝缘子串偏斜,减少了空气绝缘间隙,出现了相间短路、导线烧伤等事故。线路耐张金具在重力、拉力、风力与共振的状况下,非常容易断裂。大雪会导致线路积雪,增加导线荷载。当气温降低到一定程度时,伴随着雪雨水还会在导线上产生覆冰,从而增加导线与避雷线弧垂,受力增大终导致倒杆、断线事故。大雪在支持绝缘位置容易产生堆积雪,如果是污染雪,会导致接地短路事故。暴雨容易出现洪涝灾害,威胁电杆杆基稳固,关键是对地下电力设施威胁大,容易导致进水受潮而短路。 2.3外力因素 这种因素导致的线路跳闸关键是由于个别不法人员想要偷电或者对线路实施破坏,而使配电线路出现折断。有的是在搭建配电线路时因为操作不当,直接造成配电线路折断,且外力对配电线路的破坏特别严重,给10kV配电线路带来跳闸影响。 3 针对配电线路故障跳闸的整改办法 3.1科学应对自然因素带来的影响 3.1.1扎实线路通道治理,超高树木路段要着力清理,避免雷击、大风导致的砸断导线事故。优先使用接地装置维修,预试避雷器、紧固线夹等运维方法,在萌芽状态消灭隐患。 3.1.2线路少数分支运行年限久,抗自然灾害能力差。线经细、多接头、严重老化,存在导线老化断股、电杆风化裂纹,对地安全距离不够等问题。在覆冰、大雪大风等恶劣天气状况和突发事件影响下,容易导致断线与舞动致线间短路的故障。要依托配网项目建设重新考虑,科学规划路径,整体改造[1]。 3.1.3自然天气改变时,值班力量要合理安排,准备好应急抢修工作。特殊运行环境使用特别技术改造,提高设备健康水平。参考主网设备与技术规范,在容易出现大风舞动灾害地段线路上加装防震锤,防雷装置加装在空旷地带线路,在雷击非常严重的区域增设避雷线等特殊对应防治或别的技术措施,保证线路安全运行。 3.2避免外力破坏措施 3.2.1结合防风防汛、高杆植物专项治理工作,重新梳理排查辖区配网设备的隐患黑点,拟定方法及时治理的没有处理的隐患,清楚确定责任人,增强和政府绿化部门与社区绿化组的联系协作,及时实施砍伐树木和高杆植物[2]。 3.2.2增强和市政项目管理部门与施工单位的沟通联系,在市政施工中把事前、事中、事后3方面做好。事前施工单位通知供电部门人员,由供电部门人员派人交底,事中供电部门人员实施巡查与监护,及时指出和整改发现的问题;要做好电力设施原貌事后恢复和查找不足。 3.2.3针对车辆误撞杆塔,在道路的配电线路杆塔上涂反光漆并配以相关标志,以警示过往车辆,加强杆塔、路况的识别度。 3.2.4针对高空抛掷落物、飘挂物、项目施工和盗窃行为等导致的跳闸事件,需做好护线宣传工作,加大电力设施保护等的宣传力度,制作电力设施保护宣传标示牌和电力电缆水泥标示桩,在线路相关部位安装与设置,对群众与施工人员起警示作用;通过电视、网络等渠道进行宣传[3]。 3.3增强检修力度与展开线路测温工作 增强配电线路检修力度,可以对发生缺陷实施及时消除,降低线路的故障率,从而提高配电线路的质量[4]。同时,对于大负荷的配电线路,特别是在用电高峰来临的季节里,对于变电站的线路开关设备连接点、线路过引线等实施测温,可以避免连接导线由于过热造成烧断而导致的跳闸。 3.4设备防范措施 在采购电力设备时,要选择信誉较高的企业。这些企业中,首先能够思考的是国家推荐的企业。由于有国家的推荐,后续保障相对

输电线路常见跳闸原因分析及对策研究

输电线路常见跳闸原因分析及对策研究 发表时间:2018-12-13T17:54:10.097Z 来源:《防护工程》2018年第24期作者:王九林[导读] 近年来,随着我国经济建设的飞速发展,电力系统的输电线路也有了巨大的进步,但在输电线路的维护方面还存在一些不足和问题 王九林 国网江西省电力有限公司于都县供电分公司 342300 摘要:近年来,随着我国经济建设的飞速发展,电力系统的输电线路也有了巨大的进步,但在输电线路的维护方面还存在一些不足和问题。严重影响输电线路功率输送的一个重要因素就是输电线路的跳闸现象,它受到人为、自然等多种因素的共同影响。因此,分析研究输电线路常见跳闸原因和对策,对降低调整率,提高输电线路的可靠程度有着重要意义。 关键词:输电线路跳闸;原因;预防对策 随着我国电网输送电路逐步深入城乡各地,其规模也日益扩大,这也对电网输送电路运行的安全性、可靠性提出了更高要求。输电线路事故跳闸时影响电网功率输送的最大威胁之一,也极大的提高了电网的维护成本和维护人员的工作量。因此,对常见的跳闸原因进行认真总结、分析,探讨出如果采取适当措施来降低输电线路的跳闸率,从而提高电网运行的安全性和可靠性。 1 雷击因素 1.1 地理位置 高压输电线路将能源从发电单位输送到用电负荷的过程要经历很长的路程,在这期间,输电线路要穿越不同的气候、地质、地理地形的区域。以江西省赣州市为例,赣州市是一座位于江西省南部,以山地和丘陵为主的城市,其山区面积占总面积的一半以上,地势起伏较大,山区海拔在750m~1500m,年雷暴日再32日左右。全市平均每28次雷击跳闸事故就有18次发生在山区,因此,防雷工作的重中之重在于山区的输电线路。 1.2 避雷线 保护输电线路防止雷击最有效的方法是架设避雷线。我们称避雷线与外侧导线的连接线和其对地垂直线的夹角为避雷线保护角。保护角的大小与跳闸率的高低有着十分密切的关系,适当减小保护角的角度,就能够一定程度上减少被直击的概率,甚至在保护角小到某个点的时候,能够起到一定的屏蔽效果。 1.3 防范措施 (1)由于山区土壤电阻率较高,容易导致输电线路的电杆塔接地电阻打,根据公式可知,输电线路对雷击的耐受程度随着电杆塔接地电阻的阻值增大而降低。因此要提高输电线路在承受雷击时的耐受能力,就应当根据南方电网公司对山区接地电阻的要求要求,将山区电杆塔的接地电阻将为15Ω以下。其具体做法是,延长接地线的长度或者增加数量,再配合降阻剂的使用降低接地电阻。对于对山区电杆的施工也应严格控制,对不达标的电杆应及时改造,从而降低接地电阻不达标导致的雷击跳闸率高。 (2)p2.1 山火跳闸的几种类型 (1)导线对地面、地面建筑、动植物等放电。 (2)导线对电杆塔的尖突部位,如铆钉、突出的钢材等放电。 (3)由于天气或其他因素导致的长时间高温使得绝缘子发生形变,电气绝缘能力下降,从而引起跳闸。 2.2 原因 导线间的空气间隙被击穿或者合成绝缘子绝缘性能下降时导致火线跳闸的主要原因。由于山火导致的线路跳闸常常很难做到精确数据的定性分析,原因是山火的破坏性较大,现场往往获得准确的数据,但是根据事故现场勘查结果。大多数山火跳闸是因为山火产生的大量热能导致周围的空气因高温热游离,绝缘性能降低,因而被击穿。在此过程中,电杆塔与导线的空气间隙最小,也是最容易被击穿的,其最小间隙仅为4.3m。 2.3 防范措施 (1)要提高对山火安全的重视程度,加强防范教育,提高维护人员的安全意识和专业水平。 (2)要加强线路维护作业的管理工作,尤其是山区,树木植被较为茂盛的地方,对影响到线路安全的树木植被要及时修剪、清理,并加强山区人员的防火消防意识宣传。 (3)要与地方政府及时沟通、协调、宣传等工作,建立健全一套完善的事故应急制度,加强与当地公安、消防、气象、林业等相关部门的合作,做到预防在先。 (4)提高线路的防火设计和施工水平,从根本上提高输电线路的安全性。随着电网建设的高速发展,输电线路越来越密集,当事故发生时,可能会导致多条输电线路同时跳闸,对功率的可靠输送带来巨大负面影响,因此在线路社设计和施工时就考虑到山火因素,对提高线路的安全性有着重要意义。 3 飞鸟导致的跳闸 山区的电杆塔周围往往有茂密的树林,特别是再鸟类繁殖的春季,电杆塔便为鸟类安巢筑窝繁育后代提供了良好的栖息地。在晴朗干燥的时候,这些鸟巢不会给输电线路带来危险,可是如果到了潮湿的阴雨天,这些靠树枝、枯草搭建的鸟窝往往会导致线路短路,引发事故。在秋冬季节,迁徙的候鸟离开后,空鸟巢留着杆塔上,被风吹散甚至吹落,里面积累的鸟粪散落,会导致合成绝缘子绝缘性能降低,造成安全隐患。更甚至,鸟巢里面肯能会有金属物或者干树枝被吹落,掉在导线上,直接造成线路接地或者短路,造成跳闸事故。 防范措施:鸟类大多在10kV线路的转角杆、装有隔离开关的杆塔等横杆较多的杆塔上活动、选择筑巢。因此要较强对这些地方的检查、清除工作,做到及时发现及时清理不留隐患,才能保证输电线路的安全可靠运行。 4 风力因素 4.1 原因分析 (1)电杆塔以及输电线路的设计和施工都有自己的抗风能力,例如:500kV的线路设计最高抗风能力为30M/s,当风力超过了30M/s这个线路承受能力,就会带来安全隐患,导致线路跳闸。

电厂因系统故障引发机跳闸事件分析报告

电厂因系统故障引发#3、#4号机跳闸事件分析报告1、事件经过 (1)2005年5月19日,天气较恶劣,大雨且雷电频繁。12:59时,220kV系统冲击,#3、#4机组相继跳闸。 (2)经运行人员检查,#3机组保护动作情况如下: 87GSTATORDIFF定子差动动作; TRIPFROMEX2100励磁联跳; 52LTRIPPED2203出口开关跳闸; 41EXTRIPPED跳励磁; TURIBINETRIPPED跳燃机。

#4机组保护动作情况如下:灭磁联跳,汽机联跳。 线路保护动作情况如下:220kV南逸甲、乙线都发出距离启动、零序启动、纵联差动启动、纵联保护发讯信号。 (3)故障发生后,当值值长立即向调度汇报跳机情况,并询问系统情况,答复为110kV逸中线、仙中线跳闸,且系统多台机组跳闸;同时,值长将事故情况汇报厂领导,厂领导指示#1机水洗完毕后立即向调度申请转备用。 (4)此后,厂部成立事故调查小组,组织有关人员对#3、#4机组和变压器进行了全面细致的外观检查,除#3主变、220kV1M、2M母线PT、220kV南逸甲、乙线B相避雷器全部动作外,未发现其它异常问题。 (5)因#3发电机差动保护动作,电气检修人员将该发电机定子与主变连接线和中性点连接线全部拆开,对发电机定子绕组进行了三

相对地、相间绝缘、泄漏电流的测试工作,测试结果正常,说明#3发电机本身没有故障,可以投入运行。 (6)继电人员对各保护动作情况进行了检查,对发电机差动保护进行了检查测试,结果表明保护装置校验动作正确。 (7)继电人员提取故障录波器录制的波形进了分析,结果是: 12:59:056时,系统故障:A、C两相相间接地短路,南逸甲、乙线电流突增,线路保护纵差、零序启动。 12:59:057时,A、C两相断路故障点切除,电网频率增加至大约 53Hz,#3、#4机负荷突降至各5MW左右。 12:59:067时,#4机OPC动作,跳开#4主变出口2204开关。 12:59:068时,系统再次出现三相对称短路故障(后询问调度是逸中线非同期合闸造成),#3发电机电压突降,强励启动,定子电流瞬

10kV线路故障跳闸的原因分析及应采取的防范措施

10kV线路故障跳闸的原因分析及应采取的防范措施 摘要:本文就2003年库尔勒供电公司10kv配电线路事故跳闸的案例,对10kv跳闸的常见故障及原因进行了分析,并讨论了如何加强配电网系统可靠性。 关键词:线路故障;跳闸;原因;防范措施 2003年库尔勒供电公司10kV配电线路事故跳闸率较高,累计跳闸455次,其中133次重合不成功。城网跳闸202次,69次重合不成功。农网跳闸253次,64次重合不成功。由于用户供电系统可靠性作为考核供电企业“安全生产文明双达标、创一流”的必备条件,如何预见城市配电系统常见的故障、分析原因,减少对用户的停电时间来提高可靠性是每一个供电职工应该正确对待的问题。我们对跳闸原因进行了认真分析,将各种原因引起的跳闸分门别类的罗列出来,以便于配网管理部门更好的开展工作。 一、造成10kV跳闸的常见故障及原因分析 对于任何事故都应该从管理和技术两个方面进行分析,只有找出问题的原因,才能拿出解决的办法。 (一)我们从技术方面分析,变电站出线断路器跳闸有四种原因,即线路故障、变电设备故障、不可抗拒的外力破坏、人为因素。2003年线路跳闸455次,查出原因的有391次,线路故障造成10kV跳闸220次,占跳闸原因56%;变电设备故障造成10kV跳闸36次,占跳闸原因9%;不可抗拒的外力破坏造成10kV 跳闸83次,占跳闸原因21%;人为因素造成10kV跳闸41次,占跳闸原因10%;还有4%是同杆架设对侧线路故障时由于弧光造成的跳闸。 1、线路故障的分析 瓷瓶(瓷瓶包括针瓶、悬瓶、避雷器、跌落保险的瓷体)闪络放电造成50次跳闸,占线路故障原因23%;倒杆造成5次跳闸,占线路故障原因2%。断线造成43次跳闸,占线路故障原因20%。短路造成25次跳闸,占线路故障原因11%。树害造成93次跳闸,占线路故障原因42%。 同时在133次重合不成功的跳闸原因分析过程中,我们发现有66次是在主干线的永久型故障,有44次是分支线路故障,由于分支跌落保险配置不当或柱上断路器拒分造成的越级跳闸。有11次是虽然线路是瞬间故障但是线路未投重合闸或设备没有重合闸装置。 2、变电设备故障的分析 断路器故障造成的跳闸3次,用户设备故障越级造成的跳闸21次,电缆头击穿短路10次。

相关主题
文本预览
相关文档 最新文档