当前位置:文档之家› 节点非线性耦合的复杂动态网络同步控制研究

节点非线性耦合的复杂动态网络同步控制研究

节点非线性耦合的复杂动态网络同步控制研究
节点非线性耦合的复杂动态网络同步控制研究

复杂网络主要拓扑参数的matlab实现

%% 求网络图中各节点的度及度的分布曲线 %% 求解算法:求解每个节点的度,再按发生频率即为概率,求P(k) %A————————网络图的邻接矩阵 %DeD————————网络图各节点的度分布 %aver_DeD———————网络图的平均度 N=size(A,2); DeD=zeros(1,N); for i=1:N % DeD(i)=length(find((A(i,:)==1))); DeD(i)=sum(A(i,:)); end aver_DeD=mean(DeD); if sum(DeD)==0 disp('该网络图只是由一些孤立点组成'); return; else figure; bar([1:N],DeD); xlabel('节点编号n'); ylabel('各节点的度数K'); title('网络图中各节点的度的大小分布图'); end figure; M=max(DeD); for i=1:M+1; %网络图中节点的度数最大为M,但要同时考虑到度为0的节点的存在性 N_DeD(i)=length(find(DeD==i-1)); % DeD=[2 2 2 2 2 2] end P_DeD=zeros(1,M+1); P_DeD(:)=N_DeD(:)./sum(N_DeD); bar([0:M],P_DeD,'r'); xlabel('节点的度 K'); ylabel('节点度为K的概率 P(K)'); title('网络图中节点度的概率分布图');

function [C,aver_C]=Clustering_Coefficient(A) %% 求网络图中各节点的聚类系数及整个网络的聚类系数 %% 求解算法:求解每个节点的聚类系数,找某节点的所有邻居,这些邻居节点构成一个子图 %% 从A中抽出该子图的邻接矩阵,计算子图的边数,再根据聚类系数的定义,即可算出该节点的聚类系数 %A————————网络图的邻接矩阵 %C————————网络图各节点的聚类系数 %aver———————整个网络图的聚类系数 N=size(A,2); C=zeros(1,N); for i=1:N aa=find(A(i,:)==1); %寻找子图的邻居节点 if isempty(aa) disp(['节点',int2str(i),'为孤立节点,其聚类系数赋值为0']); C(i)=0; else m=length(aa); if m==1 disp(['节点',int2str(i),'只有一个邻居节点,其聚类系数赋值为0']); C(i)=0; else B=A(aa,aa) % 抽取子图的邻接矩阵 C(i)=length(find(B==1))/(m*(m-1)); end end end aver_C=mean(C) function [D,aver_D]=Aver_Path_Length(A)

不连续复杂动态网络的有限时间与固定时间同步

不连续复杂动态网络的有限时间与固定时间同步复杂网络在现实生活中无处不在,复杂网络的同步是自然界中广泛存在的、不容忽视的现象.近年来,复杂网络的渐近同步及其控制已引起了大量学者的广泛关注,然而在物理、工程等领域的实际网络系统中,网络的有限时间和固定时间同步及其控制更具有现实意义和应用价值,但相关研究工作才刚刚起步,相关研究结果较少.鉴于此,本文综合运用非光滑分析、微分包含、右端不连续微分方程、脉冲微分方程等相关理论分别研究了两类不连续复杂动态网络即右端不连续复杂网络和具有脉冲效应的复杂动态网络的有限时间同步和固定时间同步.第一部分讨论了在统一控制框架设计下的右端不连续复杂动态网络的有限时间和固定时间同步.首先,在Filippov解意义下,运用非光滑分析、微分包含等理论及反证思想,分析了右端不连续系统的有限时间与固定时间稳定性,并建立了相应的稳定性定理.然后,对一类具有不连续节点动力学的复杂网络设计了新的控制策略,在该统一的控制策略下,运用前述建立的稳定性定理,结合右端不连续微分方程理论,得到了网络实现有限时间与固定时间同步的判定准则.该准则指出,在统一的控制策略和相同的判定条件下,网络最终是有限时间同步还是固定时间同步取决于控制策略中的一个关键参数的取值.另外,通过对网络设计另一类统一的控制策略,讨论了网络的渐近、指数和有限时间同步.最后给出了数值模拟来说明理论结果的有效性.考虑到现实网络中的脉冲现象,第二部分研究了具有脉冲效应的复杂动态网络的有限时间同步.首先,利用比较原理和数学归纳法建立了有限时间稳定的脉冲型微分不等式,并给出了稳定停息时间上界估计.然后,通过对脉冲复杂网络设计连续控制策略,利用建立的微分不等式和脉冲微分方程理论,得到了网络在1-范数和2-范数意义下的有限时间同步准则和同步停息时间上界估

复杂网络中节点重要度评估研究

复杂网络中节点重要度评估研究 复杂网络在各领域中的发展和应用,不仅改善了人类的生活质量也促进了社会生产率的提高。但是,复杂网络也对社会生活产生了一定的负面影响,如传染病的迅速传播,交通运输网络的拥堵,航班航线的延误,城市电力网络的崩溃等。 因此,为了对复杂网络系统进行有效地预测和控制,需要对复杂网络系统进行深入细致地分析和研究,识别和评估影响网络结构和功能的重要节点。本文针对复杂网络系统的脆弱性问题,利用复杂网络节点蕴含的局部信息和全局信息,提出四种中心性算法,实现对复杂网络节点重要度的评估,主要研究内容及创新点如下:(1)利用复杂网络的局部信息,提出基于网络扩散机制的节点重要度评估算法。 网络中节点影响的扩散机制是指信息流在网络的传播过程中,一个节点对其他节点的影响只影响给该节点的最近邻居节点或者是该节点下一个最近邻居节点。基于该机制,本文提出扩散中心性算法识别和评估网络中的重要节点。 该算法主要考察了节点本身的局部信息的影响以及距离节点第二层的邻居的邻居节点信息的影响来评价节点的重要性。利用SI疾病传播模型对算法进行评价,通过在真实网络中的实验比较分析,验证了网络扩散中心性算法的有效性。 (2)利用复杂网络的全局信息,提出基于网络全局效率和随机游走机制的节点重要度评估算法。1)基于网络全局效率原理,提出网络全局效率中心性算法。 该算法与传统中心性的不同之处在于更注重网络的动力学过程及网络的全局结构信息,是通过对网络边的消除来定义网络的效率,而不是移除网络的节点。利用SI疾病传播模型对算法进行评价,通过在真实网络中的实验比较分析,验证了网络全局效率中心性算法的有效性。

《复杂动态网络理论》教学大纲

《复杂动态网络理论》教学大纲 课程名称(中文):复杂动态网络理论 课程名称(英文):Complex Dynamic Network Theory 课程编码:Y0708016D 开课单位:理学院 授课对象:运筹学与控制论 任课教师:俞辉 学时:32 学分:2 学期:2 考核方式: 开卷 先修课程:线性系统理论,稳定性理论 课程简介: 一、教学目的与基本要求:复杂网络研究正渗透到数理学科、生命学科和工程学科等众多领域,对复杂网络的定量与定性特征的科学理解已成为网络时代科学研究中一个极其重要的挑战性课题。复杂动态网络是复杂网络的一种类型。Vicsek模型关于粒子群自组织行为的研究是复杂动态网络研究的一个基本模型;对鸟群、鱼群、细菌群及其他社会性动物的群体行为研究是控制科学等学科与生物科学的交叉渗透。本课程致力于系统地介绍复杂动态网络的基础知识和研究进展。由于复杂网络研究具有很强的跨学科特色,并且新的问题和研究成果不断涌现,因此,本课程着眼于复杂动态网络研究中已经取得的主要研究进展。作为应用数学的研究生,全面系统地学习复杂动态网络理论中的基本概念、基本定理及算法并了解复杂动态网络研究的最新动向是十分必要的。复杂动态网络理论作为应用数学专业研究生的专业选修课,它的教学目的在于系统介绍这一领域的基本理论框架及最新研究动向,为研究生在该领域的研究中指明方向,并为研究生阅读该领域前沿性的研究文献和开展研究工作打下一定基础。 二、课程内容与学时分配 1、课程主要内容:包括以下几个方面的主要内容:第一章,复杂网络研究概论。第二章,多智能体复杂网络蜂拥控制,包括网络拓扑、势场函数、控制设计、稳定性分析。第三章,多智能体复杂网络的一致性问题,包括定义、控制目标、控制设计、稳定性分析。第四章,自适应控制理论基础,包括概述、参数模型、稳定性分析。第五章,多智能体复杂网络的自适应同步,包括参数化模型、控制设计、稳定性分析。第六章,多智能体复杂网络的自适应有限时间同步,包括参数化模型、控制设计、稳定性分析。第七章,复杂网络理论及应用。 2、课程具体安排:(按教学章节编写,重点章节下划线)

复杂网络同步文献综述

同步现象广泛存在于自然、社会、物理和生物等系统中,人们已观测到的同步现象包括夏日夜晚青蛙的齐鸣、萤火虫的同步发光,心肌细胞和大脑神经网络的同步[24-26],剧场中观众鼓掌频率的逐渐同步[27],等等。在以前的研究中,人们忽略了网络的拓扑性质,在研究同步问题时,自然地选择了最容易模拟和分析的规则网络或随机网络,但近年的研究发现真实的网络不能单纯地用规则或随机性描述而是兼具小世界效应和无标度性质,因此研究网络结构对动力系统同步规律的影响不仅具有理论意义更有实际价值。 1998年和1999年小世界和无标度网络模型相继被提出后,科学家们迅速研究了这两种网络结构对同步规律的影响。2000年Gade和胡进锟对动力学网络的同步稳定性进行分析,提出平均每个节点的长程边数对网络的同步能力起主要影响[51];同年,Lago-Fernández等人发现小世界网络的同步能力远远强于规则的耦合格子[55];2002年汪小帆等人也发现同耦合格子相比无标度网络具有很强的同步能力[36];也在这一年,Hong和Kim研究了WS型小世界网络上的相同步问题,他们发现只要重连概率达到50%时,小世界网络的整体运动的规律程度就接近重联概率为100%的水平[48];祁丰、侯中怀和辛厚文在规则的最近邻耦合网络上随机地加入捷径,发现捷径的加入有利于网络整体处于规则的运动状态[54]。 在研究复杂网络在同步方面照比规则的耦合格子的优势的同时,Pecora和汪小帆等人分别研究了同步的稳定性问题。Pecora和Carroll研究了动力系统同步区域有界情况下动力学网络实现同步的条件,提出了主稳定性函数判断网络同步的稳定性的方法[28];2002年汪小帆和陈关荣提出了一个判断动力系统同步区域无界情况下网络同步稳定性的定理[37]。前面的两种分析方法在使用过程中都要计算耦合矩阵的特征值,当网络规模比较大时,只能采用近似计算的方法,为解决这一问题,2003年,Chen、Rangarajan和丁明洲将主稳定性函数方法与Gershg?rin 圆盘理论结合,为网络结构对混沌耦合振子系统同步稳定性的影响给出了更精确的分析方法[38]。 有了判断网络同步能力的理论方法,科学家进而研究了小世界和无标度网络的同步规律。2002年汪小帆和陈关荣研究了NW型小世界网络同步能力分别随加边概率和网络规模的关系,发现对于同步区域有界的动力系统,随加边概率的增加和网络规模的扩大网络的同步能力增强[42];Barahona和Pecora也研究了NW型小世界网络的同步随网络的边数与同样节点数目的完全网络的边数的比值f的变化规律;2004年,Lind P、Gallas和Herrmann研究了当节点上的耦合振子为Logistic映射时无标度网络的同步规律,他们发现对于BA无标度网络,节点的平均度对网络的同步能力起到了决定性的影响。 人们已经定义了大量的拓扑量来描述复杂网络的性质,那么到底是哪一个或那几个拓扑量决定了网络的同步能力呢?鉴于小世界和无标度网络与近邻耦合格子最大的不同是具有较短的平均距离,人们理所当然的认为小世界效应是复杂网络同步能力的决定性因素,但Nishikawa、

相关主题
文本预览
相关文档 最新文档