Soft X-ray Spectroscopy of the Cygnus Loop Supernova Remnant
- 格式:pdf
- 大小:263.64 KB
- 文档页数:22
Wikipedia:传统百科全书条目/大英百科全书/天文序号条目外文1.21厘米辐射21-centimetre radiation2.剑鱼座30 30 Doradus3.天鹅座61 61 Cygni4.光行差常数aberration, constant of5.水委一Achernar6.无球粒陨石achondrite7.亚当斯Adams, John Couch8.亚当斯Adams, Walter (Sydney)9.德国天文学会星表AG catalog10.爱里Airy, Sir George Biddell11.艾特肯Aitken, Robert Grant12.辇道增七Albireo13.辅Alcor14.毕宿五Aldebaran15.阿方索星表Alfonsine Tables16.阿耳文Alfven, Hannes (Olof Gosta)17.大陵五Algol18.天文学大成Almagest19.历书almanac20.地平纬圈almucantar21.半人马座αAlpha Centauri22.南十字座αAlpha Crucis23.阿方索环形山Alphonsus24.河鼓二Altair25.地平纬度和地平经度altitude and azimuth26.木卫五Amalthea27.阿姆巴楚米扬Ambartsumian, Viktor28.阿米奇Amici, Giovanni Battista29.阿那克西曼德Anaximander30.仙女座Andromeda31.仙女星系Andromeda Galaxy32.安德罗尼卡(西尔哈斯的) Andronicus OF CYRRHUS33.近点角anomaly34.心宿二Antares35.拱点apse36.宝瓶座Aquarius37.大角Arcturus38.阿雷西沃天文台Arecibo Observatory39.阿仑德-罗兰彗星Arend-Roland, Comet40.阿格兰德Argelander, Friedrieh Wilhelm August41.天卫一Ariel42.白羊座Aries43.阿利斯塔克斯(萨摩斯的) Aristarchus OF SAMOS44.浑天仪armillary sphere45.阿普Arp, Halton Christian46.达雷斯特Arrest, Heinrich Louis d'47.阿耶波多(第一) Aryabhata I48.小行星asteroid49.天文地质学astrogeology50.星盘astrolabe51.天文图表astronomical map52.天文台astronomical observatory53.天体分光原理astronomical spectroscopy, principles of54.天文单位astronomical unit (AU)55.天文学astronomy56.天体物理学astrophysics57.华盖aureole58.极光aurora59.奥威斯尔Auwers, (Georg Friedrich Julius) Arthur von60.隐带avoidance, zone of61.巴布科克Babcock, Harold Delos62.巴布科克Babcock, Horace Welcome63.本底辐射background radiation64.巴伊Bailly, Jean-Sylvain65.倍利Baily, Francis66.倍利珠Baily's beads67.班纳克Banneker, Benjamin68.巴纳Barnard, Edward Emerson69.巴纳星Barnard's star70.巴塔尼Battani, al-71.巴耶Bayer, Johann72.BD星表BD73.比尔Beer, Wilhelm74.参宿五Bellatrix75.贝塞耳Bessel, Friedrich Wilhelm76.大犬座βBeta Canis Majoris77.半人马座βBeta Centauri78.南十字座βBeta Crucis79.双子座βBeta Geminorum80.天琴座βBeta Lyrae81.猎户座βBeta Orionis82.参宿四Betelgeuse83.伯利恒之星Bethlehem, Star of84.比拉彗星Biela's Comet85.北斗七星Big Dipper, The86.大科学Big Science87.大霹雳宇宙模型big-bang model88.物理双星binary star89.双目望远镜binocular90.比鲁尼Biruni, al-91.黑洞black hole92.博查Bochart de Saron, Jean-Baptiste-Gaspard93.波得Bode, Johann Elert94.波得定则Bode's law95.博克Bok, Bart J(an)96.邦德Bond, William Cranch97.邦迪Bondi, Sir Hermann98.波昂星表Bonner Durchmusterung (BD)99.博斯科维奇Boscovich, Ruggero Giuseppe100.博斯Boss, Lewis101.布瓦尔Bouvard, Alexis102.鲍迪奇Bowditch, Nathaniel103.鲍恩Bowen, I(ra) S(prague)104.布莱德雷Bradley, James105.第谷?布拉尼Brahe, Tycho106.婆罗门笈多Brahmagupta107.布劳威尔Brouwer, Dirk108.棕矮星brown dwarf109.布朗Brown, Ernest William110.布朗Brown, Robert Hanbury111.伯比奇Burbidge, (Eleanor) Margaret112.木卫四Callisto113.卡路里Caloris114.甘贝尔Campbell, William Wallace115.巨蟹座Cancer116.甘农Cannon, Annie Jump117.老人星Canopus118.好望角照相星表Cape Photographic Durchmusterung (CPD) 119.五车二Capella120.摩羯座Capricornus121.卡林顿Carrington, Richard Christopher122.照相天图Carte du ciel123.卡西尼Cassini, Gian Domenico124.卡西尼Cassini, Jacques125.卡西尼定律Cassini's laws126.仙后座Cassiopeia127.北河二Castor128.CD星表CD129.天球仪celestial globe130.天体力学celestial mechanics131.天文领航celestial navigation132.天球celestial sphere133.摄尔西乌斯Celsius, Anders134.造父变星Cepheid variable135.谷神星Ceres136.托洛洛山美洲天文台Cerro Tololo Inter-American Observatory (CTIO) 137.查理士Challis, James138.张德勒Chandler, Seth Carlo139.张衡Chang Heng140.混沌Chaos141.大水杓Charles's Wain142.冥卫一Charon143.查仑Chiron144.球粒结构chondrule145.克利斯平原Chryse Planitia146.克拉克Clark, Alvan Graham147.煤袋Coalsack148.色指数colour index149.颜色-星等图colour-magnitude diagram150.彗星comet151.合conjunction152.科农(萨摩斯的) Conon OF SAMOS153.星座constellation154.哥白尼体系Copernican system155.哥白尼环形山Copernicus156.哥白尼Copernicus, Nicolaus157.常陈一Cor Caroli158.哥多华星表Cordoba Durchmusterung (CD)159.日冕corona160.日冕仪coronagraph161.天体演化学cosmogony162.宇宙学cosmology163.宇宙Cosmos164.好望角照相星表CPD165.蟹状星云Crab Nebula166.克里米亚天体物理观象台Crimean Astrophysical Observatory 167.南十字座Crux168.天鹅座A射电源Cygnus A169.天鹅座环Cygnus Loop170.丹戎Danjon, Andre-Louis171.暗星云dark nebula172.达尔文Darwin, Sir George (Howard)173.道斯Dawes, William Rutter174.德拉鲁De la Rue,Warren175.赤纬declination176.火卫二Deimos177.德朗布尔Delambre, Jean-Baptiste-Joseph178.德洛内Delaunay, Charles-Eugene179.德利尔Delisle, Joseph-Nicolas180.仙王座δDelta Cephei181.天津四Deneb182.土卫四Dione183.周日运动diurnal motion184.多尔菲斯Dollfus, Audouin(-Charles)185.多纳蒂Donati, Giovanni Battista186.道格拉斯Douglass, Andrew Ellicott187.武仙座DQ DQ Herculis188.德雷伯Draper, Henry189.德雷尔Dreyer, Johan Ludvig Emil190.杜奈尔Duner, Nils Christofer191.矮星dwarf star192.戴森Dyson, Sir Frank (Watson)193.地照earthshine194.蚀eclipse195.蚀变星eclipsing variable star196.黄道ecliptic197.爱丁顿Eddington, Sir Arthur Stanley198.距角elongation199.发射星云emission nebula200.土卫二Enceladus201.恩克Encke, Johann Franz202.恩克彗星Encke's Comet203.星历表ephemeris204.御夫座εEpsilon Aurigae205.分点equinox206.岁差equinoxes, precession of the207.厄拉多塞(昔兰尼的) Eratosthenes OF CYRENE208.爱神星Eros209.逃逸速度escape velocity210.船底座ηEta Carinae211.木卫二Europa212.欧洲南天天文台European Southern Observatory (ESO) 213.事件视界event horizon214.埃费希德Evershed, John215.外太空生物学exobiology216.宇宙膨胀expanding universe217.外太空生命extraterrestrial life218.法布里休斯Fabricius, Johannes219.光斑facula220.弗拉姆斯蒂德Flamsteed, John221.耀星flare star222.闪光谱flash spectrum223.佛来明Fleming, Williamina Paton Stevens 224.北落师门Fomalhaut225.福布什效应Forbush effect226.弗拉-毛罗环形山Fra Mauro227.银河星团galactic cluster228.银道坐标galactic coordinate229.星系晕galactic halo230.星系galaxy231.伽利略卫星Galilean satellite232.伽利略望远镜Galilean telescope233.伽利略Galileo234.伽勒Galle, Johann Gottfried235.伽莫夫Gamow, George236.木卫三Ganymede237.对日照gegenschein238.双子座Gemini239.巨星giant star240.吉尔Gill, Sir David241.吉利斯Gilliss, James Melville242.京茨堡Ginzburg, Vitaly Lazarevich 243.球状星团globular cluster244.戈尔德Gold, Thomas245.古得利克Goodricke, John246.谷德Gould, Benjamin Apthorp247.巨引源Great Attractor248.大红斑Great Red Spot249.大裂缝Great Rift250.格林班克方程Green Bank equation 251.格列哥里Gregory, James252.格鲁姆布里奇Groombridge, Stephen 253.古姆星云Gum Nebula254.中性氢区H I region255.电离氢区H II region256.哈根Hagen, Johann Georg257.赫尔天文台Hale Observatories258.赫尔望远镜Hale Telescope259.赫尔Hale, George Ellery260.霍尔Hall, Asaph261.哈雷Halley, Edmond262.哈雷彗星Halley's Comet263.汉弥尔顿Hamilton, Sir William Rowan264.汉森Hansen, Peter Andreas265.哈里奥特Harriot, Thomas266.哈佛光谱分类Harvard classification system267.收获月Harvest Moon268.赫克曼Heckmann, Otto (Hermann Leopold)269.日心体系heliocentric system270.日球层顶heliopause271.定日镜heliostat272.亨德森Henderson, Thomas273.亨利?德雷伯星表Henry Draper Catalogue274.赫米斯小行星Hermes275.赫瑟尔Herschel, Caroline Lucretia276.赫瑟尔Herschel, Sir John (Frederick William), 1ST BARONET 277.赫瑟尔Herschel, Sir William (Frederick)278.赫茨普龙Hertzsprung, Ejnar279.赫罗图Hertzsprung-Russell diagram280.赫维留Hevelius, Johannes281.希达尔戈Hidalgo282.希尔Hill, George William283.喜帕恰斯Hipparchus284.地平线horizon285.霍罗克斯Horrocks, Jeremiah286.马头星云Horsehead Nebula287.时角hour angle288.时圈hour circle289.霍爱尔Hoyle, Sir Fred290.哈勃太空望远镜Hubble Space Telescope291.哈勃Hubble, Edwin Powell292.哈勃常数Hubble's constant293.赫金斯Huggins, Sir William294.范德胡斯特Hulst, Hendrik Christoffel van de295.惠更斯Huygens, Christiaan296.毕星团Hyades297.土卫七Hyperion298.土卫八Iapetus299.伊本?提本ibn Tibbon, Jacob ben Machir300.伊卡鲁斯Icarus301.一行I-hsing302.池谷-关彗星Ikeya-Seki, Comet303.红外天文学infrared astronomy304.红外源infrared source305.初切ingress306.行星际介质interplanetary medium307.星际物质interstellar medium308.木卫一Io309.铁陨石iron meteorite310.央斯基Jansky, Karl (Guthe)311.尚桑Janssen, Pierre(-Jules-Cesar)312.土卫十Janus313.杰恩斯Jeans, Sir James (Hopwood)314.杰佛利斯Jeffreys, Sir Harold315.焦德雷尔班克实验站Jodrell Bank Experimental Station 316.琼斯Jones, Sir Harold Spencer317.木星Jupiter318.甘德和石申Kan Te and Shih Shen319.卡普坦Kapteyn, Jacobus Cornelius320.基勒Keeler, James (Edward)321.开普勒Kepler, Johannes322.开普勒行星运动定律Kepler's laws of planetary motion 323.开普勒新星Kepler's Nova324.锁眼星云Keyhole Nebula325.花拉子密Khwarizmi, al-326.西丹努斯Kidinnu327.柯克伍德缝Kirkwood gaps328.基特峰国立天文台Kitt Peak National Observatory (KPNO) 329.科兹列夫Kozyrev, Nikolay Aleksandrovich330.柯伊伯机载天文台Kuiper Airborne Observatory331.柯伊伯Kuiper, Gerard Peter332.郭守敬Kuo Shou-ching333.拉卡伊Lacaille, Nicolas Louis de334.礁湖星云Lagoon Nebula335.拉格朗日点Lagrangian point336.拉朗德Lalande, Jerome337.朗伯Lambert, Johann Heinrich338.拉蒙特Lamont, Johann von339.雷恩Lane, Jonathan Homer340.兰利Langley, Samuel Pierpont341.拉普拉斯Laplace, Pierre-Simon, Marquess de342.拉塞尔Lassell, William343.勒威耶Le Verrier, Urbain-Jean-Joseph344.勒维特Leavitt, Henrietta Swan345.勒梅特Lemaitre, Georges346.狮子座Leo347.天秤座Libra348.天平动libration349.光变曲线light curve350.光年light-year351.临边昏暗limb darkening352.林德布拉德Lindblad, Bertil353.林奈环形山Linne354.刘洪Liu Hung355.本星系群Local Group356.洛克伊尔Lockyer, Sir Joseph Norman357.朗盖尔Longair, Malcolm Sim358.隆哥蒙塔努斯Longomontanus, Christian 359.长周期变星long-period variable star360.洛弗尔Lovell, Sir (Alfred Charles) Bernard 361.罗厄尔Lowell, Percival362.李奥Lyot, Bernard(-Ferdinand)363.M81 M81364.马德勒Madler, Johann Heinrich von365.马菲星系I和II Maffei I and II366.麦哲伦星云Magellanic Cloud367.磁暴magnetic storm368.星等magnitude369.月海mare370.马里乌斯Marius, Simon371.火星Mars372.火星运河Mars, canals of373.马斯基林Maskelyne, Nevil374.马蒂厄Mathieu, Claude-Louis375.冒纳开亚天文台Mauna Kea Observatory 376.莫佩尔蒂Maupertuis, Pierre-Louis Moreau de 377.迈耶Mayer, Johann Tobias378.麦克唐纳天文台McDonald Observatory 379.梅尚Mechain, Pierre(-Francois-Andre) 380.梅文鼎Mei Wen-ting381.门登霍尔Mendenhall, Thomas Corwin 382.水星Mercury383.梅西耶星表Messier catalog (M)384.梅西耶Messier, Charles385.流星meteor386.流星雨meteor shower387.陨石meteorite388.陨石坑meteorite crater389.陨石学meteoritics390.流星体meteoroid391.子夜太阳midnight Sun392.银河系Milky Way Galaxy393.米尔恩Milne, Edward Arthur394.土卫一Mimas395.米奈尔Minnaert, Marcel Gilles Jozef396.刍藁增二Mira Ceti397.天卫五Miranda398.米契尔Mitchell, Maria399.开阳Mizar400.麦比乌斯Mobius, August Ferdinand401.莫利纽克斯Molyneux, Samuel402.月球Moon403.卫星moon404.莫尔豪斯彗星Morehouse,Comet405.摩根Morgan, William Wilson406.斯壮罗山暨赛定春山天文台Mount Stromlo and Siding Spring Observatories 407.威尔逊山天文台Mount Wilson Observatory408.多环盆地multiringed basin409.纳蒲Nabu-rimanni410.国立射电天文台National Radio Astronomy Observatory411.星云nebula412.[[]] nebulium413.海王星Neptune414.海卫二Nereid415.中子星neutron star416.星团星云新总表New General Catalogue of Nebulae and Clusters of Stars (NGC) 417.牛康Newcomb, Simon418.星团星云新总表NGC419.尼科尔森Nicholson, Seth Barnes420.夜间气辉nightglow421.交点node422.北美星云North American Nebula423.北极星序north polar sequence424.北星North Star425.新星nova426.仙后座新星1572 Nova Cassiopeiae 1572427.武仙座新星Nova Herculis428.蛇夫座1604新星Nova Ophiuchi 1604429.英仙座新星Nova Persei430.章动nutation431.天卫四Oberon432.掩occultation433.奥伯斯吊诡Olbers' paradox434.奥伯斯Olbers, Wilhelm435.欧玛尔?海亚姆Omar Khayyam436.半人马座ω星团Omega Centauri437.奥尔特Oort, Jan Hendrik438.疏散星团open cluster439.奥皮克Opik, Ernest Julius440.冲opposition441.轨道orbit442.奥尔盖尔陨石Orgueil meteorite 443.猎户座Orion444.猎户座星云Orion Nebula445.帕利萨Palisa, Johann446.智神星Pallas447.帕洛马天文台Palomar Observatory 448.天文视差parallax449.巴黎天文台Paris Observatory 450.秒差距parsec451.皮尔斯Peirce, Benjamin452.半影penumbra453.珀赖因Perrine, Charles Dillon 454.摄动perturbation455.位相phase456.火卫一Phobos457.土卫九Phoebe458.光度学photometry459.光球photosphere460.皮亚齐Piazzi, Giuseppe461.皮卡Picard, Jean462.皮克令Pickering, Edward Charles 463.皮克令Pickering, William Henry 464.双鱼座Pisces465.行星planet466.冥外行星Planet X467.天文馆planetarium468.行星状星云planetary nebula 469.星子planetesimal470.普拉斯基特Plaskett, John Stanley 471.昴星团Pleiades472.昴宿增十二Pleione473.冥王星Pluto474.北极星Polaris475.极星polestar476.北河三Pollux477.庞特Pond, John478.星族I和星族II Populations I and II 479.鬼(宿)星团Praesepe480.南河三Procyon481.自行proper motion482.原星系protogalaxy483.质子-质子循环proton-proton cycle484.原行星protoplanet485.托勒密体系Ptolemaic system486.托勒密Ptolemy487.普尔科沃天文台Pulkovo Observatory488.方照quadrature489.类星体quasar490.凯特尔Quetelet, (Lambert) Adolphe (Jacques) 491.麒麟座R R Monocerotis492.视向速度radial velocity493.射电和雷达天文学radio and radar astronomy 494.射电干涉仪radio interferometer495.射电源radio source496.射电望远镜radio telescope497.帝座Ras Algethi498.赖夏洛姆Ra-Shalom499.雷伯Reber, Grote500.红移red shift501.折合质量reduced mass502.雷乔蒙塔努斯Regiomontanus503.轩辕十四Regulus504.赖兴巴赫Reichenbach, Georg von505.逆行retrograde motion506.土卫五Rhea507.雷蒂库斯Rheticus, Georg Joachim508.里奇Richer, Jean509.参宿七Rigel510.赤经right ascension511.月谷rille512.环状星云Ring Nebula513.黎顿郝斯Rittenhouse, David514.罗伯次Roberts, Isaac515.洛希极限Roche limit516.罗默Romer, Ole (Christensen)517.罗斯Rosse, William Parsons, 3rd Earl of 518.格林威治天文台Royal Greenwich Observatory 519.鲁道夫星表Rudolphine Tables520.罗素Russell, Henry Norris521.赖尔Ryle, Sir Martin522.剑鱼座S S Doradus523.色宾Sabine, Sir Edward524.莎冈Sagan, Carl525.人马座;射手座Sagittarius526.人马座A Sagittarius A527.桑德奇Sandage, Allan Rex528.沙罗周期saros529.卫星satellite530.卫星天文台satellite observatory531.土星Saturn532.汤若望Schall von Bell, Adam533.斯基亚帕雷利Schiaparelli, Giovanni Virginio534.施莱辛格Schlesinger, Frank535.施密特望远镜Schmidt telescope536.施密特Schmidt, Maarten537.施瓦贝Schwabe, Samuel Heinrich538.史瓦西Schwarzschild, Karl539.施瓦斯曼-瓦赫曼1号彗星Schwassmann-Wachmann l, Comet 540.天蝎座Scorpius541.天蝎座X-1 Scorpius X-1542.塞奇Secchi, Pietro Angelo543.星像宁静度seeing544.六分仪sextant545.塞佛特星系Seyfert galaxy546.沙普利Shapley, Harlow547.气壳星shell star548.肖特Short, James549.恒星周期sidereal period550.恒星时sidereal time551.天狼星Sirius552.德西特Sitter, Willem de553.斯里弗Slipher, Vesto Melvin554.小天体small body555.太阳常数solar constant556.太阳活动周期solar cycle557.太阳耀斑solar flare558.太阳星云solar nebula559.日珥solar prominence560.太阳辐射solar radiation561.太阳系solar system562.太阳风solar wind563.至点solstice564.索西琴尼Sosigenes OF ALEXANDRIA565.空间space566.角宿一Spica567.针状物spicule568.大潮spring tide569.恒星star570.星表star catalog571.星团star cluster572.稳恒态理论steady-state theory573.星协stellar association574.石铁陨石stony iron meteorite575.石陨石stony meteorite576.斯特龙根球Stromgren sphere577.斯特龙根Stromgren, Bengt (Georg Daniel)578.斯特鲁维Struve, Friedrich Georg Wilhelm von579.斯特鲁维Struve, Otto580.算经十书Suan-ching shih shu581.太阳Sun582.太阳黑子sunspot583.超巨星supergiant star584.超新星supernova585.斯温兹Swings, Pol586.会合周期synodic period587.大流沙地带Syrtis Major588.金牛座T型星T Tauri star589.台北市立天文科学教育馆Taipei Astronomical Museum 590.太岁T'ai-sui591.金牛座Taurus592.泰勒Taylor, Joseph H., Jr.593.望远镜telescope594.土卫三Tethys595.泰尔西地区Tharsis596.三体问题three-body problem597.潮汐摩擦tidal friction598.泰罗斯卫星TIROS599.蒂斯朗Tisserand, Felix600.土卫六Titan601.天卫三Titania602.提丢斯Titius, Johann Daniel603.汤博Tombaugh, Clyde W(illiam)604.三叶星云Trifid Nebula605.海卫一Triton606.特洛伊群小行星Trojan planets607.特朗普勒Trumpler, Robert Julius608.祖冲之Tsu Ch'ung-chih609.特纳Turner, Herbert Hall610.第谷环形山Tycho611.第谷体系Tychonic system612.第谷新星Tycho's Nova613.双子座U型星U Geminorum star614.UBV系统UBV system615.紫外天文学ultraviolet astronomy616.本影umbra617.天卫二Umbriel618.美国海军天文台United States Naval Observatory (USNO) 619.宇宙universe620.天文堡Uraniborg621.天王星Uranus622.大熊座Ursa Major623.小熊座Ursa Minor624.乌托庇亚平原Utopia Planitia625.彘日Varahamihira626.变星variable star627.织女一Vega628.金星号Venera629.金星Venus630.南怀仁Verbiest,Ferdinand631.超大天线阵Very Large Array632.灶神星Vesta633.室女座;处女座Virgo634.室女座A Virgo A635.沃格尔Vogel, Hermann Karl636.白矮星white dwarf star637.沃尔夫克里克陨石坑Wolf Creek Crater638.沃尔夫Wolf, (Johann) Rudolf639.沃尔夫Wolf, Max640.沃尔夫-拉叶星Wolf-Rayet star641.沃洛蒙比瀑布Wollomombi Falls642.列恩Wren, Sir Christopher643.X射线源X-ray source644.杨忠辅Yang Chung-fu645.杨Young, Charles Augustus646.札奇Zach, Franz Xaver, Baron von647.天顶zenith648.大熊座ζZeta Ursae Majoris649.黄道带zodiac650.黄道光zodiacal light651.祖基Zucchi, Niccolo652.兹威基Zwicky, Fritz。
[收稿日期]2021-08-25 [修回日期]2022-09-23[基金项目]湖北省卫生健康委2021-2022年度青年人才项目(WJ2021F032)[作者简介]冷冬月(1985-),女,硕士,主治医师.[文章编号]1000⁃2200(2024)02⁃0146⁃06㊃基础医学㊃SOX5对大鼠成骨细胞增殖及核因子⁃κB 信号通路的影响冷冬月1,李旭峰2,方兴刚1(1.湖北省十堰市太和医院中西医结合科,442000;2.湖北省十堰市人民医院中医科,442000)[摘要]目的:探究Y⁃box 蛋白5(SOX5)对大鼠成骨细胞(OB)增殖及核因子⁃κB(NF⁃κB)信号通路的影响㊂方法:取新生24h SPF 级SD 乳鼠,应用酶消化法分离大鼠颅骨OB㊂形态学观察和ALP 染色鉴定成骨细胞;取生长良好的第4代OB,分为空白对照组㊁pcDNA3.1组㊁pcDNA⁃SOX5组㊁si⁃NC 组㊁siRNA⁃SOX5组㊂转染48h 后qRT⁃PCR 检测细胞中SOX5mRNA 的表达;MTT 法检测细胞增殖活力;ALP 活性检测试剂盒测量ALP 活性;茜素红染色观察钙结节的形成情况;Western blotting 检测OB 分化及NF⁃κB 信号通路相关蛋白Runt 相关转录因子2(Runx2)㊁Ⅰ型胶原蛋白(Collagen Ⅰ)㊁NF⁃κB p65及其磷酸化蛋白㊁KB 抑制蛋白激酶α(IκBα)㊁肿瘤坏死因子α(TNF⁃α)的表达㊂结果:与空白对照组相比,pcDNA⁃SOX5组大鼠OB 中SOX5mRNA 水平㊁p⁃NF⁃κB p65/NF⁃κB p65㊁TNF⁃α蛋白表达显著升高(P <0.05),OB 增殖活力㊁ALP 活性㊁钙化结节数量和面积㊁Runx2㊁Collagen Ⅰ㊁IκBα表达显著降低(P <0.05);siRNA⁃SOX5组大鼠OB 中SOX5mRNA 水平㊁p⁃NF⁃κB p65/NF⁃κB p65㊁TNF⁃α蛋白表达明显降低(P <0.05),OB 增殖活力㊁ALP 活性㊁钙化结节数量和面积㊁Runx2㊁Collagen Ⅰ㊁IκBα表达明显升高(P <0.05)㊂结论:SOX5具有调控OB 增殖㊁分化的作用,其作用机制可能与调控NF⁃κB 信号通路有关㊂[关键词]骨质疏松;Y⁃box 蛋白5;成骨细胞;核因子⁃κB[中图法分类号]R 681 [文献标志码]A DOI :10.13898/ki.issn.1000⁃2200.2024.02.002Effects of SOX5on rat osteoblast proliferation and NF⁃κB signaling pathwayLENG Dongyue 1,LI Xufeng 2,FANG Xinggang 1(1.Department of Integrated Traditional Chinese and Western Medicine ,Taihe Hospital ,Shiyan Hubei 442000;2.Department of Traditional Chinese Medicine ,Shiyan People′s Hospital ,Shiyan Hubei 442000,China )[Abstract ]Objective :To explore the effects of Y⁃box protein 5(SOX5)on rat osteoblasts (OB)proliferation and nuclear factor κB (NF⁃κB)signaling pathway.Methods :The newborn 24h SPF grade SD suckling rats were taken,and the OB of the rat skull was separated by enzyme digestion method.Morphological observation and ALP staining were used to identify osteoblasts.The fourth generation OBs with good growth were divided into blank control group,pcDNA3.1group,pcDNA⁃SOX5group,si⁃NC group,and siRNA⁃SOX5group.After 48h of transfection,qRT⁃PCR was used to detect the expression of SOX5mRNA in the cells;MTT method was used to detect cell proliferation viability;ALP activity detection kit was used to measure ALP activity;alizarin red staining was used to observe the formation of calcium nodules;Western blotting was used to detect OB differentiation and the expression of NF⁃κB signaling pathway⁃related proteins [Runt⁃related transcription factor 2(Runx2),type Ⅰcollagen (collagen Ⅰ),nuclear factor κB p65(NF⁃κB p65)and its phosphorylated protein,KB inhibits protein kinase α(IκBα),tumor necrosis factor α(TNF⁃α)].Results :Compared with the blank control group,the SOX5mRNA level,p⁃NF⁃κB p65/NF⁃κB p65,and TNF⁃αproteins expression in the OB of rats in the pcDNA⁃SOX5group were significantly increased (P <0.05),the OB proliferation activity,ALP activity,the number and area of calcified nodules,Runx2,collagen Ⅰ,and IκBαexpression were significantly reduced (P <0.05);the SOX5mRNA level,p⁃NF⁃κBp65/NF⁃κB p65,and TNF⁃αproteins expression in the OB of rats in the siRNA⁃SOX5group were significantly reduced (P <0.05),the OB proliferation activity,ALP activity,the number and area of calcified nodules,Runx2,collagen Ⅰ,and IκBαexpression were significantly increased (P <0.05).Conclusions :SOX5can regulate the proliferation and differentiation of OB,and its mechanism may be related to the regulation of NF⁃κB signaling pathway.[Key words ]osteoporosis;Y⁃box protein 5;osteoblasts;nuclear factor⁃κB 骨质疏松症(OP)是一种骨代谢疾病,其特征在于骨量下降,伴随着骨组织和微结构的恶化以及骨矿物质密度的下降[1]㊂在OP 中,骨形成与吸收之间的不平衡最终导致了骨的变性和易骨折[2]㊂成骨细胞(osteoblasts,OB)是一类特殊的具有成骨潜能的细胞,在骨重建及骨稳态维持中都发挥着重要的作用[3];OB活性下降是OP的主要原因[4]㊂Y⁃box蛋白5(SOX5)是SOX家族SoxD组的成员,编码控制细胞命运的各种转录因子并在许多谱系中进行分化,包括神经元㊁软骨细胞和B细胞[5-7]㊂研究[8-9]表明SOX5与类风湿关节炎和软骨形成密切相关,是治疗绝经后OP的有希望的分子靶标㊂已经在卵巢切除小鼠的骨髓细胞中发现了差异表达的SOX5;且与绝经前健康女性的骨髓样本相比,绝经后OP病人骨髓中SOX5的mRNA和蛋白表达水平显著上调;SOX5过表达可抑制人间充质干细胞的成骨分化[10]㊂而SOX5对OB增殖的分子功能及作用机制尚不明确;因此,本研究以大鼠OB为对象,探讨SOX5对OB增殖的影响及其潜在的作用机制,为OP的治疗及药物开发提供参考㊂1 材料与方法1.1 实验材料 出生24h的SPF级SD乳鼠10只,雌雄不限,质量(10±3)g,由北京维通利华实验动物技术有限公司提供,许可证为SCXK(京)2019⁃0009㊂饲养温度(20±2)℃,相对湿度为45%~60%㊂胎牛血清㊁胰蛋白酶㊁RPMI1640培养基均购自美国GIBCO公司;TRIzol RNA分离试剂及SYBR®Premix Ex Taq TM 试剂盒均购买于日本TaKaRa公司;Lipofectamine TM 2000转染试剂盒购自美国Thermo公司;pcDNA⁃SOX5和pcDNA3.1载体㊁siRNA⁃SOX5和其阴性对照(si⁃NC)以及PCR引物序列由上海GenePharma 公司设计合成;氯化十六烷基吡啶鎓(美国Sigma⁃Aldrich,货号:C9002);碱性磷酸酶(Alkaline phosphatase,ALP)检测试剂盒(P0321S)㊁MTT试剂盒(C0009S)购自碧云天生物科技公司;茜素红染色试剂(北京索莱宝科技有限公司,货号:G8550);兔抗大鼠Runt相关转录因子2(runt⁃related transcription factor2,Runx2)(ab236639)㊁Ⅰ型胶原蛋白(CollagenⅠ)(ab270993)㊁核因子⁃κB p65 (nuclear factor kappa⁃B p65,NF⁃κB p65) (ab16502)㊁p⁃NF⁃κB p65(ab76302)㊁肿瘤坏死因子α(TNF⁃α)(ab205587)㊁KB抑制蛋白激酶α(KB inhibits protein kinaseα,IκBα)(ab109300)㊁山羊抗兔IgG H&L(HRP)(ab205718)㊁β⁃actin(ab8227)均购自英国abcam公司㊂细胞培养箱(美国Thermo Fisher Scientific公司);ABI Prism®7300型荧光定量PCR系统(美国);倒置荧光显微镜(IX73,购自日本Olympus公司);iMark680多功能酶标仪㊁蛋白转膜装置购自美国Bio⁃Rad公司㊂1.2 成骨细胞的分离、鉴定 应用酶消化法分离大鼠颅骨成骨细胞[11]㊂取新生24h内SD乳鼠,处死后,乙醇浸泡5min,在无菌条件下,取出头盖骨,PBS冲洗后切成1mm3的骨颗粒,37℃水浴中用0.1%的胶原酶以1∶10的比例将骨颗粒消化分离20min,然后再次用胶原酶分离约1h㊂将分离获得的悬浮液以1200r/min离心,去上清液,用PBS漂洗3次,并加入含有15%胎牛血清㊁青霉素(100U/mL)和链霉素(100U/mL)的培养液㊂在37℃㊁5%CO2下孵育,1周换液2次,待细胞融合约80%时传代,换用成骨诱导培养基(基础培养基+50μg/mL维生素C+10mmol/Lβ⁃甘油磷酸钠+10nmol/L地塞米松)㊂取第3代细胞通过ALP染色和形态观察行成骨细胞鉴定,取生长良好的第4代细胞用于实验㊂鉴定成骨细胞:(1)形态学观察:在倒置相差显微镜下观察原代和继代培养成骨细胞的生长和形态变化,并在随机选择的视野中拍照㊂(2)ALP染色:将第3代的成骨细胞培养7d,并参照ALP染色试剂盒的说明进行ALP染色㊂去除成骨细胞的培养基,PBS清洗细胞2~3次,并用4%多聚甲醛固定10min㊂清洗后加入300μL显色液,避光于37℃的培养箱中孵育2h,显微镜下观察㊂1.3 分组及转染 取生长良好的第4代成骨细胞,按每孔2×106个接种于24孔板,分成5个处理组:(1)空白对照组,不进行任何转染;(2)pcDNA3.1组,用Lipofectamine2000按照说明书将100nmol/L pcDNA3.1转染至成骨细胞;(3)pcDNA⁃SOX5组,用Lipofectamine2000按照说明书将100nmol/L pcDNA⁃SOX5转染至成骨细胞;(4)si⁃NC组,将si⁃NC转染至成骨细胞;(5)siRNA⁃SOX5组,将siRNA⁃SOX5转染至成骨细胞㊂转染48h后收获细胞以进行后续实验㊂1.4 qRT⁃PCR检测细胞中SOX5mRNA的表达 使用TRIzol试剂提取细胞总RNA,使用分光光度计测量总RNA的浓度㊂按照试剂盒说明书将RNA反转录为cDNA,进行PCR扩增(见表1)㊂反应体系(20μL):cDNA(200ng/μL)2μL,SYBR®Premix Ex Taq TM(2×)10μL,上下游引物各0.4μL,ddH2O7.2μL㊂循环条件:94℃持续10min,然后在94℃持续10s,60℃持续20s和72℃持续1min进行40个循环㊂用β⁃actin作为对照,相对SOX5mRNA的表达量采用2-ΔΔCt方法计算㊂表1 RT⁃PCR引物序列基因引物序列SOX5F:5′⁃CAG CCA GAG TTA GCA CAA TAG G⁃3′R:5′⁃CTG TTG TTC CCG TCG GAG TT⁃3′β⁃actinF:5′⁃TTG CGT TAC ACC CTT TCT TG⁃3′R:5′⁃TGT CAC CTT CAC CGT TCC A⁃3′1.5 MTT法检测细胞增殖活力 转染48h后将成骨细胞以2×103细胞/孔的浓度接种到96孔板中,继续培养24h,然后每孔中加入20μL的MTT溶液(5mg/mL),于培养箱中孵育4h,吸去上层清液后加入150μL的DMSO, 490nm波长处测定各孔吸光度值(OD),计算细胞增殖率㊂细胞增殖率=(实验组OD值-空白孔OD 值)/(对照组OD值-空白孔OD值)×100%㊂1.6 ALP活性测定 ALP是成骨细胞分化的早期标志㊂将转染的成骨细胞用成骨培养基培养7d㊂然后,除去OM培养基,并使用0.1%TritonX⁃100裂解细胞获得细胞裂解液,然后12000g离心10min,取上清液为样品㊂使用ALP活性检测试剂盒测量上清液中ALP活性㊂于405nm处测定各组OD值,使用对硝基苯酚绘制标准曲线;另用BCA法测定每个样品的总蛋白浓度㊂并将每个样品的ALP活性标准化为相应的总蛋白含量㊂1.7 茜素红染色 采用茜素红染色观察钙结节的形成数量,评估成骨细胞的矿化能力㊂成骨细胞按1.3方法进行分组处理,转染后将细胞培养2周,弃去培养液,细胞用PBS洗涤2次,并在室温下用4%多聚甲醛固定30min㊂弃去多聚甲醛,PBS洗涤后在37℃下用0.1%茜素红染液染色1h㊂倒置光学显微镜下观察图像并拍照,并使用Image⁃Pro Plus6.0软件统计钙化结节染色阳性区域的面积和数量㊂1.8 Western blotting检测成骨细胞NF⁃κB信号通路相关蛋白的表达 使用RIPA裂解液提取细胞中蛋白质㊂使用BCA试剂盒对蛋白质浓度进行定量㊂取等量蛋白质样品上样(每泳道30μg),10%SDS⁃PAGE分离蛋白质,并通过半干转移将其转移到PVDF膜上㊂将膜用5%脱脂牛奶封闭,并在4℃下与一抗(Runx2㊁CollagenⅠ㊁NF⁃κB p65㊁p⁃NF⁃κB p65㊁TNF⁃α㊁IκBα㊁β⁃actin,1∶1000)孵育过夜㊂第2天,将膜与偶联辣根过氧化物酶的二抗孵育(1∶2000)2h,然后使用化学发光试剂盒(ECL)进行显色㊂以β⁃actin为内参,分析结果㊂1.9 统计学方法 以上所有实验均重复3次㊂采用单因素方差分析(One⁃way ANOVA),Tukey的事后检验用于单因素方差分析后的成对比较㊂2 结果2.1 成骨细胞原代培养和鉴定 原代培养第3天,倒置相差显微镜下见成骨细胞从碎骨块周围爬出,呈放射状贴壁生长,形态不规则,呈多边形或三角形,有较多突起,单核卵圆形, 1~2个核仁,胞质丰富清晰,ALP染色呈阳性,蓝黑色颗粒沉积在细胞质及细胞核ALP活性部位(见图1)㊂2.2 各组成骨细胞中SOX5mRNA的表达 与空白对照组相比,pcDNA⁃SOX5组大鼠OB 中SOX5mRNA水平显著升高(P<0.05),siRNA⁃SOX5组大鼠OB中SOX5mRNA水平明显降低(P <0.05)(见表2)㊂表2 各组大鼠OB中SOX5mRNA水平比较(x±s;n i=3)分组SOX5mRNA空白对照组 1.00±0.00 pcDNA3.1组 1.02±0.01 pcDNA⁃SOX5组 4.65±0.37*si⁃NC组 1.01±0.01 siRNA⁃SOX5组0.41±0.05* F315.94 P<0.01 MS组内0.028 q检验:与空白对照组比较*P<0.052.3 各组成骨细胞增殖活力 与空白对照组相比,pcDNA⁃SOX5组大鼠OB增殖活力显著降低(P <0.05),siRNA⁃SOX5组大鼠OB 增殖活力明显升高(P <0.05)(见表3)㊂表3 各组大鼠OB 增殖活力比较(x ±s ;n i =3)分组增殖率/%空白对照组100.00±0.00pcDNA3.1组102.13±10.01pcDNA⁃SOX5组64.75±6.16*si⁃NC 组104.06±9.31siRNA⁃SOX5组137.31±7.42* F144.83 P<0.01 MS 组内55.976 q 检验:与空白对照组比较*P <0.052.4 各组成骨细胞ALP 活性 与空白对照组相比,pcDNA⁃SOX5组大鼠OB中ALP 活性显著降低(P <0.05),siRNA⁃SOX5组大鼠OB 中ALP 活性明显升高(P <0.05)(见表4)㊂表4 各组大鼠OB 中ALP 活性比较(x ±s ;n i =3)分组ALP 活性空白对照组 1.00±0.00pcDNA3.1组 1.03±0.08pcDNA⁃SOX5组0.75±0.05*si⁃NC 组 1.02±0.06siRNA⁃SOX5组1.54±0.09* F 60.49 P<0.01 MS 组内0.004 q 检验:与空白对照组比较*P <0.052.5 各组成骨细胞钙结节形成情况 倒置显微镜下观察可见细胞呈多层重叠生长,各组细胞间均可见橘红色钙化结节;与空白对照组相比,pcDNA⁃SOX5组大鼠OB 钙化结节数量和面积显著降低(P <0.05),siRNA⁃SOX5组大鼠OB 钙化结节数量和面积明显增加(P <0.05)(见图2㊁表5)㊂2.6 各组成骨细胞分化及NF⁃κB 信号通路相关蛋白的表达 与空白对照组相比,pcDNA⁃SOX5组大鼠OB 中p⁃NF⁃κB p65/NF⁃κB p65㊁TNF⁃α蛋白表达显著升高,Runx2㊁Collagen Ⅰ㊁IκBα表达显著降低(P <0.05),siRNA⁃SOX5组大鼠OB 中p⁃NF⁃κB p65/NF⁃κB p65㊁TNF⁃α蛋白表达明显降低,Runx2㊁Collagen Ⅰ㊁IκBα表达明显增加(P <0.05)(见图3㊁表6)㊂3 讨论 OB 是骨形成的主要功能单位,负责骨骼重塑过程中骨骼基质的合成㊁分泌和矿化㊂OB 在维持骨量和减少骨质流失中起关键作用㊂刺激OB 增殖并促进其分化成熟是调节骨代谢㊁促进新骨形成㊁修复骨缺损的重要方法[12]㊂MTT 法是检测细胞增殖的指标,可以反映生活细胞的代谢水平㊂本研究采用MTT 法检测SOX5对OB 增殖活性的影响,结果显示SOX5mRNA 过表达后,对体外培养的OB 增殖有明显的抑制作用,而采用siRNA 技术干扰SOX5的表达后,OB 增殖率明显增加;表明沉默SOX5具有促进OB 增殖的作用㊂ OB 的增殖通常通过测量细胞总蛋白㊁ALP 活性和Collagen Ⅰ分泌来评估㊂ALP 是OB 分泌的一组膜结合糖蛋白,是OB 早期分化的特异性标志,ALP 活性的高低,能较客观地反映OB 分化成熟的程度[13]㊂Runx2㊁Collagen Ⅰ是OB 相关的蛋白,在成骨分化活动中起重要的促进作用[4],在增殖阶段,OB 分泌Collagen I 以帮助矿化并减少骨质流失㊂OB 分化成熟后多层重叠生长形成结节样结构,并不断分泌基质和矿物质,形成矿化结节㊂茜素红染色可以评估成骨分化晚期细胞外基质矿化情况钙化结节的形成情况[14]㊂本实验中,将转染的OB 用成骨培养基培养7d 后,通过ALP 活性检测了SOX5对OB 分化的影响,结果显示SOX5过表达后,ALP 活性值较低,OB 钙化结节数量和面积降低,且Runx2㊁Collagen Ⅰ表达减少,分析可能与细胞增殖㊁分化受到抑制有关;而SOX5mRNA 表达下调时,ALP 活性㊁细胞钙化程度及Runx2㊁CollagenⅠ表达增加㊂分析沉默SOX5促进成骨细胞ALP活性的原因可能是:(1)与促进细胞增殖有关,OB数量的增加,分泌的ALP也随之增加;(2)上调ALP mRNA表达水平,促进ALP的分泌,调节OB的分化㊂表5 各组大鼠OB钙结节形成情况(x±s;n i=3)分组钙化结节数量钙化结节面积/mm2空白对照组898.62±51.4360.54±5.71 pcDNA3.1组901.05±72.6161.12±5.63 pcDNA⁃SOX5组616.47±60.54*33.28±4.17* si⁃NC组895.09±58.3062.35±4.24 siRNA⁃SOX5组1174.81±73.42*89.76±6.79* F28.7041.08 P<0.01<0.01 MS组内4074.34729.154 q检验:与空白对照组比较*P<0.05表6 各组大鼠OB分化及NF⁃κB信号通路相关蛋白的表达(x±s;n i=3)分组Runx2CollagenⅠ p⁃NF⁃κB p65/NF⁃κB p65 IκBαTNF⁃α空白对照组0.98±0.10 1.12±0.11 0.49±0.04 0.89±0.080.32±0.02 pcDNA3.1组 1.01±0.09 1.10±0.10*0.51±0.050.91±0.070.31±0.03 pcDNA⁃SOX5组0.66±0.07*0.74±0.07* 1.28±0.11*0.40±0.05*0.87±0.06* si⁃NC组0.99±0.06 1.08±0.090.52±0.070.88±0.040.34±0.04 siRNA⁃SOX5组 1.25±0.08* 1.31±0.12*0.33±0.04* 1.22±0.06*0.16±0.03* F20.0312.8892.2768.09150.30 P<0.01<0.01<0.01<0.01<0.01 MS组内0.0070.0100.0050.0040.001 q检验:与空白对照组比较*P<0.05 NF⁃κB控制主要骨骼细胞类型(破骨细胞[15]㊁成骨细胞[16]和软骨细胞[17])的分化或活性㊂生理和病理性骨重塑的刺激都会影响NF⁃κB信号转导[18];NF⁃κB的启动子活性主要是由核移位和NF⁃κB磷酸化引起[19]㊂在静息细胞中,NF⁃κB以NF?κB/IκBα复合物的形式存在于细胞质;在病理条件下,刺激激活核因子抑制剂IκB激酶(IκB kinases, IKKs),该激酶通过靶向将IκBα蛋白降解,释放NF⁃κB并允许其核移位和DNA结合,促进TNF⁃α㊁IL⁃1β等炎性因子的表达,减少骨细胞形成,使OB增殖㊁分化能力降低㊂研究发现NF⁃κB的激活下调OB分化[20];抑制IκBα的降解,稳定NF⁃κB/IκBα复合物,可抑制NF⁃κB的活化,减少炎性因子的释放[21-22]㊂HUANG等[23]发现在人牙槽骨OB分化中,三七皂苷R1可通过抑制NF⁃κB通路,逆转TNF⁃α诱导的钙结节和ALP活性的降低㊂杨青坡等[24]发现姜黄素能降低骨组织中NF⁃κB表达,明显改善OP大鼠骨密度㊂在本研究中,我们通过pcDNA3.1质粒转染构建SOX5过表达OB,发现大鼠OB中磷酸化NF⁃κB p65㊁TNF⁃α蛋白表达升高, IκBα表达降低,说明NF⁃κB信号通路被激活;而沉默SOX5的表达后,IκBα表达增加,磷酸化NF⁃κB p65㊁TNF⁃α表达降低,提示NF⁃κB信号通路被抑制㊂综上所述,沉默SOX5具有促进OB增殖的作用,并可调节OB的分化,其作用机制可能与抑制NF⁃κB信号通路的激活有关,过表达SOX5则发挥相反作用㊂但本研究尚存在一定不足,未对NF⁃κB 信号通路进行干扰从反面进行验证;此外,由于体内外环境的巨大差异,在体内沉默SOX5是否发挥相同的作用,有待进一步研究㊂[参考文献][1] MENG YC,LIN T,JIANG H,et al.miR⁃122exerts inhibitoryeffects on osteoblast proliferation/differentiation in osteoporosis byactivating the PCP4⁃Mediated JNK pathway[J].Mol Ther NucleicAcids,2020,20:345.[2] 杨菁,聂子淮,滕斌,等.基于FRAX风险评估的分层管理在社区老年骨质疏松症病人中的应用研究[J].蚌埠医学院学报,2022,47(2):254.[3] CHOTIYARNWONG P,MCCLOSKEY EV.Pathogenesis ofglucocorticoid⁃induced osteoporosis and options for treatment[J].Nat Rev Endocrinol,2020,16(8):437.[4] HUANG M,LI X,ZHOU C,et al.Noncoding RNA miR⁃205⁃5pmediates osteoporosis pathogenesis and osteoblast differentiationby regulating RUNX2[J].J Cell Biochem,2020,121(10):4196.[5] ZAWERTON A,MIGNOT C,SIGAFOOS A,et al.Widening ofthe genetic and clinical spectrum of lamb⁃shaffer syndrome,aneurodevelopmental disorder due to SOX5haploinsufficiency[J].Genet Med,2020,22(3):524.[6] LIU F,LIU X,YANG Y,et al.NEAT1/miR⁃193a⁃3p/SOX5axisregulates cartilage matrix degradation in human osteoarthritis[J].Cell Biol Int,2020,44(4):947.[7] EDWARDS SK,DESAI A,LIU Y,et al.Expression and functionof a novel isoform of Sox5in malignant B cells[J].Leuk Res,2014,38(3):393.[8] 吴琴,石雨濛,骆爱姝,等.转录因子SOX5在类风湿关节炎病人中的表达及意义[J].中华风湿病学杂志,2019,23(1):46.[9] 张磊,宁玉辉,李国顺,等.敲低SOX5对骨关节炎软骨细胞生物学功能的影响[J].中国骨与关节杂志,2017,6(12):932.[10] XU L,ZHENG L,WANG Z,et al.TNF⁃α⁃induced SOX5upregulation is involved in the osteogenic differentiation of humanbone marrow mesenchymal stem cells through KLF4signalpathway[J].Mol Cells,2018,41(6):575.[11] 艾力麦尔旦㊃艾尼瓦尔,王玲,古丽,等.转化生长因子β3对成骨细胞增殖和成骨能力的影响[J].中国组织工程研究,2021,25(17):2664.[12] RAMENZONI LL,BÖSCH A,PROKSCH S,et al.Effect of highglucose levels and lipopolysaccharides⁃induced inflammation onosteoblast mineralization over sandblasted/acid⁃etched titaniumsurface[J].Clin Implant Dent Relat Res,2020,22(2):213.[13] VIMALRAJ S.Alkaline phosphatase:structure,expression and itsfunction in bone mineralization[J].Gene,2020,754:144855.[14] FAN Q,LI Y,SUN Q,et al.miR⁃532⁃3p inhibits osteogenicdifferentiation in MC3T3⁃E1cells by downregulating ETS1[J].Biochem Biophys Res Commun,2020,525(2):498. [15] TAKAKURA N,MATSUDA M,KHAN M,et al.A novel inhibitorof NF⁃κB⁃inducing kinase prevents bone loss by inhibitingosteoclastic bone resorption in ovariectomized mice[J].Bone,2020,135:115316.[16] MISHRA R,SEHRING I,CEDERLUND M,et al.NF⁃κB signalingnegatively regulates osteoblast dedifferentiation during zebrafish boneregeneration[J].Dev Cell,2020,52(2):167.[17] SUN PF,KONG WK,LIU L,et al.Osteopontin accelerateschondrocyte proliferation in osteoarthritis rats through the NF⁃κbsignaling pathway[J].Eur Rev Med Pharmacol Sci,2020,24(6):2836.[18] 邓海林,陆铭羚,唐哲明,等.成骨细胞经NF⁃κB通路介导风湿性关节炎的相关机制研究[J].中国骨与关节损伤杂志,2020,35(7):779.[19] 侯道荣,刘振,崔斯童,等.丹参酮Ⅱ⁃A通过调控TLR4/IκBα/NFκB信号通路抑制LPS诱导的细胞炎症[J].中国药理学通报,2021,37(2):210.[20] XU W,LU Y,YUE J,et al.Occlusal trauma inhibits osteoblastdifferentiation and bone formation through IKK⁃NF⁃κB signaling[J].J Periodontol,2020,91(5):683.[21] VENUGOPAL M,NAMBIAR J,NAIR BG.Anacardic acid⁃mediated regulation of osteoblast differentiation involvesmitigation of inflammasome activation pathways[J].Mol CellBiochem,2021,476(2):819.[22] SUEISHI T,AKASAKI Y,GOTO N,et al.GRK5inhibitionattenuates cartilage degradation via decreased NF⁃κB signaling[J].Arthritis Rheumatol,2020,72(4):620.[23] HUANG L,LI Q.Notoginsenoside R1promotes differentiation ofhuman alveolar osteoblasts in inflammatory microenvironmentthrough inhibiting NF⁃κB pathway and activating Wnt/β⁃cateninpathway[J].Mol Med Rep,2020,22(6):4754. [24] 杨青坡,穆合塔尔㊃买买提热夏提,王法正,等.姜黄素联合有氧运动对骨质疏松大鼠骨密度㊁氧化应激能力及骨组织NF⁃κB的影响[J].中国骨质疏松杂志,2021,27(1):55.(本文编辑 刘梦楠)。
二烯丙基二硫对荷S180肉瘤小鼠的辐射增敏效应许帅;张红;刘阳;赵邱越;狄翠霞;孙超;马晓飞;李鸿岩【摘要】研究大蒜素重要活性成分二烯丙基二硫(Diallyl disulfide,DADS)对荷S180肉瘤小鼠的辐射增敏效应.利用X射线对荷瘤小鼠全身辐照.测量肿瘤体积、重量;检测肿瘤组织中细胞凋亡及Bcl-2、Bax、caspase-3等凋亡因子的表达.同时测定了DADS对S180细胞增殖及细胞内活性氧(reactive oxygen species,ROS)的影响.结果显示:与对照组、单纯药物组及单纯辐照组相比,DADS联合辐照组小鼠的肿瘤体变小、重量减轻(P<0.01);肿瘤组织中TUNEL阳性细胞增多(P<0.01);Bax、caspase-3表达增强,而Bcl-2表达减弱.此外,DADS引起了S180细胞内大量ROS的产生.结果提示DADS对荷S180肉瘤小鼠具有辐射增敏效应,其机制与上调Bax、Caspase-3、下调Bcl-2表达及诱导肿瘤细胞产生ROS有关.%To study the radiosensitizer effects of Diallyl disulfide(DADS)on S180 sarcoma-bearing mice.Male KunMing mice were implanted with S180 cell to establish orthotopically transplanted model.Then,the tumor-bearing mice were exposed to whole body irradiation with X-ray.Tumor volume and weight,TUNEL experiment,expression of Bcl-2,Bax,caspase3 were evaluated in treatment versus control.The effects of DADS on the generation of ROS(reactive oxygen species)in intracellular of S180 cells were measured.The group treated with DADS and irradiation showed significant reductions in tumor volume and weight(P < 0.01 versus control,DADS alone or irradiation alone).Immunohistochemical analysis revealed that treatment with DADS and irradiation up-regulated the expression of Bax,caspase3 and down-regulated the expression of Bcl-2 ascompared with other groups.The number of TUNEL positive cells in the group treated with DADS and irradiation is more than control or did treatment with DADS alone or irradiation alone.In vitro,DADS increased ROS production in S180 cells.These data show that treatment of DADS and irradiation decreased growth of S180 sarcoma through regulating the expression of Bcl-2,Bax,caspase3 and induced ROS production.【期刊名称】《激光生物学报》【年(卷),期】2013(022)002【总页数】6页(P119-124)【关键词】二烯丙基二硫;小鼠;辐射增敏【作者】许帅;张红;刘阳;赵邱越;狄翠霞;孙超;马晓飞;李鸿岩【作者单位】中国科学院近代物理研究所,甘肃兰州 730000;中国科学院重离子束辐射生物医学重点实验室,甘肃兰州 730000;甘肃省重离子束辐射医学应用基础重点实验室,甘肃兰州 730000;中国科学院大学,北京 100049;中国科学院近代物理研究所,甘肃兰州 730000;中国科学院重离子束辐射生物医学重点实验室,甘肃兰州730000;甘肃省重离子束辐射医学应用基础重点实验室,甘肃兰州 730000;中国科学院近代物理研究所,甘肃兰州 730000;中国科学院重离子束辐射生物医学重点实验室,甘肃兰州 730000;甘肃省重离子束辐射医学应用基础重点实验室,甘肃兰州730000;中国科学院近代物理研究所,甘肃兰州 730000;中国科学院重离子束辐射生物医学重点实验室,甘肃兰州 730000;甘肃省重离子束辐射医学应用基础重点实验室,甘肃兰州 730000;中国科学院大学,北京 100049;中国科学院近代物理研究所,甘肃兰州 730000;中国科学院重离子束辐射生物医学重点实验室,甘肃兰州730000;甘肃省重离子束辐射医学应用基础重点实验室,甘肃兰州 730000;中国科学院近代物理研究所,甘肃兰州 730000;中国科学院重离子束辐射生物医学重点实验室,甘肃兰州 730000;甘肃省重离子束辐射医学应用基础重点实验室,甘肃兰州730000;中国科学院大学,北京 100049;中国科学院近代物理研究所,甘肃兰州730000;中国科学院重离子束辐射生物医学重点实验室,甘肃兰州 730000;甘肃省重离子束辐射医学应用基础重点实验室,甘肃兰州 730000;中国科学院大学,北京100049;中国科学院近代物理研究所,甘肃兰州 730000;中国科学院重离子束辐射生物医学重点实验室,甘肃兰州 730000;甘肃省重离子束辐射医学应用基础重点实验室,甘肃兰州 730000;中国科学院大学,北京 100049【正文语种】中文【中图分类】Q691;R8180 引言二烯丙基二硫(Diallyl disulfide,DADS)是大蒜素中的一种脂溶性有机硫化物,具有抗菌、消炎、解毒、增强免疫力等功效,通过抑制氧化应激对机体正常细胞具有保护作用;同时,DADS也具有抗癌作用。
光谱学Spectroscopy余向阳E-mail: cesyxy@ Homepage: /yxyTel: 84110287Add: 中山大学激光所421室中山大学光电材料与技术国家重点实验室课程性质与安排课程对象: 2010级光信息、物理学、逸仙班2010级研究生课程性质: 光学专业硕士研究生学位课, 其他专业究生选修课本科生专业选修课课程教材: 讲义+参考文献助教:关烨锋(guanyefeng@, 爪哇堂414)学时: 本科生--36; 研究生--72(讲课: 36; 文献与研究: 36)学分: 本科生—2; 研究生--4上课时间: 每周四, 10~11节; 上课地点: 艺206平时成绩: 本科生: 作业+上课考勤: 占30%研究生: 作业+上课考勤+文献综述(3千字,6篇以上的文献), 占30%期未考试: 闭卷笔试, 占70%光谱学研究的主要内容光谱学主要研究内容是:物质-电磁波相互作用下的光谱现象、规律及其应用。
主要包括:1) 光谱学基本理论与方法;2) 各种物质体系(原子、分子、离子晶体-如稀土离子、固体材料—如半导体材料、复杂分子-如有机与生物大分子)的光谱,而其中原子、分子光谱是整个光谱的基础;3)计算光谱学、各种光谱技术、光谱学在科学研究中的应用。
课程的主要内容 绪论电磁场与物质之间的相互作用原子的能级结构与光谱双原子分子的能级与光谱分子的对称性与群论初步多原子分子的光谱分子的拉曼光谱分子的电子光谱计算光谱学导论离子光谱导论固体光谱导论激光光谱学导论光谱技术与应用导论知识背景 光学、激光原理原子分子物理学量子力学电磁学群论初步参考文献[1] 芶秉聪,吴晓丽,王菲,《原子结构与光谱》,国防工业出版社,2007.[2] 郑乐民,徐庚武,《原子结构与原子光谱》,北京大学出版社,1988.[2] 林美荣,张包铮,《原子光谱学导论》,科学出版社,1990.[3] 谢沧,伍钧锵,《原子光谱学》,中山大学讲义,1982.[4] 许长存,过巳吉,《原子与分子光谱学》,大连理工大学出版社,1989.[5] 王国文,《原子与分子光谱学导论》,北京大学出版社,1985.[6] 张允武,陆庆正,刘玉申,《分子光谱学》,中国科大出版社,1988.[7] 徐亦庄,《分子光谱理论》(清华大学出版社,1988)[8] I.N. 赖文著,徐广智,张建中,李碧钦译,《分子光谱学》,高等教育出版社,1985.[9] J.I. 斯坦菲尔德著,李铁津,蒋栋成,朱自强,《分子和辐射—近代分子光谱学导论》,科学出版社,1983.[10] E.B. 小威尔逊,J.C. 德修斯,P.C. 克罗斯著,胡皆汉译《分子振动—红处和拉曼振动光谱理论》,科学出版社,1985.[11] 吴国祯,《分子振动光谱学:原理与研究》,清华出版社,2001.[12] G. 赫兹堡著,王鼎昌译,《分子光谱与分子结构—双原子分子光谱》(第一卷),科学出版社,1983.[13] G. 赫兹堡著,王鼎昌译,《分子光谱与分子结构—多原子分子的红外与喇曼光谱》(第二卷),科学出版社,1989.[14] 钟立晨,丁海曙,《分子光谱与激光》,电子工业出版社,1987.[15] 夏慧荣,王祖赓,《分子光谱学和激光光谱学导论》,华东师范大学出版社,1989.[16] Jeanne L. McHale, “Molecular Spectroscopy”, 科学出版社, 2003.[17] Jack D. Graybeal, “Molecular Spectroscopy”, McGraw-Hill BookCompany, 1988.[19] J. Michael Hollas, “Modern Spectroscopy”, John Wiley & SonsLtd., 1992.[20] 高兆兰,《分子光谱学》(双原子分子部分;多原子分子部分) ,中山大学讲义,1983.[21] 张思远,《稀土离子的光谱学—光谱性质和光谱理论》,科学出版社,2008.[22] 方容川,《固体光谱学》,中国科大出版社,2001.[23] 沈学础,《半导体光谱和光学性质》(第二版),科学出版社,2002.[24] 张树霖,《拉曼光谱学与低维纳米半导体》,科学出版社,2008.[25] 陆同兴,路轶群,《激光光谱技术原理及应用》,中国科大出版社,2006.[26] 陈扬骎,杨晓华,《激光光谱测量技术》,华东师范大学出版社,2006.[27] 陆婉珍,《现代近红外光谱分析技术》,中国石化出版,2007.[28] 李民赞,《光谱分析技术及其应用》,科学出版社,2006.[29] 王志中等,《计算光谱学》,吉林大学讲义,1996.与光谱有关的现象比比皆是:红花绿叶,红灯绿酒,蓝天碧海, ……世界的颜色是缤纷多彩的光谱--光谱学--原子光谱学--分子光谱学--离子光谱学—固体光谱学--大分子体系让我们开始进入五彩缤纷、富有科学趣味、……光谱的世界Stimulated light Scattering of CS2 Pumped at 532 nm (SHG of YAG Laser)第0 章导论0.1 光谱学的概念与特征0.2 光谱学的发展0.3 光谱学的研究内容0.4 光谱学的应用0.1 光谱的概念与特征(一)光谱,全称为光学频谱,是复色光通过色散系统(如光栅、棱镜)进行分光后,依照光的波长(或频率)的大小顺次排列形成的图案。
第 49 卷第 3 期2023年 5 月吉林大学学报(医学版)Journal of Jilin University(Medicine Edition)Vol.49 No.3May 2023DOI:10.13481/j.1671‑587X.20230303卵泡抑素样蛋白1对阿霉素所致小鼠急性心肌损伤的改善作用及其机制赵荫涛, 杨莹莹, 张相钦, 郑璐, 徐亚威, 杨海波, 刘源(郑州大学第一附属医院心血管内科, 河南郑州450052)[摘要]目的目的:探讨卵泡抑素样蛋白1(FSTL1)对阿霉素(DOX)诱导的小鼠急性心肌损伤的保护作用,并阐明其相关机制。
方法方法:80只C57BL/6J小鼠采用单次腹腔内注射DOX建立小鼠急性心肌损伤模型,小鼠按DOX不同剂量(0、5、10、15和20 mg·kg-1)分为5组(n=8);按不同干预时间(0、0.5、1.0、2.0和3.0 d)分为5组(n=8)。
另取32只小鼠随机分为生理盐水组、FSTL1组、DOX组和DOX+FSTL1组。
测定各组小鼠心脏超声心动图和血流动力学指标,酶联免疫吸附测定(ELISA)法检测各组小鼠血清中肿瘤坏死因子α(TNF-α)、N端脑钠肽体(NT-proBNP)和肌钙蛋白T(cTn-T)水平,氧化应激试剂盒检测各组小鼠心肌组织中超氧化物歧化酶(SOD)活性和丙二醛(MDA)、4-羟基壬烯醛(4-HNE)及15-F2t-isoprostane水平,实时荧光定量PCR(RT-qPCR)法检测各组小鼠心肌组织中FSTL1 mRNA表达水平,Western blotting法检测各组小鼠心肌组织中核因子E2相关因子2(Nrf2)和FSTL1蛋白表达水平。
结果:与生理盐水组比较,DOX组和DOX+ FSTL1组小鼠左心室射血分数(LVEF)、左心室短轴缩短率(LVFS)、左心室收缩压(LVSP)、左心室内压最大上升速率(+dP/dt max)和左心室内压最大下降速率(-dP/dt max)降低(P<0.05),心率(HR)、左心室舒张末期容积(LVEDV)和左心室舒张压(LVDP)升高(P<0.05);与DOX组比较,DOX+FSTL1组小鼠LVEF、+dP/dt max和-dP/dt max升高(P<0.05),LVEDV降低(P<0.05)。
巨大质量恒星列表维基百科,自由的百科全书这是一份有关巨大质量恒星的列表,依太阳质量的多寡排列。
(1 太阳质量= 太阳的质量而不是太阳系的质量)。
恒星质量是恒星最重要的一个因素。
与化学成分的组合,质量能确定一颗恒星的光度,它实际上的大小和它最后的命运。
列在表上的恒星,由于它们的质量非常巨大,到最后大多都会爆发成超新星甚至是极超新星,然后形成黑洞。
目录[隐藏]∙ 1 不确定性和警告∙ 2 恒星演化∙ 3 巨大质量的恒星列表∙ 4 黑洞∙ 5 爱丁顿光度极限∙ 6 参见∙7 外部链接∙8 参考[编辑]不确定性和警告表中所列出的恒星质量都是从理论上推测的,依据的是恒星很难测定的温度和绝对星等。
所有列出的质量都是不确定的:因为都已经将目前的理论和测量技术发挥到了极限,而无论是理论或观测,只要有一个错误,或是两者都错,结果就会不正确。
例如,仙王座VV变星,依据这颗恒星特有的产物审查,质量就可能是太阳的25至40倍,或是100倍。
大质量恒星是很罕见的,表中列出的恒星距离都在数千光年以上,它们孤单的存在着,使距离很难测量。
除了很远之外,这些质量极端巨大的恒星似乎都被喷发出来的气体云气包围着;周围的气体会遮蔽恒星的光度,使原本就很难测量的光度和温度更难测量,并且也使测量他们内部化学成分变成更加复杂的问题。
另一方面,云气的遮蔽也阻碍了观测,而难以确认是一颗大质量恒星,还是多星系统。
下表中必然有一定数量的恒星也许是轨道极近的联星,每一颗恒星的质量必然也不小,但不一定是巨大的质量;这些系统仍然可以二选一的是一颗或多颗大质量恒星,或有许多质量不大的伴星。
因此表中许多恒星的质量经常是目前被研究的主题,质量经常被重测,而且经常被校正。
表中列出的质量中,最可靠的是NGC 3603-A1和WR20a+b,它们是从轨道测量中得到的。
NGC 3603-A1和WR20a+b两者都是联星系统(两颗恒星沿着轨道互绕),运用开普勒行星运动定律,经由研究它们的轨道运动可以测量出两颗恒星各自的质量。
a r X i v :0801.4552v 1 [a s t r o -p h ] 29 J a n 2008Soft X-ray Spectroscopy of the Cygnus Loop Supernova RemnantR.L.McEntaffer and W.CashCenter for Astrophysics and Space Astronomy,University of Colorado,Boulder,CO 80309randall.mcentaffer@ ABSTRACT The Cygnus X-ray Emission Spectroscopic Survey (CyXESS)sounding rocket payload was launched from White Sands Missile Range on 2006November 20and obtained a high resolution spectrum of the Cygnus Loop supernova remnant in the soft X-rays.The novel X-ray spectrograph incorporated a wire-grid collima-tor feeding an array of gratings in the extreme off-plane mount which ultimately dispersed the spectrum onto Gaseous Electron Multiplier (GEM)detectors.This instrument recorded 65seconds of usable data between 43-49.5˚A in two promi-nent features.The first feature near 45˚A is dominated by the He-like triplet of O VII in second order with contributions from Mg X and Si IX -Si XII in first order,while the second feature near 47.5˚A is first order S IX and S X .Fits to the spectra give an equilibrium plasma at log(T )=6.2(kT e =0.14keV)and near cosmic abundances.This is consistent with previous observations,which demonstrated that the soft x-ray emission from the Cygnus Loop is dominated by interactions between the initial blast wave with the walls of a precursor formed cavity surrounding the Cygnus Loop and that this interaction can be described using equilibrium conditions.Subject headings:instrumentation:spectrographs —ISM:individual (CygnusLoop)—line:identification —supernova remnants —X-rays:individual (CygnusLoop)1.IntroductionSupernovae greatly influence the dynamics within the interstellar medium (ISM).Their ubiquitous nature and the size of their remnants allow them to influence multiple phases of the ISM while influencing the evolution and structure of the galaxy.They are responsible for chemical enrichment of the ISM,play a major role in energy input,and are dominant sources for hot ionized gas,which fills much of the galaxy (McKee &Ostriker 1982).One of the most studied SNRs is the Cygnus Loop.It is a nearby remnant at540pc (Blair et al.1975),quite large,filling∼3◦×3◦(Levenson et al.1997),and is relatively unabsorbed(E(B−V)=0.08;Fesen et al.(1982)).The blast wave is currently encoun-tering the surrounding ISM leading to bright emission at all wavelengths.Therefore,the Cygnus Loop serves as an excellent test bed for SNR evolution theory.A comprehensive and detailed imaging study of the remnant’s X-ray and optical emission was performed by Levenson et al.(1997,1998).One of the majorfindings of these studies is that the Cygnus Loop morphology is not indicative of the typical theoretical picture of a blast wave propa-gating through a uniform medium(Sedov1993;Spitzer1998),but instead is an interaction of the blast wave with an inhomogeneous medium.The precursor formed cavity is nearly spherical and surrounded by high density clumps and lower density gas.This causes most emission to originate from a limb-brightened shell.The optical emission occurs when the shock is decelerated rapidly in high density clumps.The X-ray emission occurs in these clumps as the blast wave interacts with the cloud and hardens toward the interior as a re-flection shock propagates inward reschocking the already shocked gas.X-rays also originate as expected in the lower density gas that follows the theoretical model more closely.The Cygnus Loop has been spectroscopically observed in the soft X-ray to some extent. Vedder et al.(1986)obtained a high resolution(E/∆E∼50)spectrum at energies below1 keV using the Focal Plane Crystal Spectrometer(FPCS)on the Einstein Observatory,which observed a3′×30′bright northern section midway between the center and the limb.They detected O VIII Lyman-αat653eV,the resonance line in the He-like triplet of O VII at 574eV and a blend of Ne IX lines between905-920eV.They do not detect the forbidden or intercombination lines of the O VII triplet.Even though the detectedfluxes are consistent with an equilibrium plasma with solar abundances at T∼3×106K,the authors argue that the plasma is not yet in collisional ionization equilibrium(CIE)due to the lack of forbidden O VII emission.ROSAT Position Sensitive Proportional Counter(PSPC)observations by Levenson et al. (1999)and Miyata&Tsunemi(2001)show results consistent with the previous imaging studies.A Levenson et al.(1999)spectrum of the decelerated cloud shock was bestfit by a Raymond-Smith equilibrium plasma at cosmic abundances(Raymond&Smith1977)with kT e=0.06(+0.04,−0.02)keV and absorbing column N H=7×1020(±4×1020)cm−2.A spectrum extracted from a region interior to the cloud shock had a similar low temperature component,but also included a high temperature contribution,kT e1=0.25(+0.14,−0.06) keV,from the reflected shock,which hardens the interior emission.The low temperature corresponds to a shock velocity of v s=230km s−1,which has slowed considerably from the initial blast wave velocity of v s∼500km s−1(Levenson et al.1998)resulting in an equi-librium plasma.Miyata&Tsunemi(2001)alsofind that equilibrium plasmas with cosmicabundancesfit the low temperature components of their extracted spectra(kT e=0.043to 0.067keV)and that these contributions are greatest toward the limb.However,they use ASCA data and a nonequilibrium model with depleted abundances tofit the interior harder spectra(kT e=0.27to0.34keV).The Chandra X-ray Observatory Advanced CCD Imaging Spectrometer(ACIS)also ob-served the Cygnus Loop(Levenson et al.2002;Leahy2004).Levenson et al.(2002)used the Xspec(Arnaud,K.A.1996)spectralfitting software package and more specifically the MEKAL equilibrium model(Mewe et al.1985,1986;Kaastra1992;Arnaud&Rothenflug 1985;Arnaud&Raymond1992;Liedahl et al.1995)tofit the extracted spectra.Again, the softer emission originates near the limb(kT e∼0.03keV)while the reflected shock hard-ens the interior spectrum(kT e=0.12to kT e=0.18keV).The best spectralfits all required a depletion in oxygen.Attempts were made at nonequilibrium models but they did not im-prove thefit statistics.Furthermore,thefit values for the ionization parameter(n e t,where n e is electron density and t is the elapsed time since the gas was initially shocked)were all >1012cm−3s where values of 3×1011cm−3s signify equilibrium.The authors do not rule out the possibility of nonequilibrium but state that due to low spectral and spatial resolu-tion the low temperature equilibrium plasma is indistinguishable from a higher temperature nonequilibrium ing21different extraction regions Leahy(2004)finds the same result;the spectra are bestfit by an equilibrium MEKAL model with variable elemental abundances,and that there is no evidence for nonequilibrium.The author also states that the abundances are considerably depleted and vary on small spatial scales suggesting that the region is geometrically complex with multiple clouds and even more shocks.Thefinal spectrum of note(Miyata et al.2007)was taken using the Suzaku Observa-tory X-ray Imaging Spectrometer(XIS)CCD camera and has the highest spectral resolution other than Vedder et al.(1986).The authors clearly detected O VII at562±10eV,O VIII at653±10eV,C VI at357±10eV and N VI at425±10eV,but the1/4keV band emission is unresolved.Band ratio maps using strong emission features at different radii show that the outermost emission is dominated by the1/4keV emission and therefore a low temperature component.Furthermore,the O VIII/O VII ratio increases inward showing that the ionization state is higher in the interior.The bestfit models were two component nonequilibrium plasmas with variable abundances(vnei in Xspec).The lower temperature components of thefits varied from kT e=0.10−0.15keV and the high temperature com-ponent ranged from kT e=0.18−0.34keV.The temperature of both components increased towards the interior.Column densities ranged from N H=3−6×1020cm−2and abundances were heavily depleted.The Cygnus Loop is clearly complex both spatially and spectrally.However,spectralresolution is lagging spatial resolution.Chandra can imagefine structures indicative of dif-ferent physical regions,but the nearly broadband spectra can only show trends.Determining plasma diagnostics from modelfits to these low spectral quality data is uncertain.Higher spectral resolution is required not only to constrain the parameters of a model,but to test the assumed validity of the model.Currently there is no efficient,well developed technology that permits high resolution x-ray spectroscopy from large solid angle sources,making spectra of diffuse x-ray sources rare. In order to address this issue a soft X-ray spectrometer was designed for a rocket payload, the Cygnus X-ray Emission Spectroscopic Survey(CyXESS).Scientifically,the payload was designed to observe emission in the1/4keV bandpass.This is the least understood range of astrophysical soft X-ray energies.A diffuse high resolution spectrum has never been achieved even though there is a large amount offlux in this band.The soft emission from the Cygnus Loop is contained within a narrow shell and is dominated by the early interactions of the initial blast wave with the surrounding cavity.Therefore,a global spectrum of the remnant will be dominated by the physics of this interaction.2.Sounding Rocket InstrumentTypical X-ray telescopes employ the use of grazing incidence telescopes.However,these are expensive and heavy and thus unattractive for a rocketflight.CyXESS utilizes a wire grid collimator to constrain the beam of light.The collimator is followed by the off-plane reflection grating array which disperses light onto the detectors.The payload is three meters long consisting of nearly a meter to create the converging beam while allowing the gratings to throw the light about two meters.A brief description of the payload design follows,buta detailed description can be found in McEntaffer(2007);McEntaffer et al.(2008).2.1.Wire Grid CollimatorWire grid collimators have wires that are spaced periodically in such a way that only light coming from a specified direction can pass through.If the grids have a spacing that decreases systematically,then it is possible to allow only light that is converging to a line to pass through,simulating the output of a lens.As light travels from front to back in the collimator it will encounter the same number of slits but they will be narrower and closer together,thus sculpting the converging beam.The wires create baffles between slits which vignette unwanted rays.If thin material is used,these wire spacers serve as knife edgesso that any light striking the metal will be near normal incidence and will be efficiently absorbed.Such a collimator does not function well for a point source,but for a diffuse target,radiation comes from all directions,and the beam is fully illuminated.A grating mounted in the exit beam diffracts just as in a telescope beam.Thus the collimator alone provides the needed beam geometry.2.2.Off-plane Grating ArrayThe off-plane mount at grazing incidence brings light onto the grating at a low graze angle,quasi-parallel to the direction of the grooves.The light is then diffracted through an arc,forming a cone,so that this mount is also known as conical diffraction(Cash1991; Catura et al.1988).The off-plane grating equation isnλsinα+sinβ=2.3.GEM DetectorsThe two detectors on the payload are Gaseous Electron Multipliers(GEM).They were built by Sensor Sciences,LLC.These innovative detectors use a gasfilled chamber(75% Ar25%CO2)segmented by perforated polyimide(Kapton R )film coated with a conductive layer on each side.The perforation holes provide a potential difference through which the electron cloud is accelerated resulting in gain.One of the most attractive features of these detectors is that they are made with very large formats,which is essential for this experiment due to the system’s dispersion and line lengths.The entrance window is a105mm×105 mm polyimide window that is3600-3900˚A thick to maximize transmission while maintaining integrity.A100˚A carbon coat was added for conductivity and a grid bar and mesh support system is utilized with a transmission of57.8%.The mesh and grid bars carry the negative high volts(HV)so that electrons are accelerated towards the anode,which is held at ground. Gain is determined by many factors including the voltage drop across the foils and gaps, high voltage supply stability,cleanliness of the GEM foils,gas pressure,etc.A gasflow system was incorporated to replenish the counter gas and maintain an operating pressure of 14.5psia.This system also counteracts the leak rate and compensates for micro tears in the window in order to improve gain stability.The100mm×100mm anode is a serpentine cross delay line.The output of the resistive anode is analyzed by a custom electronics system.Signals are passed through an amplifier and then to an adder box which combines the data of the two detectors and passes it on to the timing-to-digital converter(TDC).The TDC returns a12-bit word for X position and Y position and an8-bit word for pulse height.The least significant bit of the pulse height determines which detector the current data word originates from.Finally,a stim pulse is sent from the TDC to the anode,which is then analyzed and sent back to the TDC.This gives reference data on both position and pulse height.This stim can be seen without HV on and thus provides a useful diagnostic.2.4.Expected PerformanceThe payload was designed to obtain spectra from diffuse sources in the soft X-ray. Several design factors determine the accepted passband such as the length of the payload, the size of the detectors and the dispersion of the gratings.Optimizing these factors resulted in a passband of44˚A to132˚A infirst order.The expected performance at these wavelengths can be summarized by the resolution and effective area of the payload.The resolution is ultimately determined by the full-width at half maximum(FWHM)of a spectral line at the focus along with the dispersion of the system.The grating groove density of5670grooves/mm and throw distance of∼2m give a dispersion of0.89˚A mm−1infirst order. Calibrations of the spectrum give line widths that broaden slightly from1.7mm to2.2mm as wavelength is increased.These characteristics give resolution ofλ/∆λ∼25−70infirst order and∼25−85in second order(22-66˚A)as shown infigure1.The effective area of this spectrograph is determined by the collecting area,sky coverage, and throughput of the system.The collecting area of the telescope is defined by the size of the zero order image at the focal plane;1.7mm wide line over10cm of detector gives1.7 cm2.This small amount of collecting area is bolstered by the large amount of solid angle available to each point on the focal plane,8.93deg2.In terms of efficiency,the detector gas absorbs all X-rays,but the mechanical throughput is57.8%,which is then further reduced by the transmission of the polyimide/carbon window.As for the gratings,the theoretical efficiencies are plotted as lines infigure2.Calibration data are shown as the points at44.76˚A(carbon K-shell),with1σGaussian error bars,and agree well with theory.Taking all factors into account,the resulting effective area curves are shown infigure3.2.5.FlightThe payload was launched from White Sands Missile Range at02:00:00UT,2006Novem-ber21(flight36.224).The zenith angle of the target was∼31◦.Usable data were recorded over345seconds of theflight.However,a breakdown event upon high voltage turn on ren-dered one detector useless while leaving the other detector extremely noisy for most of the flight.The GEM detectors exhibit noise in the form of hotspots which typically decay over time.Therefore,usable spectral data were only recorded over65seconds near the end of the flight.The pointing was dithered during theflight so that during the time when spectral data were collected the payload was pointed offcenter as depicted infigure4.3.Data AnalysisData were extracted from the section of the detector that was free of noise and contained spectral information.The resulting spectrum is given infigure5.Pre-flight and post-flight spectral calibration data were compared withflight data to determine the wavelength scale. The counts at wavelengths longer than50˚A are residual emission from a large hotspot that dominated the detector for most of theflight.The two prominent features below50˚A are the detected spectral features.Tofit the data a series of equilibrium spectral models of an optically thin plasma un-der collisional ionization equilibrium were constructed using line lists from Raymond-Smith (Raymond&Smith1977),MEKAL(Mewe et al.1985,1986;Kaastra1992;Arnaud&Rothenflug 1985;Arnaud&Raymond1992;Liedahl et al.1995)and APED(Smith et al.2001a,b)at temperatures ranging from kT e=0.034−0.272keV(log(T)=5.6−6.5).The spec-tra are constructed using Gaussians placed at the appropriate wavelengths(per Raymond-Smith,MEKAL or APED)with widths corresponding to the1.84mm(1.64˚A)FWHMof the spectral line calibration data and amplitudes such that the integratedflux of eachline scales according to the emissivities given in each line list.Each model spectrum is ab-sorbed using photoelectric absorption cross sections from Morrison&McCammon(1983)with N H=7×1020cm−2(held constant)and then convolved with the payload instrument response function(figure3).Cosmic abundances are per Allen(1973):He,10.93;C,8.52;N,7.96;O,8.82;Ne,7.92;Na,6.25;Mg,7.42;Al,6.39;Si,7.52;S,7.20;Ar,6.80;Ca,6.30;Fe,7.60;Ni,6.30(in logarithmic units where log10N H=12.00).Given the low number of counts,a maximum likelihood analysis was performed to obtainthe bestfit.Assuming that the number of counts in each bin follows a Poisson distributionand that each bin is independent of the others results in the following likelihood functionL=Ni=1Z n i i exp(−Z i)The data and the model(solid curve)are plotted together infigure6.These data are identical to those shown infigure5,but this time are plotted with0.9772single-sided upper and lower limits(0.9544confidence level)as calculated by Gehrels(1986),which correspond to2σGaussian statistics.The likelihood contours for thefit parameters are given infigure7. The shaded region encompasses68%of the normalized likelihood and establishes the84%(1σGaussian)marginalized confidence intervals for the individual parameters,1.55+0.90−0.63forthe S abundance and−0.76+0.18−0.17˚A for theλshift.Finally,a closeup of the spectral dataalong with line identifications are shown infigure8.The more prominent data line around 44˚A contains somefirst order Mg X and Si IX-Si XII,but most of theflux is in the He-like triplet of O VII in second order.The other data line around47-48˚A is dominated by S IX and S X infirst order.A summary of the major lines is given in table1.The elemental abundances with respect to cosmic(Allen1973)are C,1.0;N,0.44(max);O,1.0;Ne,1.0;Mg,1.0;Si,0.44(max);S,1.55+0.90−0.63;Ar,1.0;Ca,1.0;Fe,1.0;Ni,1.0.Tabel1summarizesthe major lines and transitions.4.DiscussionThe results of the data analysis reveal a departure from cosmic abundances;S is enriched while Si and N are depleted.The enrichment of S can be explained by confusion due to multiple temperature components.The single temperaturefit at kT e=0.14keV is intermediate in comparison to Levenson et al.(1999)and Miyata&Tsunemi(2001),but consistent with the low temperature component from Miyata et al.(2007).Therefore,there may be some contamination from a higher temperature component in the CyXESS data. In this passband,increasing the temperature increases the contribution from second order oxygen while decreasing the contributions of other lines.Therefore,a high temperature component will only addflux to the line complex at44˚A,thus requiring additionalflux in the form of a S enhancement in the47.5˚A complex in order to maintain the spectral shape defined by thefit.Since there are only2features tofit,it is impossible to accurately discern the relative contribution from each plasma.More spectral resolution is required so that individual lines can be used to define the components.As for the second issue,even though some previous observations argue for an equilibrium plasma,especially in the case of the softest X-rays which occur in cloud shocks,nonequilib-rium conditions could still be important.If nonequilibrium is considered,then the ionization state of the gas should be decreased.In nonequilibrium the electron temperature is higher than what is expected from the ion state of the gas and the gas is underionized.Therefore, favoring lower ion species in the MEKAL model will test nonequilibrium conditions.Also,within the lower ion species the ratio of higher energy lineflux to lower energy lineflux should be increased relative to equilibrium since the electrons have more energy to excite the ions to higher levels than typical in equilibrium.In the case of Si,the lines that contribute the problematic long wavelengthflux occur around49-50˚A and are Si IX,Si X and Si XI.De-creasing the influence of these lines will definitely have a desired effect,but will also require an increase of major Si VII and Si VIII lines at52˚A,thus reintroducing the problem.This occurs for other elements as well.Favoring lower ion species will not explain the depletions, and furthermore,there is no evidence for nonequilibrium conditions contributing to these data.Another explanation could be depletion into dust,especially in the case of Si depletion. If dust is a major constituent of the shocked ISM then refractory elements could be con-tained within the dust and depleted from the gas phase.However,the dust present in the cloud must be able to survive not only the initial blast wave,but also a reflection shock and sublimation over time in the hot gas(not to mention precursor winds,cloud-cloud interac-tions,cosmic rays and photodesorption(Draine&Salpeter1979a,b)).Given the conditions present in the Cygnus Loop,Draine&Salpeter(1979a)show that thermal sputtering rates for dust grains in log(T)=6.2gas are∼0.001µm every1000years.Therefore,small grains (size 100˚A)will be quickly destroyed with the mass fraction returning to the gas.In addi-tion,Draine&Salpeter(1979b)have modelled dust sputtering as a function of blast wave velocity.Their results show that a blast wave with shock velocity>300km s−1will sputter nearly all graphite,silicate,and iron dust grains up to a size of0.1µm in a cloud with density n H=10−100cm−3.Calculations for the initial blast wave velocity for the Cygnus Loop vary from330km s−1(Levenson et al.2002)to400km s−1(Ku et al.1984).This also suggests that if a significant fraction of refractory elements are depleted into dust in the dense clouds consituting the Cygnus Loop cavity walls,then the size distribution of dust particles favors large grains.Infrared(IR)emission from the Cygnus Loop has been observed and Arendt et al. (1992)show that it can be explained by dust ing IRAS observations at12µm, 25µm,60µm,and100µm,theyfind that there are two infrared(IR)components,one that correlates well with X-ray emission and another that correlates with the optical emission.A lack of observed emission in the12µm and25µm bands suggests an underabundance of small grains.This is supported by their models of the X-ray/IR correlated gas,which favor a minimum grain size of∼150˚A consistent with our estimates.However,the models used tofit the broadband observations assume all emission is due to thermal dust emission.The authors state that line emission could theoretically contribute a significant fraction to the observed IR emission.Therefore,constraining the dust fraction is impossible without higher resolution IR spectra,which should become available with upcoming Spitzer observations.Depletion into dust cannot be ruled out and is supported by our data,especially in the case of silicate grains.We see no evidence for graphite grains because there are no important C lines in the wavelength range of our spectrum.The N and Si depletions necessary for our fit are due to a line complex of second order N VII andfirst order Si X and Si XI.Therefore, given this confusion only an upper limit to the Si abundance can be applied suggesting a large depletion of at least56%of the Si into grains.5.SummaryThe CyXESS payload was designed to observe the soft X-rayflux of the Cygnus Loop supernova remnant.The design consisted of a wire grid collimator that focused the light onto an array of gratings in the off-plane mount which ultimately dispersed the spectrum onto large format GEM detectors.The payload was launched on November20th,2006from White Sands Missile Range and collected345seconds of data.Data reduction decreased the amount of usable data to65seconds during which the instrument detectedflux between 43-49.5˚A(250-288eV)in two prominent features.Thefirst feature near45˚A is dominated by the He-like triplet of O VII in second order with contributions from Mg X and Si IX-Si XII infirst order,while the second feature near47.5˚A isfirst order S IX and S X.Fits to the spectra give an equilibrium plasma at kT e=0.14keV(log(T)=6.2)and near cosmic abundances for most elements.Even though the most likelyfit to the CyXESS data contains only one temperature,the lack of spectral range and resolution do not allow determination of multiple components.An observed depletion in Si supports the presence of silicate grains but higher X-ray and IR resolution are necessary to accurately constrain dust models.Our data were constrained to a small portion of the soft X-rays,but show a wealth of lines present.In this band wefind no evidence to support nonequilibrium conditions. Therefore,our results are consistent with previous observations and show that the soft X-ray spectrum of the Cygnus Loop,which is dominated by interactions between the initial blast wave with the walls of a precursor formed cavity,can be described by an equilibrium plasma.The authors would like to acknowledge NASA grants NNG04WC02G and NGT5-50397 for support of this work.REFERENCESAllen,C.W.1973,Astrophysical Quantities(3rd ed.;London:Athlone)Arendt,R.G.,Dwek,E.,&Leisawitz D.1992,ApJ,400,562Arnaud,M.,&Rothenflug,R.1985,A&AS,60,425Arnaud,M.,&Raymond,J.1992,ApJ,398,394Arnaud,K.A.1996,in ASP Conf.Ser.101,Astronomical Data Analysis Software and Systems V,ed.G.H.Jacoby,&J.Barnes,17Blair,W.P.,Sankrit,R.,&Raymond,J.C.2005,AJ,129,2268Cash,Jr.,W.C.1991,Appl.Opt.,30,1749Catura,R.C.,Stern,R.A.,Cash,W.,Windt,D.L.,Culhane,J.L.1988,Proc.SPIE,830, 204Draine,B.T.,&Salpeter,E.E.1979,ApJ,231,77Draine,B.T.,&Salpeter,E.E.1979,ApJ,231,438Fesen,R.A.,Blair,W.P.,Kirshner,R.P.1982,ApJ,262,171Gehrels,N.1986,ApJ,303,336Hamilton,A.J.S.,Chevalier,R.A.,Sarazin,C.L.1983,ApJS,51,115Kaastra,J.S.1992,An X-ray Spectral Code for Optically Thin Plasmas,Internal SRON-Leiden Report,updated version2.0Ku,W.H.M.,Kahn,S.M.,Pisarski,R.,&Long,K.S.1984,ApJ,278,615Leahy,D.A.2004,MNRAS,351,385Levenson,N.A.et al.1997,ApJ,484,304Levenson,N.A.,Graham,J.R.,Keller,L.D.,Richter,M.J.1998,ApJS,118,541 Levenson,N.A.,Graham,J.R.,Snowden,S.L.1999,ApJ,526,874Levenson,N.A.,Graham,J.R.,Walters,J.L.2002,ApJ,576,798Liedahl,D.A.,Osterheld,A.L.,Goldstein,W.H.1995,ApJ,438,L115McCray,R.,&Snow,Jr.,T.P.1979,ARA&A,17,213McEntaffer,R.L.2007,PhD thesis,University of ColoradoMcEntaffer,R.L.et al.2008,Experimental Astronomy,submittedMcKee,C.F.1974,ApJ,188,335McKee,C.F.,&Ostriker,J.P.1977,ApJ,218,148Mewe,R.,Gronenschild,E.H.B.M.,&van den Oord,G.H.J.,1985,A&AS,62,197Mewe,R.,Lemen,J.R.,&van den Oord,G.H.J.,1986,A&AS,65,511Miyata,E.,&Tsunemi,H.2001,ApJ,552,624Miyata,E.,Katsuda,S.,Tsunemi,H.,Hughes,J.P.,Kokubun,M.,&Porter,F.S.2007, PASJ,59,163Morrison,R.,&McCammon,D.1983,ApJ,270,119Raymond,J.C.,&Smith,B.W.1977,ApJS,35,419Sedov,L.1993,Similarity and Dimensional Methods in Mechanics(10th ed.;Boca Raton, Fla.:CRC Press)Smith,R.K.,Brickhouse,N.S.,Liedahl,D.A.,Raymond,J.C.2001,ApJ,556,L91Smith,R.K.,Brickhouse,N.S.,Liedahl,D.A.,Raymond,J.C.2001,in ASP Conf.Ser.247, Spectroscopic Challenges of Photoionized Plasmas,ed.G.Ferland,&D.W.Savin, 159Spitzer,L.1998,Physical Processes in the Interstellar Medium,Wiley Classics Library,1998Vedder,P.W.,Canizares,C.R.,Markert,T.H.,Pradhan,A.K.1986,ApJ,307,269。