当前位置:文档之家› 射频磁控溅射镀膜

射频磁控溅射镀膜

射频磁控溅射镀膜
射频磁控溅射镀膜

东南大学材料科学与工程

实验报告

学生姓名徐佳乐班级学号12011421 实验日期2014/9/2 批改教师

课程名称电子信息材料大型实验批改日期

实验名称射频磁控溅射制备薄膜材料报告成绩

一、实验目的

1、掌握射频磁控溅射原理;

2、了解射频磁控溅射操作技术;

二、实验原理

当直流溅射沉积绝缘性材料时,绝缘层表面不断积累电荷,产生的电场与外加电压抵消,直流辉光放电不能持续进行。

如果在两电极之间施加交流电压,气体电离后,电子在电极间来回振荡以维持气体放电。由于电子和离子的质量不同,电子随外加交流电场迁移的速度大于离子,因此电极表面始终积累一定数量的负电荷,电极处于负电位(即阴极),正离子受阴极的吸引,轰击电极产生溅射作用。当使用的交流电压为13.56MHz的射频频率,这类溅射称为射频溅射。

三、实验内容及步骤

沉积参数:温度400℃;Ar流量 30sccm;N2流量 2sccm;工作压强

0.5Pa;功率 200W;阴极电压 -308V,时间1小时。

1、开机前准备工作

(1)开动循环水,检查水压是否足够大,水压控制器是否起作用,保证各水路畅通。(2)检查总供电电源配线是否完好,底线是否接好,所有仪表电源开关全部处于关闭状态。(3)检查分子泵、机械泵油是否注到表现处。(4)检查系统所有阀门是否处于关闭状态。

2、装样

先将样品清洗干净后放在样品托上后,将样品托、放入靶材真空室。

3、开机

(1)启动总电源

确认所有电源开关都在关闭状态后,按下总电源开关,此时电源三相指示灯全亮,供电正常。

(2)磁控溅射室抽真空

启动机械泵

按下机械泵开关,机械泵指示灯亮,此时机械泵工作,在打开V3旁抽阀开关,机械泵对磁控溅射室进行抽气。打开热偶真空计进行测量。

启动分子泵

先打开分子泵总电源开关,当真空计显示达到20Pa时,关闭旁抽阀V3,打开电磁阀,然后打开分子泵启动按钮,其电源控制面板上显示速率,分子泵开始工作。这时打开闸板阀对磁控溅射室抽气。约8分钟,速率显示为600时,分子泵进入正常工作状态。打开电离真空计,测量高真空,待其达到10-3Pa。

4、磁控溅射镀膜

(1)待本底真空达到实验所预期要求后,加热样品台到溅射温度400℃,稍关闭闸板阀。

(2)向磁控溅射室充气,Ar流量:30sccm,N2流量:2sccm。通过适量调节闸板阀关闭的大小调节溅射工作压强至3-5Pa。

(3)射频磁控溅射。开启灯丝开关,预热5分钟。开启板压开关,缓缓调节板压到500V,然后调节匹配电容C1和C2,直至反应室起辉。调节板压到所需功率至200W,随时调节匹配网络使反射功率接近0。在调节工作压强至0.5Pa,偏压为0V/-30V。通过调节样品台、样品挡板和靶挡板位置,是溅射原子沉积在样品表面。

5、停止溅射镀膜

样品温度低于60度,取出样品。

四、实验结果

清洗过的不锈钢衬底和硅衬底镀好TiN膜的衬底

磁控溅射镀膜原理和工艺设计

磁控溅射镀膜原理及工艺 摘要:真空镀膜技术作为一种产生特定膜层的技术,在现实生产生活中有着广泛的应用。真空镀膜技术有三种形式,即蒸发镀膜、溅射镀膜和离子镀。这里主要讲一下由溅射镀 膜技术发展来的磁控溅射镀膜的原理及相应工艺的研究。 关键词:溅射;溅射变量;工作气压;沉积率。 绪论 溅射现象于1870年开始用于镀膜技术,1930年以后由于提高了沉积速率而逐渐用于工业生产。常用二极溅射设备如右图。 通常将欲沉积的材料制成板材-靶,固定在阴 极上。基片置于正对靶面的阳极上,距靶一定距 离。系统抽至高真空后充入(10~1)帕的气体(通 常为氩气),在阴极和阳极间加几千伏电压,两极 间即产生辉光放电。放电产生的正离子在电场作 用下飞向阴极,与靶表面原子碰撞,受碰撞从靶 面逸出的靶原子称为溅射原子,其能量在1至几十 电子伏范围内。溅射原子在基片表面沉积成膜。 其中磁控溅射可以被认为是镀膜技术中最突出的 成就之一。它以溅射率高、基片温升低、膜-基结 合力好、装置性能稳定、操作控制方便等优点, 成为镀膜工业应用领域(特别是建筑镀膜玻璃、透 明导电膜玻璃、柔性基材卷绕镀等对大面积的均 匀性有特别苛刻要求的连续镀膜场合)的首选方 案。 1磁控溅射原理 溅射属于PDV(物理气相沉积)三种基本方法:真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流放电离子镀)中的一种。 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar正离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区

用磁控溅射制备薄膜材料的概述

用磁控溅射制备薄膜材料的概述 1.引言 溅射技术属于PVD(物理气相沉积)技术的一种,是一种重要的薄膜材料制备的方法。它是利用带电荷的粒子在电场中加速后具有一定动能的特点,将离子引向欲被溅射的物质制成的靶电极(阴极),并将靶材原子溅射出来使其沿着一定的方向运动到衬底并最终在衬底上沉积成膜的方法。磁控溅射是把磁控原理与普通溅射技术相结合利用磁场的特殊分布控制电场中的电子运动轨迹,以此改进溅射的工艺。磁控溅射技术已经成为沉积耐磨、耐蚀、装饰、光学及其他各种功能薄膜的重要手段。 2.溅射技术的发展 1852年,格洛夫(Grove)发现阴极溅射现象,从而为溅射技术的发展开创了先河。采用磁控溅射沉积技术制取薄膜是在上世纪三四十年代开始的,但在上世纪70年代中期以前,采蒸镀的方法制取薄膜要比采用磁控溅射方法更加广泛。这是凶为当时的溅射技术140刚起步,其溅射的沉积率很低,而且溅射的压强基本上在lpa以上但是与溅射同时发展的蒸镀技术由于其镀膜速率比溅射镀膜高一个数量级,使得溅射镀膜技术一度在产业化的竞争中处于劣势溅射镀膜产业化是在1963年,美国贝尔实验室和西屋电气公司采用长度为10米的连续溅射镀膜装置,镀制集成电路中的钽膜时首次实现的。在1974年,由J.Chapin发现了平衡磁控溅射后,使高速、低温溅射成为现

实,磁控溅射更加快速地发展起来。 溅射技术先后经历了二级、三级和高频溅射。二极溅射是最早采用,并且是目前最简单的基本溅射方法。二极溅射方法虽然简单,但放电不稳定,而且沉积速率低。为了提高溅射速率以及改善膜层质量,人们在二极溅射装置的基础上附加热阴极,制作出三极溅射装置。 然而像这种传统的溅射技术都有明显的缺点: 1).溅射压强高、污染严重、薄膜纯度差 2).不能抑制由靶产生的高速电子对基板的轰击,基片温升高、淀积速率低 3).灯丝寿命低,也存在灯丝对薄膜的污染问题 3.磁控溅射的原理: 磁控溅射就是以磁场束缚和延长电子的运动路径,改变电子的运动方向,提高工作气体的电离率和有效利用电子的能量。具有低温、高速两大特点。 电子在加速的过程中受到磁场洛仑兹力的作用,被束缚在靠近靶面的等离子体区域内: F=-q(E+v×B) 电子的运动的轨迹将是沿电场方向加速,同时绕磁场方向螺旋前进的复杂曲线。即磁场的存在将延长电子在等离子体中的运动轨迹,提高了它参与原子碰撞和电离过程的几率,因而在同样的电流和气压下可以显著地提高溅射的效率和沉积的速率。 具体地说来磁控溅射系统在真空室充入0.1~1OPa压力的惰性气

实验磁控溅射法制备薄膜材料

实验磁控溅射法制备薄 膜材料 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

实验4 磁控溅射法制备薄膜材料 一、实验目的 1. 掌握真空的获得 2. 掌握磁控溅射法的基本原理与使用方法 3. 掌握利用磁控溅射法制备薄膜材料的方法 二、实验原理 磁控溅射属于辉光放电范畴,利用阴极溅射原理进行镀膜。膜层粒子来源于辉光放电中,氩离子对阴极靶材产生的阴极溅射作用。氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹,使得电子在正交电磁场中变成了摆线运动,因而大大增加了与气体分子碰撞的几率。用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶),使固体原子(分子)从表面射出的现象称为溅射。 1. 辉光放电: 辉光放电是在稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。溅射镀膜基于荷能离子轰击靶材时的溅射效应,而整个溅射过程都是建立在辉光放电的基础之上的,即溅射离子都来源于气体放电。不同的溅射技术所采用的辉

光放电方式有所不同,直流二极溅射利用的是直流辉光放电,磁控溅射是利用环状磁场控制下的辉光放电。 如图1(a)所示为一个直流 气体放电体系,在阴阳两极之间 由电动势为的直流电源提供电压 和电流,并以电阻作为限流电 阻。在电路中,各参数之间应满 足下述关系: V=E-IR 使真空容器中Ar气的压力保持一定,并逐渐提高两个电极之间的电压。在开始时,电极之间几乎没有电流通过,因为这时气体原子大多仍处于中性状态,只有极少量的电离粒子在电场的作用下做定向运动,形成极为微弱的电流,即图(b)中曲线的开始阶段所示的那样。 图1 直流气体放电 随着电压逐渐地升高,电离粒子的运动速度也随之加快,即电流随电压上升而增加。当这部分电离粒子的速度达到饱和时,电流不再随电压升高而增加。此时,电流达到了一个饱和值(对应于图曲线的第一个垂直段)。

射频磁控溅射详细操作流程与真空系统

磁控溅射操作流程 1、开循环水(总阀、分子泵),放气(两个小金属片打开;旁抽阀;V6)放完气后关闭; 2、开总电源,开腔装样品,开机械泵,抽到10pa以下; 3、开电磁阀,抽到10pa以下,开分子泵(按下绿色start按钮,分子泵加速,显示为400) 时,关旁抽阀,再打开高阀;开溅射室烘烤,将电压调节至75V,烘烤时间为1h; 4、抽到1·10-4pa后,抽管道(缓慢打开V1截止阀,V2阀);打开质量流量计电源,待示 数稳定后,将阀开关拨至“阀控”位置,再将设定旋钮向右调节至最大,待示数变为“0” 时,将阀门开关拨至“关闭”,同时将设定旋钮设定为0; 5、开气瓶(一定要确定阀开关处于“关闭”位置,调节分压阀数值约为0.1mp;待质量流 量计示数稳定后,将阀开关拨至“阀控”位置,调节到所需设定值,如20sccm; 6、开A靶、水冷盘、其他靶的循环水; 7、慢慢讲高阀回调,调节气压至1~3pa,起辉(开总控制电源、A靶射频电源、A靶),调 节功率至60w,(A靶处的tune、load先处于WN状态,要进行调节时,应调节至Auto),调节tune为50%,Load值为10%~20之间(调节后需调回WN状态);再按R.F起辉; 8、将高阀门调至最外,待气压稳定之后预溅射15分钟,在此期间要对齿轮挡板进行定位(先 将小刚圈上提右转放下,然后向外旋转“马达”旁边的齿轮,直到听到“啪”的一声,最后左转上提小刚圈); 9、打开电脑后面右边的三个电源开关,开电脑; 10、实验。调节好实验所需压强、功率、气体等,设置“样品位置”,“样品编号”,“挡板位 置”(样品位置以A靶为标准,样品编号即为此时位于A靶上方样品的编号,挡靶位置在装挡板时就已位于B靶处,所以挡板默认为B靶所在位置,所有参数、位置设定好后即可开始镀膜; 11、每次镀膜完,要对其参数进行设定—应用—运行,待齿轮旋转不动时,用机械手推动挡 板至B靶所在位置(上中下三孔对齐),—确定—两个360°—样品放在E靶—挡板放在B靶—开始。 12、镀膜结束。先关闭电脑,然后关闭R.F,将功率调节至0,依次关闭三个电源(最后关 总溅射电源),关闭气瓶总阀,调节气体质量流量计至最大,待其示数变小为零;关闭分压阀,待流量计示数变为零,关闭质量流量计,依次关闭V2、V1阀,随后关闭高阀,按分子泵Stop键,待其示数降为零,再关闭分子泵电源; 13、依次关闭电磁阀、溅射室机械泵、设备总电源,关闭所有循环水。

磁控溅射高频脉冲(A-2K)电源的研制1

中南民族大学 硕士学位论文 磁控溅射高频脉冲(A<'2>K)电源的研制 姓名:刘亚东 申请学位级别:硕士 专业:等离子体物理 指导教师:孙奉娄 20080501

摘要 根据调研和文献,对不同的溅射技术进行了比较,针对脉冲磁控溅射(Pulse Megnetron Sputtering(PMS))的特点及受限于电源技术的瓶颈,提出了A2K(Active Arc Killer)电源指标:输出频率最高达300kHz,负向电压在0~-500V可调,负向最大峰值电流达2A,正向电压在0~100V可调,正向最大峰值电流达1A,负向占空比10%~60%范围可调的双向脉冲电源。 为了实现电源指标,分析了拟设计电源的难点:主要是受电力电子器件的限制,电压、电流和频率同时达到所需水平的电力电子器件目前在国内无法找到,即使找到了成本也是相当高。因此,本文从结构上入手,提出了整体的电源解决方案,它由两个独立的DC/DC变换(分别用于调节正、负向电压)、一个斩波系统(用于形成正向脉冲)和一个逆变倍频系统(用于形成负向脉冲)构成。逆变倍频系统及其与斩波系统的配合是核心问题,方案在一定程度上突破了电力电子器件的限制,为溅射电源设计提供了新的方案。 根据总体方案,详细论述了主电路的拓扑选择、功率器件的选择、磁性器件的设计、缓冲电路的选择、控制电路和驱动电路的设计。在比较了各种拓扑优缺点之后,根据电源指标要求,选择了全桥电路作为负向调压系统的DC/DC变换拓扑,正激电路作为正向调压系统的DC/DC变换拓扑,逆变倍频系统也采用全桥逆变,副边采用可控整流。由于对频率有较高要求,功率开关管全部采用功率MOSFET。讨论了中高频下Miller效应对功率开关管驱动的影响及其解决方案,还讨论了缓冲电路的作用及参数选择。 本文还从工程经验上详细描述了电源调试中出现的问题和如何解决这些问题的详细过程。通过示波器检测驱动信号实时波形,验证了Miller效应的影响。通过检测负载电压和电流波形、电源在功能上达到了设计指标。 实际用于磁控溅射实验,与RF、DC溅射进行比较,验证了脉冲溅射的优势和电源的实用性,此电源可作为实验室磁控溅射试验电源。 关键词:脉冲磁控溅射;高频脉冲电源;逆变倍频;Miller效应

磁控溅射

磁控反应溅射。就是用金属靶,加入氩气和反应气体如氮气或氧气。当金属靶材撞向零件时由于能量转化,与反应气体化合生成氮化物或氧化物。若磁铁静止,其磁场特性决定一般靶材利用率小于30%。为增大靶材利用率,可采用旋转磁场。但旋转磁场需要旋转机构,同时溅射速率要减小。冷却水管。 旋转磁场多用于大型或贵重靶。如半导体膜溅射。用磁控靶源溅射金属和合金很容易,点火和溅射很方便。这是因为靶(阴极),等离子体,和被溅零件/真空腔体可形成回路。但若溅射绝缘体如陶瓷则回路断了。于是人们采用高频电源,回路中加入很强的电容。这样在绝缘回路中靶材成了一个电容。但高频磁控溅射电源昂贵,溅射速率很小,同时接地技术很复杂,因而难大规模采用。为解决此问题,发明了 磁控溅射 磁控溅射是为了在低气压下进行高速溅射,必须有效地提高气体的离化率。通过在靶阴极表面引入磁场,利用磁场对带电粒子的约束来提高等离子体密度以增加溅射率的方法。 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar 和新的电子;新电子飞向基片,Ar在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于 一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。磁控溅射是入射粒子和靶的碰撞过程。入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。

实验磁控溅射法制备薄膜材料

实验磁控溅射法制备薄膜 材料 The final edition was revised on December 14th, 2020.

实验4 磁控溅射法制备薄膜材料 一、实验目的 1. 掌握真空的获得 2. 掌握磁控溅射法的基本原理与使用方法 3. 掌握利用磁控溅射法制备薄膜材料的方法 二、实验原理 磁控溅射属于辉光放电范畴,利用阴极溅射原理进行镀膜。膜层粒子来源于辉光放电中,氩离子对阴极靶材产生的阴极溅射作用。氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹,使得电子在正交电磁场中变成了摆线运动,因而大大增加了与气体分子碰撞的几率。用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶),使固体原子(分子)从表面射出的现象称为溅射。 1. 辉光放电: 辉光放电是在稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。溅射镀膜基于荷能离子轰击靶材时的溅射效应,而整个溅射过程都是建立在辉光放电的基础之上的,即溅射离子都来源于气体放电。不同的溅射技术所采用的辉光放电方式有所不同,直流二极溅射利用的是直流辉光放电,磁控溅射是利用环状磁场控制下的辉光放电。 如图1(a)所示为一个直流气 体放电体系,在阴阳两极之间由电 动势为的直流电源提供电压和电 流,并以电阻作为限流电阻。在电 路中,各参数之间应满足下述关 系: V=E-IR 使真空容器中Ar气的压力保 持一定,并逐渐提高两个电极之间 的电压。在开始时,电极之间几乎 没有电流通过,因为这时气体原子 大多仍处于中性状态,只有极少量 的电离粒子在电场的作用下做定向运动,形成极为微弱的电流,即图(b)中曲线的开始阶段所示的那样。 图1 直流气体放电 随着电压逐渐地升高,电离粒子的运动速度也随之加快,即电流随电压上升而增加。当这部分电离粒子的速度达到饱和时,电流不再随电压升高而增加。此时,电流达到了一个饱和值(对应于图曲线的第一个垂直段)。 当电压继续升高时,离子与阴极之间以及电子与气体分子之间的碰撞变得重要起来。在碰撞趋于频繁的同时,外电路转移给电子与离子的能量也在逐渐增加。一方面,离子对于阴极的碰撞将使其产生二次电子的发射,而电子能量也增加到足够高的水平,它们与气体分子的碰撞开始导致后者发生电离,如图(a)所示。这些过

磁控溅射镀膜简介

磁控溅射镀膜简介 溅射薄膜靶材按其不同的功能和应用可大致分为机械功能膜相物理功能膜两大类。前者包括耐摩、减摩、耐热、抗蚀等表面强化薄膜材料、固体润滑薄膜材料, 后者包括电、磁、声、光等功能薄膜材料靶材等, 具体应用在玻璃涂层(各种建筑玻璃、ITO透明导电玻璃、家电玻璃、高反射后视镜及亚克力镀膜), 工艺品装饰镀膜, 高速钢刀具镀膜, 切削刀具镀膜, 太阳能反光材料镀膜, 光电、半导体、光磁储存媒体、被动组件、平面显示器、微机电、光学组件、及各类机械耐磨、润滑、生物医学, 各种新型功能镀膜(如硬质膜、金属膜、半导体膜、介质膜、碳膜、铁磁膜和磁性薄膜等) 采用Cr,Cr-CrN等合金靶材或镶嵌靶材,在N2,CH4等气氛中进行反应溅射镀膜,可以在各种工件上镀Cr,CrC,CrN等镀层。纯Cr的显微硬度为425~840HV,CrN为1000~350OHV,不仅硬度高且摩擦系数小,可代替水溶液电镀铬。电镀会使钢发生氢脆、速率慢,而且会产生环境污染问题。 用TiN,TiC等超硬镀层涂覆刀具、模具等表面,摩擦系数小,化学稳定性好,具有优良的耐热、耐磨、抗氧化、耐冲击等性能,既可以提高刀具、模具等的工作特性,又可以提高使用寿命,一般可使刀具寿命提高3~10倍。 TiN,TiC,Al2O3等膜层化学性能稳定,在许多介质中具有良好的耐蚀性,可以作为基体材料保护膜。溅射镀膜法和液体急冷法都能制取非晶态合金,其成分几乎相同,腐蚀特性和电化学特性也没有什么差别,只是溅射法得到的非晶态膜阳极电流和氧化速率略大。

在高温、低温、超高真空、射线辐照等特殊条件下工作的机械部件不能用润滑油,只有用软金属或层状物质等固体润滑剂。常用的固体润滑剂有软金属(Au,Ag,Pb,Sn等),层状物质(MoS2,WS2,石墨,CaF2,云母等),高分子材料(尼龙、聚四氟乙烯等)等。其中溅射法制取MoS2膜及聚四氟乙烯膜十分有效。虽然MoS2膜可用化学反应镀膜法制作,但是溅射镀膜法得到的MoS2膜致密性好,附着性优良。MoS2溅射膜的摩擦系数很低,在0.02~0.05范围内。MoS2在实际应用时有两个问题:一是对有些基体材料如Ag,Cu,Be等目前还不能涂覆;二是随湿度增加,MoS2膜的附着性变差。在大气中使用要添加Sb2O3等防氧化剂,以便在MoS2表面形成一种保护膜。 溅射法可以制取聚四氟乙烯膜。试验表明,这种高分子材料薄膜的润滑特性不受环境湿度的影响,可长期在大气环境中使用,是一种很有发展前途的固体润滑剂。其使用温度上限为5OoC,低于-260oC时才失去润滑性。 MoS2、聚四氟乙烯等溅射膜,在长时间放置后性能变化不大,这对长时间备用、突然使用又要求可靠的设备如防震、报警、防火、保险装置等是较为理想的固体润滑剂。 内容来源:宝钢代理商https://www.doczj.com/doc/7b13955052.html, 欢迎多多交流!!!

磁控溅射镀膜多年经验总结

黑色实验总结 1、材料对比 ⑴ TiC TiC是最常见、最经济的一种黑色硬质膜。颜色可以做到比较深,耐磨性能也很好,但其色调不够纯正,总是黑中略带黄色。并且由于钛的熔点相对较低,在溅射时易出现大的颗粒,使其光令度不易得到改善。防指印的能力也不好,擦后变黄、变朦。 ⑵ CrC CrC的总体色调相对TiC要好,虽然达不到TiC那样黑,但更纯正,带白。由于铬在溅射时直接由固态直接变为气态,故虽然铬的溅射系数很大,膜层沉积速率很快,但其光令度却比TiC好。防指印性能也比TiC好。Cr为脆性材料,膜层的残余应力对耐磨性能的影响尤为重要。 ⑶ TiAlC 由于铝有细化晶粒的作用,所以TiAlC膜层的光令度和防指印的能力均较好。但是铝的熔点很低,要求铝靶的冷却效果要好,施加在铝靶上的功率也不能太大。从TiAlC膜层本身来说,也要求铝的含量要低,不然不够黑。但如果铝靶的功率太低,很容易中毒。建议采用平面铝靶或使用一定铝含量的铝钛合金靶材。 ⑷ TiCrAlC TiCrAlC是用小平面靶试电的,结果光令度和防指印的能力很好,这可能有两个原因:①材料本身的光令度和防指印的能力较好;②采用平面靶轰击打底。其耐磨能力也比较好,这可能是由于:①TiCrAl靶材致密;②TiCrAlC本身比较耐磨;③小平面靶的功率密度比较高,溅射出的粒子能量较高,故膜层致密。 ⑸ TiCN TiCN是一种硬度与耐磨性能较好的薄膜,其颜色甚至可以比TiC更黑,手摸起来不光滑,有粘粘的感觉,但防指印的能力却很好,擦后不会变色,也不会变朦。 2、实验机配置 ⑴ 电源 ① AE中频电源 AE电源的精度很高,对靶材的要求不高,电源自我保护的能力比较强,也因此对真空度等外界条件的要求更苛刻,易灭辉。镀出的CrC膜层光令度与防指印的效果较好,但颜色黑中带蓝。耐磨性能也是试过的电源中最好的。 ② 新达中频电源 新达电源的功率比较大,可以并机使用的它的一大优势。镀出的CrC膜层很黑,但带白,耐磨能力比AE电源镀出的膜层要查差。 ③ 盛普中频电源 盛普电源的稳定性相对其它电源来说要差一些,实际功率不大。镀出的CrC膜层略显黄色,

脉冲磁控溅射沉积微晶硅薄膜工艺研究梁凤敏

脉冲磁控溅射沉积微晶硅薄膜工艺研究* 梁凤敏,周灵平,彭 坤,朱家俊,李德意 (湖南大学材料科学与工程学院,长沙410082 )摘要 采用脉冲磁控溅射法制备氢化微晶硅薄膜,利用X射线衍射、拉曼光谱、扫描电子显微镜和四探针测试仪对薄膜结构和电学性能进行表征和测试,研究了衬底温度、氢气稀释浓度和溅射功率对硅薄膜结构和性能的影响。结果表明:在一定范围内,通过控制合适的衬底温度、增大氢气稀释浓度及提高溅射功率,可以制备高质量的微晶硅薄膜。在衬底温度为400℃、氢气稀释浓度为90%及溅射功率为180W的条件下制备的微晶硅薄膜,其晶化率为72.2%,沉积速率为0.48nm/s 。关键词 脉冲磁控溅射 微晶硅薄膜 结晶性能 沉积速率中图分类号:TK514;TB321 文献标识码:A Study on Pulsed Magnetron Sputtering Process for Preparing  MicrocrystallineSilicon Thin  FilmsLIANG Fengmin,ZHOU Lingping ,PENG Kun,ZHU Jiajun,LI Deyi(College of Materials Science and Engineering,Hunan University,Chang sha 410082)Abstract Hydrogenated microcrystalline silicon(μc-Si∶H)thin films were prepared by pulsed magnetronsputtering.XRD,Raman sp ectrum,SEM and four-point probe were employed to characterize the structure and elec-tric properties of the films,and the influences of substrate temperature,hydrogen concentration and sputtering poweron the structure and electric properties of silicon thin films were investigated.The results show that within a certainrange,high quality microcrystalline silicon thin film can be deposited by controlling substrate temperature,increasinghydrogen concentration and sputtering power.By  adopting the optimal process condition with substrate temperature400℃,hydrogen concentration 90%and sputtering power 180W,microcrystalline silicon thin film with crystallinevolume fraction up  to 72.2%can be prepared,and the deposition rate is 0.48nm/s.Key  words pulsed magnetron sputtering,microcrystalline silicon thin film,crystallinity,deposition rate *湖南科技计划项目( 2011GK4050) 梁凤敏: 女,1987年生,硕士生,主要从事微晶硅薄膜材料方面的研究 E-mail:870208lfmab@163.com 周灵平:通讯作者,男,1964年生,教授,主要从事薄膜制备及电子封装材料方面的研究 E-mail:lp zhou@hnu.edu.cn 硅薄膜作为薄膜太阳能电池的核心材料越来越引起人们的重视,非晶硅薄膜太阳能电池由于存在转换效率低和由 S-W效应引起的效率衰退等问题[1] , 其推广应用受到了限制。微晶硅薄膜具有较高电导率、较高载流子迁移率的电学 性质及优良的光学稳定性,可以克服非晶硅薄膜的不足,已经成为光伏领域的研究热点 [2-5] 。硅薄膜的结晶性能是制备 高质量微晶硅薄膜的重要参考指标,直接影响硅薄膜太阳能电池的转化效率和稳定性。目前微晶硅薄膜的制备方法主要有等离子体增强化学气相沉积法、热丝化学气相沉积法和磁控溅射法,相比于化学气相沉积法,采用磁控溅射法沉积硅薄膜不需要使用SiH4等有毒气体及相应的尾气处理装置, 有利于降低设备成本,且工艺参数容易控制,逐渐成为制备硅薄膜的重要方法。 Jung  M J等[6] 研究发现磁控溅射制备硅薄膜过程中,对 衬底施加偏压有利于薄膜晶化,但施加偏压需要在绝缘衬底上镀上导电层,有可能引起金属离子扩散到薄膜中。Tabata A等[7] 的研究结果表明, 只有控制合适的靶偏压才能制备结晶良好的硅薄膜,只要偏压发生较小的波动就会对薄膜的结晶性能产生明显影响。尽管研究者已采用磁控溅射法制备出微晶硅薄膜,但其研究还处于摸索阶段,对于制备工艺缺乏系统研究,薄膜晶化率与沉积速率难以兼顾,因此,研究在较高沉积速率下获得高晶化率硅薄膜的制备方法对硅基薄膜太阳能电池的应用具有重要推动作用。 本研究在较高沉积速率下制备了结晶性能良好的微晶硅薄膜,考察了衬底温度、氢气稀释浓度和溅射功率对硅薄膜结晶性能的影响。 1 实验 利用MIS800型多功能离子束磁控溅射复合镀膜设备沉 积微晶硅薄膜。本底真空为10-5  Pa数量级,靶材采用纯度为99.999%的多晶硅靶,工作气体为氢气和氩气的混合气体,其中氢气稀释浓度为70%~90%, 溅射功率为60~· 74·脉冲磁控溅射沉积微晶硅薄膜工艺研究/梁凤敏等

磁控溅射技术研究进展

磁控溅射技术研究进展 薄膜技术不仅可改变工件表面性能,提高工件的耐磨损、抗氧化、耐腐蚀等性能,延长工件使用寿命,还能满足特殊使用条件和功能对新材料的要求。磁控溅射技术具有溅射率高、基片温升低、膜基结合力好、装置性能稳定、操作控制方便等优点,因此,被认为是镀膜技术中最具发展前景的一项新技术,同时也成为镀膜工业应用领域(特别是建筑镀膜玻璃、透明导电膜玻璃、柔性基材卷绕镀等对大面积的均匀性有特别苛刻要求的连续镀膜场合)的首选方案[1-8]。 1 磁控溅射技术原理 溅射是指具有一定能量的粒子轰击固体表面,使得固体分子或原子离开固体从表面射出的现象。溅射镀膜是指利用粒子轰击靶材产生的溅射效应,使得靶材原子或分子从固体表面射出,在基片上沉积形成薄膜的过程。磁控溅射是在辉光放电的两极之间引入磁场,电子受电场加速作用的同时受到磁场的束缚作用,运动轨迹成摆线增加了电子和带电粒子以及气体分子相碰撞的几率,提高了气体的离化率,降低了工作气压。而Ar+离子在高压电场加速作用下与靶材撞击,并释放能量使靶材表面的靶原子逸出靶材,飞向基板并沉积在基板上形成薄膜。图1所示为平面圆形靶磁控溅射原理。 磁控溅射技术得以广泛的应用是由该技术的特点所决定的。可制备成靶材的各种材料均可作为薄膜材料,包括各种金属、半导体、铁磁材料、以及绝缘的氧化物陶瓷、聚合物等物质。磁控溅射可制备多种薄膜不同功能的薄膜,还可沉积组分混合的混合物化合物薄膜。在溅射过程中基板温升低和能实现高速溅射,溅射产生二次电子被加速为高能电子后,在正交磁场作用下作摆线运动,不断与气体分子发生碰撞,把能量传递给气体分子本身变为低能粒子也就不会使基板过热。随着磁控溅射技术的发展,发展起了反应磁控

实验磁控溅射法制备薄膜材料

实验4 磁控溅射法制备薄膜材料 一、实验目的 1. 掌握真空的获得 2. 掌握磁控溅射法的基本原理与使用方法 3. 掌握利用磁控溅射法制备薄膜材料的方法 二、实验原理 磁控溅射属于辉光放电范畴,利用阴极溅射原理进行镀膜。膜层粒子来源于辉光放电中,氩离子对阴极靶材产生的阴极溅射作用。氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹,使得电子在正交电磁场中变成了摆线运动,因而大大增加了与气体分子碰撞的几率。用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶),使固体原子(分子)从表面射出的现象称为溅射。 1. 辉光放电: 辉光放电是在稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。溅射镀膜基于荷能离子轰击靶材时的溅射效应,而整个溅射过程都是建立在辉光放电的基础之上的,即溅射离子都来源于气体放电。不同的溅射技术所采用的辉光放电方式有所不同,直流二极溅射利用的是直流辉光放电,磁控溅射是利用环状磁场控制下的辉光放电。 如图1(a)所示为一个直流气 体放电体系,在阴阳两极之间由电 动势为的直流电源提供电压和电 流,并以电阻作为限流电阻。在电 路中,各参数之间应满足下述关系: V=E-IR 使真空容器中Ar气的压力保持 一定,并逐渐提高两个电极之间的 电压。在开始时,电极之间几乎没 有电流通过,因为这时气体原子大 多仍处于中性状态,只有极少量的 电离粒子在电场的作用下做定向运 动,形成极为微弱的电流,即图(b)中曲线的开始阶段所示的那样。 图1 直流气体放电 随着电压逐渐地升高,电离粒子的运动速度也随之加快,即电流随电压上升而增加。当这部分电离粒子的速度达到饱和时,电流不再随电压升高而增加。此时,电流达到了一个饱和值(对应于图曲线的第一个垂直段)。 当电压继续升高时,离子与阴极之间以及电子与气体分子之间的碰撞变得重要起来。在碰撞趋于频繁的同时,外电路转移给电子与离子的能量也在逐渐增加。一方面,离子对于阴极的碰撞将使其产生二次电子的发射,而电子能量也增加到足够高的水平,它们与气体分子的碰撞开始导致后者发生电离,如图(a)所示。这些过程均产生新的离子和电子,即碰撞过程使得离子和电子的数目迅速增加。这时,随着放电电流的迅速增加,电压的变化却不大。这一放电阶段称为汤生放电。

高功率脉冲磁控溅射技术的特点及其研究

高功率脉冲磁控溅射技术的特点及其研究班级:机械工程学院材料1301班学号:0335******* 作者:程乾坤摘要:本论文主要介绍高功率脉冲磁控溅射技术的主要特点以及目前的研究状况和未来的发展方向。简介该技术到目前为止世界范围内的进展和发展历程,作者对该技术到目前为止的发展分析以及对该技术所作的一些想法。 关键词:高功率磁控脉冲、离化率、薄膜性能 一、高功率脉冲磁控溅射技术的介绍 磁控溅射(HIPIMS)是在溅射的基础上,运用靶板材料自身的电场与磁场的相互电磁交互作用,在靶板附近添加磁场,使得二次电离出更多的离子,增加溅射效率。这种技术应用于材料镀膜。其中高功率脉冲磁控溅射(high-power impulse magnetron sputtering (HiPIMS) 或 high-power pulsed magnetron sputtering (HPPMS))近来使用较为普遍。磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。磁控溅射是入射粒子和靶的碰撞过程。入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。高功率磁控溅射是著名已故俄罗斯科学家Vladimir Kouzentsov开发并且拥有专利的一种脉冲物理气象沉积(PVD)的方法。它的主要特点是离化率高,堆积致密,镀膜性能好。高功率,顾名思义,是用非常高的电压产生的脉冲撞击靶材表面而使得靶材离化率大幅增加的技术,但是发射高功率脉冲是对电极的一个考验,所以,这种高功率的发射不是连续的,而是在电极的可承受范围内断续而高频的发射,这种方法既增加了靶材的离化率,又相对延长了电极的使用寿命。由于击中基体的带正电荷的粒子能量和方向均受到施加于基体的负电压(偏压)的有利影响,因此,高的靶材金属离化率相对于传统方法,使涂层结构和特点上得到了改进。1 二、截止目前的发展及研究 1999年,瑞典的V,Kouznetsov及其团队[1]首次采用高功率磁控脉冲作为磁控溅射的供电模式,提出了HPPMS的方法,并沉积了Cu薄膜,相对于普通的直流溅射,HPPMS获得高的CU离化率,膜层高致密度,高的靶材利用率,均匀的厚度[2]。这时有很多做磁控溅射研究的学者开始关注这一研究方向,并且在试验中将这种设备逐渐完善。其中主要包括改进磁控放电的稳定性和改变脉冲结构增加沉积率两个方面。高功率脉冲磁控溅射技术(HPPMS)由于能够产生较高的离化率而受到人们的重视。为了提高离化率/沉积速率协同效应,基于直流和脉冲耦合叠加技术我们研制了高功率密度复合脉冲磁控溅射电源,并对高功率复合 脉冲磁控溅射放电特性进行研究。结果表明脉冲峰值电流随脉冲电压的增加而增加,但随着脉冲宽度的增加而减小。在高功率脉冲期间工件上获得的电流可以增加一个数量级以上,表明磁控离化率得到显著增强。[3]此外,国内的一些学者研究出了复合高功率脉冲磁控溅射,

射频磁控溅射镀膜

东南大学材料科学与工程 实验报告 学生姓名徐佳乐班级学号12011421 实验日期2014/9/2 批改教师 课程名称电子信息材料大型实验批改日期 实验名称射频磁控溅射制备薄膜材料报告成绩 一、实验目的 1、掌握射频磁控溅射原理; 2、了解射频磁控溅射操作技术; 二、实验原理 当直流溅射沉积绝缘性材料时,绝缘层表面不断积累电荷,产生的电场与外加电压抵消,直流辉光放电不能持续进行。 如果在两电极之间施加交流电压,气体电离后,电子在电极间来回振荡以维持气体放电。由于电子和离子的质量不同,电子随外加交流电场迁移的速度大于离子,因此电极表面始终积累一定数量的负电荷,电极处于负电位(即阴极),正离子受阴极的吸引,轰击电极产生溅射作用。当使用的交流电压为13.56MHz的射频频率,这类溅射称为射频溅射。 三、实验内容及步骤 沉积参数:温度400℃;Ar流量 30sccm;N2流量 2sccm;工作压强 0.5Pa;功率 200W;阴极电压 -308V,时间1小时。 1、开机前准备工作 (1)开动循环水,检查水压是否足够大,水压控制器是否起作用,保证各水路畅通。(2)检查总供电电源配线是否完好,底线是否接好,所有仪表电源开关全部处于关闭状态。(3)检查分子泵、机械泵油是否注到表现处。(4)检查系统所有阀门是否处于关闭状态。 2、装样 先将样品清洗干净后放在样品托上后,将样品托、放入靶材真空室。 3、开机 (1)启动总电源 确认所有电源开关都在关闭状态后,按下总电源开关,此时电源三相指示灯全亮,供电正常。 (2)磁控溅射室抽真空

启动机械泵 按下机械泵开关,机械泵指示灯亮,此时机械泵工作,在打开V3旁抽阀开关,机械泵对磁控溅射室进行抽气。打开热偶真空计进行测量。 启动分子泵 先打开分子泵总电源开关,当真空计显示达到20Pa时,关闭旁抽阀V3,打开电磁阀,然后打开分子泵启动按钮,其电源控制面板上显示速率,分子泵开始工作。这时打开闸板阀对磁控溅射室抽气。约8分钟,速率显示为600时,分子泵进入正常工作状态。打开电离真空计,测量高真空,待其达到10-3Pa。 4、磁控溅射镀膜 (1)待本底真空达到实验所预期要求后,加热样品台到溅射温度400℃,稍关闭闸板阀。 (2)向磁控溅射室充气,Ar流量:30sccm,N2流量:2sccm。通过适量调节闸板阀关闭的大小调节溅射工作压强至3-5Pa。 (3)射频磁控溅射。开启灯丝开关,预热5分钟。开启板压开关,缓缓调节板压到500V,然后调节匹配电容C1和C2,直至反应室起辉。调节板压到所需功率至200W,随时调节匹配网络使反射功率接近0。在调节工作压强至0.5Pa,偏压为0V/-30V。通过调节样品台、样品挡板和靶挡板位置,是溅射原子沉积在样品表面。 5、停止溅射镀膜 样品温度低于60度,取出样品。 四、实验结果 清洗过的不锈钢衬底和硅衬底镀好TiN膜的衬底

磁控溅射法制备薄膜材料实验报告

实验一磁控溅射法制备薄膜材料 一、实验目的 1、详细掌握磁控溅射制备薄膜的原理和实验程序; 2、制备出一种金属膜,如金属铜膜; 3、测量制备金属膜的电学性能和光学性能; 4、掌握实验数据处理和分析方法,并能利用 Origin 绘图软件对实验数据进行处理和分析。 二、实验仪器 磁控溅射镀膜机一套、万用电表一架、紫外可见分光光度计一台;玻璃基片、金属铜靶、氩气等实验耗材。 三、实验原理 1、磁控溅射镀膜原理 (1)辉光放电 溅射是建立在气体辉光放电的基础上,辉光放电是只在真空度约为几帕的稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。辉光放电时,两个电极间的电压和电流关系关系不能用简单的欧姆定律来描述,以气压为的 Ne 为例,其关系如图 5 -1 所示。 图 5-1 气体直流辉光放电的形成 当两个电极加上一个直流电压后,由于宇宙射线产生的游离离子和电子有限,开始时只有很小的溅射电流。随着电压的升高,带电离子和电子获得足够能量,与中性气体分子碰撞产生电离,使电流逐步提高,但是电压受到电源的高输出阻抗限制而为一常数,该区域称为“汤姆森放电”区。一旦产生了足够多的离子和电子后,放电达到自持,气体开始起辉,出现电压降低。进一步增加电源功率,电压维持不变,电流平稳增加,该区称为“正常辉光放电”区。当离子轰击覆盖了整个阴极表面后,继续增加电源功率,可同时提高放电区内的电压和电流密度,形成均匀稳定的“异常辉光放电”,这个放电区就是通常使用的溅射区域。随后继续增加电压,当电流密度增加到~cm 2时,电压开始急剧降低,出现低电压大电流的弧光放电,这在溅射中应力求避免。 (2)溅射

高功率脉冲磁控溅射电源的研制_王洪国

高功率脉冲磁控溅射电源的研制 王洪国 陈庆川* 韩大凯 尹 星 许泽金 沈丽茹 金凡亚 (核工业西南物理研究院 成都 610041) Novel Type of Power Supply for High -Power Pulsed Magnetron Spu ttering Wang Hangguo,Chen Qingchuan *,Han Dakai,Yin Xing,Xu Zejin,Shen Liru,Jin Fanya (Southweste rn Institute o f Ph ysics ,Chen gdu 610054,China) Abstract A novel type of power supply was developed for the high -po wer pulsed magnetron sputtering reactor (HPP MS).The newly -developed power supply is capable of generating high pulsed voltage and large current,making it possible to realize high ionization rate of the reactor.The dedicated power supply c onsists of two major parts:one is the charging po wer supply,and the other is a chopping circuit.The influence of the large current on the overshoot voltage of the insulated gate bipolar transistor was evaluated.We found that the overshoot voltage can be effectively reduced with the RCD absorbing and free wheeling circuit.The Ti films were deposited with the lab -built power supply.The results sho w that the fairly reliable po wer supply works well in depositing the high quality,smooth,compact and uniform Ti films. Keywords HPPMS,Po wer supply,Plamsa discharge,Ti films 摘要 高功率脉冲磁控溅射(HPPMS)因其高离化率而得到广泛关注。高压大电流脉冲电源是实现该技术的重要环节之 一。本论文介绍了一种HPPMS 电源,该电源由充电电源、斩波输出两部分组成,给出了主电路框图。分析了大电流对斩波开关过电压的影响,采用RC 吸收和续流有效地抑制了电压过冲,用所研制的电源进行HPPMS 镀膜试验,结果表明电源运行稳定可靠,制备的薄膜表面清洁、致密,其平均表面粗糙度很低。可以预见HPPMS 技术将会促进镀膜技术的发展。 关键词 高功率脉冲磁控溅射 电源 等离子体放电 Ti 膜 中图分类号:TN86 文献标识码:A doi:10.3969/j.issn.1672-7126.2013.02.14 磁控溅射技术广泛用于薄膜制备领域,可以制备工业上所需的超硬薄膜、耐腐蚀、耐磨擦薄膜、超导薄膜、磁性薄膜、光学薄膜以及各种具有特殊性能的膜。但传统的磁控溅射技术溅射金属大多以原子态存在,金属离化率低,可控性差,沉积薄膜的质量和性能较难优化。近年来发展的高功率磁控溅射技术,它的峰值功率可以比普通磁控溅射高两个数量级,金属离子离化率可达70%以上,某种程度上,高功率脉冲磁控溅射(HPP MS)集中了传统溅射和电弧的优点,与现存的提高离化率的手段相比,不需要新装置,只需在原有的系统上增加一台脉冲电源[1-2] 。 目前,HPPMS 电源的研制尚处于起步阶段,为 此作者研制了峰值功率达300kW 的HPP MS 电源,采用绝缘栅双极型晶体管(IGB T)逆变技术、IGB T 斩波技术、具有高峰值功率、高效率、小型化等特点。 并用所研制的电源进行HPPMS 镀膜试验,显示了良好的特性。 1 电源研制 HPPMS 电源由充电电源、斩波输出单元等组成,具备连续可调的稳压、过流、过热、打火保护功能。设计电源为恒压模式,脉冲峰值电压为-500~-1500V,电流为10~200A,脉宽30~150L s,频率为10~400Hz 。电源结构如图图1所示。直流电源在脉冲间歇期给电容充电,在脉冲工作时,由电容C s 向等离子体负载放电。111 充电电源 充电电源为负高压电源,采用全桥逆变技术,大大减小了电源体积、重量,提高了效率。其典型结构如图2所示。图中的整流电路经电容C 1滤波后得 收稿日期:2012-02-14 *联系人:Tel:(028)82820927;E -mail:1064213358@https://www.doczj.com/doc/7b13955052.html, 168 真 空 科 学 与 技 术 学 报C HINESE JOURNAL OF VACUUM SCIE NCE AND TECHNOLOGY 第33卷 第2期 2013年2月

相关主题
文本预览
相关文档 最新文档