当前位置:文档之家› 数值传热学习题集

数值传热学习题集

数值传热学习题集
数值传热学习题集

简答题集锦

1.流动与传热数值模拟的基本任务是什么?

(把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值CFD可以看做是在流动基本方程(质量守恒方程飞动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。)

2.数值模拟过程如何实现,主要步骤是那些?

(建模、网格划分、坐标系、数学方程、求解、后处理)

a.建立反映工程问题或物理过程本质的数学模型;

b.选择与计算区域的边界相适应的坐标系;

c.建立网格;

d.建立离散方程;

e.求解代数方程组;

f.后处理,显示计算结果

3.建立离散方程有哪些主要方法?比较说明各种方法的优缺点?(有限差分、有限体积、有限元、有限分析等)

4什么叫控制方程?常见的控制方程有哪几个?各用在什么场合?

5试写出控制方程的通用形式,并说明通用形式中各项的意义?(写明通式,以及各个方程中通式的表达形式)

6推导x 方向的动量控制方程中的源项u S 的表达式。由此证明当密度和黏度为常数时,u S 变为0。 X 方向N-S 方程:

Mx

S x

w z

u z

x

v y

u y

divu x u x x p Dt

Du +??+

????+

??+

????+

+????+??-

=)][()](

[)2(μ

μλμ

ρ

)()())()())())()()()()()][()](

[)2(gradu div divu x

z w y v x u x gradu div S divu x

z w y v x u x S S divu x

z w y v x u x gradu div S x

w

z x v y x u x z u z y u y x u x S x

w z

u z

x

v y

u y

divu x

u x Mx u Mx Mx Mx

μλμ

μλμλμμμμμμμμμ

μλμ

+??+??+??+????=++??

+??+??+????=+??

+??+??+????+=+????+????+????+????+????+????=

+??+

????+

??+

????++????((()()(

因为0

=??+

??+

??z

w y

v x

u ρρρ

推 得:

=??+??+??z

w y

v x

u

所以:Su= 0)()=??

+??+??+????divu x z w y v x u x λμ

7区域离散为分几种,说明各自的特点。 (内节点法、外节点法)

先节点后界面

*在边界处控制0个容积,源项或不稳态项表现得较好

8.什么叫控制方程离散化?意义是什么?

答:控制方程的离散化是指:在将求解区域进行离散的前提下,建立关于各离散点上变量的值之间的制约关系,将连续的偏微分方程组及其定解条件按照某种方法比如Taylor级数展开法或是控制容积法等方法遵循特定的规则在计算区域的离散网格上转化为代数方程组,以得到连续系统的离散数值逼近解。

意义:相比于用解析法求得控制方程的解,将控制方程离散化更容易分析物理现象的具体规律,求得离散函数的解。

9常用的控制方程离散化方法有哪些?各有何特点?

常用的控制方程离散化方法有:

Taylor级数法、控制容积法以及多项式拟合法1.Taylor级数法:借助Taylor级数展开给出各阶导数的差商

表达式,将方程中的各阶层数用相应的差商表达式代替导数。特点:a.着眼于节点上的微分平衡,不需要分布函数;b.在均匀网格,采用外节点法以及源项采用线性分布的情况下,用Taylor级

数法得到较为精确的结果;C.主要的差分格式几乎都可以用

Taylor级数展开法得到。

2.多项式拟合法:其思想是假设计算区域中解变量呈局部的一

维分布,用一个多项式拟合控制方程,然后求导代到微分方程。

3.控制容积法:将控制方程在控制容积上积分从而得到离散化方程的

离散化方法。

其特点:a.需要假定待求变量的分布函数; b.着眼于控制容积上流的平衡,在尺寸的选择上较为灵活; c.采用均匀网格至关重要,采用内节点法划分网格无法实现均匀网格划分,在采用均匀网格的前提条件下,控制容积法能得到更为精确的结果。d.控制容积法简捷、物理概念清楚、以及得到广泛应用.

10简述有限体积法的基本思想。

(这种方法从描述流动与传热问题的守恒型控制方程出发,对它在控制容积上积分,在积分过程中需要对界面上被求函数本身(对流通量)及其一阶导数(扩散通量)的构成方式作出假设,从而形成不同的离散方程。)

11简述有限差分法的基本思想。

(有限差分法的第一步是离散求解域,其次对每个节点所描述的流动与传热问题的偏微分方程中的导数项用相应的差分表达式来代替,从而在每个节点上形成一

个代数方程,其中包含了本节点及其邻点上所求量的未知值。

12简述瞬态问题与稳态问题之控制方程的区别,说明在时间域上离散控制方程的基本思想及方法,对比显式及全隐式时间积分方案的异同,给出这两种方案下所生成的瞬态对流-扩散问题的离散方程。答:1)瞬态的控制方程比稳态的控制方程多了一个时间导数项(瞬态项)。

2)显式及全隐式时间积分方案的异同:

显式:按每一层的初始时刻之值来计算,所形成的离散方程

隐式:按每一层的终了时刻之值来计算。

3)显式:对流项

扩散项:

全隐式:

13为什么计算流体力学只能得到真实流场的近似数值解?

主要因素有三点:数学模型的简化、离散格式的近似、迭代过程的近似

14有哪些生成二阶导数的差分格式,简述其方法。

答:Taylor级数法:借助Taylor级数展开给出各阶导数的差商表达式,将方程中的各阶层数用相应的差商表达式代替导数。多项式拟合法:由一阶导数的差分格式生成二阶导数,其思想是假设计算区域中解变量呈局部的一维分布,用一个多项式

拟合控制方程,然后求导代到微分方程。

15有限体积法在离散积分形式方程时有那些步骤?

(划分控制体,用数值积分方法将积分方程离散为代数方程,将控制体表面的物理量近似成控制点上物理量的插值形式)

16采用Simple方法求解NS方程时采用的压力校正方法有那些步骤,为什么SIMPLE方法要采用交错网格?

(假定压力场,求解动量方程得到速度场近似解,利用动量校正方程和连续性方程得到压力校正方程,求解后得到压力场的校正量校正压力场和速度场,利用新的压力场和速度场重新进行迭代,直至收敛。采用交错网格是为了避免出现计算结果的压力交错现象)

17利用Talyer级数法生成等距网格上的一阶偏导数的三阶精度中心差分格式(提示:以i点为中心节点,利用i-1,i+1,i+2点的展开式)答案:略

补充:

18.试写出圆管内流体流动的控制方程及其边界条件(假定没有热交换),并写出CFD分析时的求解步骤

答案在讲义:《无限大平壁的瞬态非稳态导热》第81—84页

19.假设S 为常数,k 与x 有关,在均匀网格计算域中,w e x x x )()(δδ-=?,推导方程0

2

2

=++

S dr

dT r k dr

T d k

的离散方程,假定:

2

22

)

()

2(x T T T k dr

T d k P W E p ?-+=

以及x

T T dr dT

W E ?-=2)(

把dk/dr 看成一给定的量,并分析在什么情况下系数a E 和a W 会变成负值,以及a E 和a W 会变成负值后对求解分布有什么影响?

20.求解离散方程过程中产生误差的原因?

答:模型误差、截断误差、离散误差以及传入误差,最主要是由离散误差所造成的,因划分的网格数目及步长有限,导致只能用有限个控制容积进行离散,因此产生误差。

21.什么是离散方程的相容性、收敛性和稳定性?

陶文铨 数值传热学 第二版 第五章 5-2

精确解: p=[1,5,10]; x=0:1/19:1; for i=1:1:3 for j=1:1:20 y(i,j)=(exp(p(1,i)*19*x(1,j))-1)/(exp(p(1,i)*19)-1); end plot(x,y(i,:)); hold on ; end 由题对中心差分、一阶迎风、混合格式进行模块编程: 他们之间可以通用,只需更改ae 关于p 的函数即可: 程序如下: (1)中心差分 p=[1,5,10]; for i=1:1:3 ae=1-0.5*p(1,i); x/L (Φ-ΦL )/(Φ0-ΦL ) 精确解图像

aw=p(1,i)+ae; ap=ae+aw; for i=1:1:18 for j=1:1:20 a(i,j)=0; end end for i=1:1:18 j=i; a(i,j)=aw; a(i,j+1)=-ap; a(i,j+2)=ae; end for i=1:1:17 n=i+1; for m=i:-1:1 b(1,1)=a(m,n); a(m,n)=-a(i+1,n)/a(i+1,n)*b(1,1)+a(m,n); a(m,n+1)=-a(i+1,n+1)/a(i+1,n)*b(1,1)+a(m,n+1); a(m,n+2)=-a(i+1,n+2)/a(i+1,n)*b(1,1)+a(m,n+2); end end F(1)=0; F(20)=1; F(19)=(-a(1,20)*F(20)-a(1,1)*F(1))/a(1,19); for i=2:1:18 F(i)=(-a(i,20)*F(20)-a(i,19)*F(19))/a(i,i); end x=0:1/19:1; y(1,:)=F; plot(x,y); hold on end

传热学数值计算大作业2014011673

数值计算大作业 一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。物体的导热系数λ为1.0w/m·K。边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K; 要求: 1、写出问题的数学描述; 2、写出内部节点和边界节点的差分方程; 3、给出求解方法; 4、编写计算程序(自选程序语言); 5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图; 6、就一个工况下(自选)对不同网格数下的计算结果进行讨论; 7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论; 8、对4个不同表面传热系数的计算结果进行分析和讨论。 9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。(自选项) 1、写出问题的数学描述 设H=0.1m 微分方程 22220t t x y ??+=?? x=0,0

y=H ,0

数值传热学陶文铨第四章作业

4-1 解:采用区域离散方法A 时;网格划分如右图。内点采用中心差分 23278.87769.9 T T T === 22d T T=0dx - 有 i+1i 12 2+T 0i i T T T x ---=? 将2点,3点带入 32122 2+T 0T T T x --=? 即321 209T T -+= 432322+T 0T T T x --=?4321322+T 0T T T x --=? 即4 321 209 T T T -+-= 边界点4 (1)一阶截差 由x=1 1dT dx =,得 431 3 T T -= (2)二阶截差 11B M M q x x x T T S δδλλ -=++ 所以 434111. 1. 36311 T T T =++ 即 431 22293 T T -= 采用区域离散方法B 22d T T=0dx - 由控制容积法 0w e dT dT T x dT dT ????--?= ? ????? 所以代入2点4点有 322121011336 T T T T T ----= 即 239 028T T -=

544431011363 T T T T T ----= 即 34599 02828T T T -+= 对3点采用中心差分有 432 32 2+T 013T T T --=?? ??? 即 23499 01919 T T T -+= 对于点5 由x=1 1dT dx =,得 541 6 T T -= (1)精确解求左端点的热流密度 由 ()2 1 x x e T e e e -= -+ 所以有 ()22 20.64806911x x x x dT e e q e e dx e e λ -====- +=-=++ (2)由A 的一阶截差公式 21 0.247730.743113 x T T dT q dx λ =-=-= =?= (3)由B 的一阶截差公式 0 0.21640 0.649213 x dT q dx λ =-=-= = (4)由区域离散方法B 中的一阶截差公式: 210.108460.6504()B B T T dT dx x δ-?? ==?= ? ?? 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当! 4-3 解:将平板沿厚度方向3等分,如图

传热学辐射传热课后习题及答案.doc

Q. 2 第八章 黑体辐射基本定律 8-1、一电炉的电功率为1KW,炉丝温度为847°C,直径为Immo 电炉的效率为0.96。试确 定所需 炉丝.的最短长度。 <273 + 847丫 〃 八* 前 ------------ jvdL = 0.96 x 10 解:5.67x1 1°° 7 得 L=3.61m 8-5、在一空间飞行物的外壳上有一块向阳的漫射面板。板背面可以认为是绝热的,向阳面 得到的 太阳投入辐射GT300W 〃疟。该表面的光谱发射率为:时£(") = 0.5; 人>2彻时£(人)二°? 2。试确定当该板表而温度处于稳态时的温度值。为简化计算,设太 阳的辐射能均集中在0?2即刀 之内。 解:由 UOOJ 得 T=463K 8-6、人工黑体腔上的辐射小孔是一个直径为20mm 的圆,辐射力场=3.72 x " W /帚。 一个辐射热流计置于该黑体小孔的正前方l=0.5m,处,该热流计吸收热量的面积为 1.6'10一5 "己问该热流计 所得到的黑体投入辐射是多少? L. =^ = 1.185xlO 5W/m 2 解: 人 A O = T = 6.4x10-5 r L h .A = 312W 所得投入辐射能量为37.2X6.4X10-5 = 2.38x IO” w 8-15、已知材料AB 的光谱发射率林久)与波K 的关系如附图所示,试估计这两种材料的发射 那 £随温度变化的特性,并说明理由。 解:A 随稳定的降低而降低;B 随温度的降低而?升高。 理由:温度升高,热辐射中的短波比例增加。 8-16、一?选择性吸收表面的光谱吸收比随人变化的特性如附图所示,试计算当太阳投入辐射 为 G=8()0W//H 2时,该表面单位面积上所吸收的太阳能量及对太阳辐射的总吸收比。 1-4

计算传热学中国石油大学(华东)第四章大作业

取步长δx=0.02。已知x=0,Φ=0;x=1,Φ=1.令k=ρu/Γ计算结果图表: 程序及数据结果: 追赶法: #include #include #include #define N 49 void tdma(float a[],float b[],float c[],float f[],float x[]); void main(void) { int i; float x[49]; float k; printf("请输入k值:\n",k); scanf("%f",&k); static float a[N],b[N],c[N],f[N]; a[0]=0; a[48]=2+0.02*k; b[0]=4; b[48]=4; c[0]=2-0.02*k; c[48]=0; f[0]=0; f[48]=2-0.02*k; for(i=1;i

a[i]=2+0.02*k; b[i]=4; c[i]=2-0.02*k; f[i]=0; } tdma(a,b,c,f,x); for(i=0;i=0;i--) x[i]=P[i]*x[i+1]+Q[i]; return; } 结果: (1)k=-5 请输入k值: -5 x[0]=0.095880 x[1]=0.182628 x[2]=0.261114 x[3]=0.332126 x[4]=0.396375 x[5]=0.454504 x[6]=0.507098 x[7]=0.554683 x[8]=0.597736 x[9]=0.636688 x[10]=0.671931 x[11]=0.703818 x[12]=0.732667 x[13]=0.758770

数值传热学部分习题答案

习题4-2 一维稳态导热问题的控制方程: 022=+??S x T λ 依据本题给定条件,对节点2 节点3采用第三类边界条件具有二阶精度的差分格式,最后得到各节点的离散方程: 节点1: 1001=T 节点2: 1505105321-=+-T T T 节点3: 75432=+-T T 求解结果: 852=T ,403=T 对整个控制容积作能量平衡,有: 02150)4020(15)(3=?--?=?+-=?+x S T T h x S q f f B 即:计算区域总体守恒要求满足 习题4-5 在4-2习题中,如果25 .03)(10f T T h -?=,则各节点离散方程如下: 节点1: 1001=T 节点2: 1505105321-=+-T T T 节点3: 25.03325.032)20(4015])20(21[-?+=-?++-T T T T 对于节点3中的相关项作局部线性化处理,然后迭代计算; 求解结果: 818.822=T ,635.353=T (迭代精度为10-4) 迭代计算的Matlab 程序如下: x=30; x1=20; while abs(x1-x)>0.0001 a=[1 0 0;5 -10 5;0 -1 1+2*(x-20)^(0.25)]; b=[100;-150; 15+40*(x-20)^(0.25)]; t=a^(-1)*b; x1=x; x=t(3,1);

end tcal=t 习题4-12的Matlab程序 %代数方程形式A i T i=C i T i+1+B i T i-1+D i mdim=10;%计算的节点数 x=linspace(1,3,mdim);%生成A、C、B、T数据的基数; A=cos(x);%TDMA的主对角元素 B=sin(x);%TDMA的下对角线元素 C=cos(x)+exp(x); %TDMA的上对角线元素 T=exp(x).*cos(x); %温度数据 %由A、B、C构成TDMA coematrix=eye(mdim,mdim); for n=1:mdim coematrix(n,n)=A(1,n); if n>=2 coematrix(n,n-1)=-1*B(1,n); end if n

爱国精神答案

单选题(共30题,每题2分) 1 .2010年,在国际数学家大会上做45分钟报告的是西安交通大学哪位教授() ?A. 徐宗本 ?B. 卢秉恒 ?C. 何雅玲 ?D. 陶文栓 我的答案:A 参考答案:A 答案解析:暂无 2 .()是第一位讲授机电学的中国教授,也是中国第一台交流发电机与电动机的研制者,被誉为“中国电机之父”。 ?A. 陈学俊 ?B. 彭真 ?C. 彭康 ?D. 钟兆琳 我的答案:D 参考答案:D 答案解析:暂无 3 .朱城,力学教育家,1956年随校西迁创办了()专业。 ?A. 力学专业 ?B. 工程学专业 ?C. 工程力学专业 ?D. 动力力学专业 我的答案:C 参考答案:C 答案解析:暂无 4 .1959年7月31日,国务院发出(),同意教育部关于交通大学上海、西安两个部分分别独立成为上海交通大学和西安交通大学,以及两校分设后若干具体问题的处理意见。 ?A. 《关于在高等学校中确定一批重点学校的决定》 ?B. 《关于交通大学上海、西安两个部分分别独立成为上海交通大学和西安交通大学的批复》

?C. 《关于交通大学上海、西安两个部分分别独立成为两个学校的报告》 ?D. 《关于交通大学迁校及上海、西安有关学校的调整方案的报告》 我的答案:B 参考答案:B 答案解析:暂无 5 .唐照千,力学家、振动工程学家和力学教育家,交通大学工程力学的创人和奠基人之一,在国际上,首先提出了()。 ?A. “机械工程手册分析法” ?B. “斜激波后物体壁面振动分析法” ?C. “圆锥壳自由振动的分解方法” ?D. “圆柱自由振动的简化计算方法” 我的答案:C 参考答案:C 答案解析:暂无 6 .为尽快培养新的骨干力量,彭康主持制订了师资培养规划,并专门成立()来加强师资建设和管理工作,成为全国高校机构设置中的一个创举。 ?A. 教师科 ?B. 师资科 ?C. 高层办 ?D. 骨干科 我的答案:A 参考答案:A 答案解析:暂无 7 .屈梁生教授长期致力于机械质量控制与检测诊断领域的基础性、开拓性研究,他的()一书填补了我国在这方面研究的空白,至今仍是研究生的教材。 ?A. 《机械故障诊断学》 ?B. 《机器故障诊断学》 ?C. 《电器故障诊断学》 ?D. 《检测故障诊断学》 我的答案:A

第二章 传热习题答案

【2-1】一食品冷藏室由内层为19 mm 厚的松木,中层为软木层,外层为51 mm 厚的混凝土所组成。内壁面温度为-17.8 ℃,混凝土外壁面温度为29.4 ℃。松木、软木和混凝土的平均热导率分别为, 3, W/(m ·K),要求该冷藏室的热损失为15W/m 2。求所需软木的厚度及松木和软木接触面处的温度。 解:三层平壁的导热。 1)所需软木的厚度2b 由 ∑=-=3141i i i b T T q λ 得 151 .0019.00433.0762.0051.08.174.29152+++=b 解得: m b 128.02= 2)松木和软木接触面处的温度3T 由 151 .0019 .08.17153+==T q 解得:9.153-=T ℃ 解题要点:多层平壁热传导的应用。 【2-2】为减少热损失,在外径为150 mm 的饱和蒸汽管道外加有保温层。已知保温材料的热导率λ=+ 198 T(式中T 为℃),蒸汽管外壁温度为180 ℃,要求保温层外壁温度不超过50 ℃,每米管道由于热损失而造成蒸汽冷凝的量控制在1×10-4 kg/(m ·s)以下,问保温层厚度应为多少(计算时可假定蒸汽在180 ℃下冷凝)。 解:保温层平均热导率为: )./(126.02 501801098.1103.04K m W =+??+=-λ 由于本题已知的是蒸汽管道外壁面温度,即保温层内壁面温度,故为一层导热。

由 )()(21 221r r Ln T T L Q -=λπ 得: )()(21 221r r Ln T T L Q -=πλ (1) 式中:m W L Wr L Q /9.2011 103.20191013 4=???==- 将其及其它已知数据代入式(1)得: )075 .0()50180(126.029.2012r Ln -??=π 解得:m r 125.02= mm m 5005.0075.0125.0==-=∴δ壁厚 解题要点:单层圆筒壁热传导的应用。 【2-8】烤炉内在烤一块面包。已知炉壁温度为175 ℃,面包表面的黑度为,表面温度为100 ℃,表面积为 5 m 2,炉壁表面积远远大于面包表面积。求烤炉向这块面包辐射 传递的热量。 解:两物体构成封闭空间,且21S S <<,由下式计算辐射传热量: W T T S Q 0.65)448373(0645.085.01067.5) (448424111012-=-????=-=-εσ 负号表示炉壁向面包传递热量。 解题要点:辐射传热的应用,两个灰体构成的封闭空间。 【2-10】在逆流换热器中,用初温为20 ℃的水将1.25 kg/s 的液体[比热容为 kJ/(kg ·K)、密度为850 kg/m 3 ]由80 ℃冷却到30 ℃。换热器的列管直径为Φ25 mm ×2.5 mm,水走管内。水侧和液体侧的对流传热系数分别为850 W/(m 2·K )和1 700W/(m 2·K ),污垢热阻可忽略。若水的出口温度不能高于50 ℃,求水的流量和换热器的传热面积。

计算流体力学作业习题

2014级西安理工大学计算流体力学作业 1.写出通用方程,并说明其如何代表各类守恒定律。 由守恒型对流-扩散方程: ()()() div U div T grad S t φφρφρφφ?+=+? 其中φ为通用变量;T φ为广义扩散系数;S φ为广义原项。 若令1;1;0T S φφφ===时,则得到质量守恒方程(mass conservation equation ) ()()()() 0u v w t x y z ρρρρ????+++=???? 若令;i u φ=时,则得动量守恒方程(momentum conservation equation ) 以x 方向为例分析,设;u P u S S x φφ?==- ?,通用方程可化为: ()()()()(2)u uu vu wu P u divU t x y z x x x ρρρρλη???????+++=-++??????? z v u u w F y x y z z x ηηρ???????????? ??+++++?? ? ????????????????? 同理可证明y 、z 方向的动量守恒方程式 若令;;T p T T S S C φφλ φ===时,则得到能量守恒方程(energy conservation equation) ()()() ()h h div Uh div U div gradT S t ρρρλφ?+=-+++? ()()()T p h div Uh div gradT S t C ρλ ρ?+=+? 证毕 2.用控制体积法离散 0)(=+++s dx dT k dx d dx dT u dt dT ,要求对S 线性化,据你的理解,谈谈网格如何划分?交界面传热系数何如何计算?边界条件如何处理? 根据守恒型对流-扩散方程: ()()()u T S t x x x ρφρ?φ ????' +=+????,对一维模型 进行分析,则有: 0)(=+++s dx dT k dx d dx dT u dt dT

传热学第五版课后习题答案(1)汇编

传热学习题_建工版V 0-14 一大平板,高3m ,宽2m ,厚0.2m ,导热系数为45W/(m.K), 两侧表面温度分别为w1t 150C =?及w1t 285C =? ,试求热流密度计热流量。 解:根据付立叶定律热流密度为: 2 w2w121t t 285150q gradt=-4530375(w/m )x x 0.2λλ??--??=-=-=- ? ?-???? 负号表示传热方向与x 轴的方向相反。 通过整个导热面的热流量为: q A 30375(32)182250(W)Φ=?=-??= 0-15 空气在一根内经50mm ,长2.5米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的h=73(W/m 2.k),热流密度q=5110w/ m 2, 是确定管壁温度及热流量?。 解:热流量 qA=q(dl)=5110(3.140.05 2.5) =2005.675(W) πΦ=?? 又根据牛顿冷却公式 w f hA t=h A(t t )qA Φ=??-= 管内壁温度为: w f q 5110t t 85155(C)h 73 =+ =+=? 1-1.按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。 解: (1)由附录7可知,在温度为20℃的情况下, λ 铜 =398 W/(m ·K),λ 碳钢 =36W/(m ·K), λ 铝 =237W/(m ·K),λ 黄铜 =109W/(m ·K). 所以,按导热系数大小排列为: λ 铜 >λ 铝 >λ 黄铜 >λ钢 (2) 隔热保温材料定义为导热系数最大不超过0.12 W/(m ·K). (3) 由附录8得知,当材料的平均温度为20℃时的导热系数为: 膨胀珍珠岩散料:λ=0.0424+0.000137t W/(m ·K) =0.0424+0.000137×20=0.04514 W/(m ·K); 矿渣棉: λ=0.0674+0.000215t W/(m ·K) =0.0674+0.000215×20=0.0717 W/(m ·K);

数值传热学第五章作业

5-2 解:根据课本p158式(5—1a )得一维稳态无源项的对流-扩散方程如下所示: 2 2x x u ??Γ =??φ φρ (取常物性) 边界条件如下: L L x x φφφφ====,; ,00 由(5—2)得方程的精确解为: 1 1)/(00--=--?Pe L x Pe L e e φφφφ Γ=/uL Pe ρ 将L 分成15等份,有:?=P Pe 15 对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下: 1) (CD)中心差分 节点离散方程: 2 )5.01()5.01(1 1-?+?++-=i i i P P φφφ 10,2 =i 2) 一阶迎风 节点离散方程: ? -?++++=P P i i i 2)1(1 1φφφ 10,2 =i 3) 混合格式 当1=?P 时,节点离散方程:2 )5.01()5.01(1 1-?+?++-= i i i P P φφφ ,10,2 =i 当10,5=?P 时,节点离散方程: 1-=i i φφ , 10,2 =i 4) QUICK 格式,节点离散方程: ??? ???--++++++= +-?? -??+?)336(8122121 1111i i i i i i P P P P P φφφφφφ, 2=i ?? ????---++++++= +--? ? -??+?)35(8122121 12111i i i i i i i P P P P P φφφφφφφ, 2≠i

用matlab 编程如下:(本程序在x/L=0-1范围内取16个节点进行离散计算,假设y(1)= 0φ=0,y(16)=L φ=1,程序中Pa 为?P ,x 为题中所提的x/L 。由于本程序假设 y(1)=0φ=0,y(16)=L φ=1,所以 y y y y y y L =--=--=--0 10 )1()16()1(00φφφφ) Pa=input('请输入Pa=') x=0:1/15:1 Pe=15*Pa; y=(exp(Pe*x)-1)/(exp(Pe)-1) plot(x,y,'-*k') %精确解 hold on y(1)=0,y(16)=1; for i=2:15 y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2; end plot(x,y(1:16),'-or') %中心差分 hold on for i=2:15 y(i)=((1+Pa)*y(i-1)+y(i+1))/(2+Pa); end plot(x,y(1:16),'-.>g') %一阶迎风 hold on for i=2:15 if Pa==1 y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2; else y(i)=y(i-1) end end plot(x,y(1:16),'-+y') %混合格式 hold on for i=2:15 if i==2 y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(6*y(i)-3*y(i-1)-3*y(i+1))/8 else y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(5*y(i)-y(i-1)-y(i-2)-3*y(i+1))/8 end end plot(x, y(1:16),'-

干燥和传热部分习题

干燥和传热部分习题 1. 饱和空气在恒压下冷却,温度由t1降至t2,此时其相对湿度,湿球温度,.露点。 2. 若维持不饱和空气的湿度H不变,提高空气的干球温度,则空气的湿球温度,露点,相对湿度。(变大,变小,不变,不确定) 干燥操作中,干燥介质(不饱和湿空气)经预热器后湿度,温度。当物料在恒定干燥条件下用空气进行恒速对流干燥时,物料的表面温度等于温度。 已知在t=50℃、P=1atm时,空气中水蒸汽分压Pv =55.3mmHg,则该空气的湿含量H =;相对湿度Φ=;(50℃时,水的饱和蒸汽压为92.51mmHg) 当空气的温度t 、湿度H 一定时,某物料的平衡含水量为X*,若空气的湿度H 下降,则平衡含水量。 恒定干燥条件下,恒速干燥阶段属于控制阶段,降速干燥阶段属于控制阶段。 物料中结和水分的多少与性质有关。 物料中平衡水分的多少与性质和性质有关。 恒速干燥阶段除去的水分为,降速干燥阶段除去的水分为和,整个干燥过程除去的水分是。 常压下,湿度H 一定的湿空气,当气体温度t 升高时,其露点t d将,而当总压P增大时,t d将。 空气的饱和湿度Hs是湿空气的如下参数的函数:( ) 。 A. 总压及干球温度; B. 总压及湿球温度; C. 总压及露点; D. 湿球温度及焓。 12. 已知湿空气的下列哪两个参数,利用t-H图或H-I图,可以查得其他未知参数( )。 A. (t w ,t) B. (t d ,H) C. (p ,H) D. (I ,t w) 13. 空气温度为td,湿度为H d,相对湿度为Φ的湿空气, 经一间接蒸汽加热的预热器后,空气的温度为t1,湿度为H1, 相对湿度为Φ1,则( ) A. H1>H d B. φd>φ1 C. H1<H d D. φd<φ1 14. 对于一定干球温度的空气,当其相对湿度愈低时,其湿球温度:( )。 A. 愈高 B. 愈低 C. 不变 D. 不一定,尚与其它因素有关。 15. 湿空气通过换热器预热时,该过程的经历为() A. 等焓过程 B. 等相对湿度过程 C. 等容过程 D. 等湿度过程 计算题 1、湿空气总压力101.33Pa,干球温度为40℃,露点为25℃, 试求:(1) 水气分压;(2)湿度;(3)相对湿度;(4)焓。(P=3.17kPa;H=0.02kg/kg绝干气;φ=0.43;I=92KJ/kg绝干气) 2、湿空气总压为50kPa,干球温度为60℃,相对湿度为40%,试求:(1)水气分压;(2)湿度; (3)湿比容。(P=7.97kPa; H=0.118kg/kg绝干气; V H=2.27m3/kg绝干气) 3、去湿设备中将空气中的部分蒸汽除去,操作压力为101.33kPa。空气进口温度为20℃,

传热学第四版课后题标准答案第十章

传热学第四版课后题答案第十章

————————————————————————————————作者:————————————————————————————————日期:

第十章 思考题 1、 所谓双侧强化管是指管内侧与管外侧均为强化换热表面得管子。设一双侧强化管用内径 为d i 、外径为d 0的光管加工而成,试给出其总传热系数的表达式,并说明管内、外表面传热系数的计算面积。 01 10 00011011110 00010111112)/ln(1 1 12)/ln(1βπβπηβληβηβππληβπo d d d h d d d d h k d h d d d h t 算面积为管外表面传热系数得计 算面积为管内表面传热系数得计传热系数:得以管内表面为基准得= 答:由传热量公式:++= + +?Θ 2、 在圆管外敷设保温层与在圆管外侧设置肋片从热阻分析的角度有什么异同?在什么情 况下加保温层反而会强化其传热而肋片反而会削弱其传热? 答:在圆管外敷设保温层和设置肋片都使表面换热热阻降低而导热热阻增加,而一般情况下保温使导热热阻增加较多,使换热热阻降低较少,使总热阻增加,起到削弱传热的效果;设置肋片使导热热阻增加较少,而换热热阻降低较多,使总热阻下降,起到强化传热的作用。但当外径小于临界直径时,增加保温层厚度反而会强化传热。理论上只有当肋化系数与肋面总效率的乘积小于1时,肋化才会削弱传热。 3、 重新讨论传热壁面为平壁时第二题中提出的问题。 答:传热壁面为平壁时,保温总是起削弱传热的作用,加肋是否起强化传热的作用还是取决于肋化系数与肋面总效率的乘积是否人于1。 4、推导顺流或逆流换热器的对数平均温差计算式时做了一些什么假设,这些假设在推导的哪些环节中加以应用?讨论对大多数间壁式换热器这些假设的适用情形。 5、对于22112211221m1q c q c q c q c q c c q m m m m m =<≥及、 三种情形,画出顺流与逆流时冷、热流体温度沿流动方向的变化曲线,注意曲线的凹向与c q m 相对大小的关系。 6、进行传热器设计时所以据的基本方程是哪些?有人认为传热单元数法不需要用到传热方程式,你同意吗? 答:换热器设计所依据的基本方程有: m m m t KA t t c q t t c q ?=" -'="-'=)()(22221111φ 传热单元法将传热方程隐含在传热单元和效能之中。 7、在传热单元数法中有否用到推导对数平均温差时所做的基本假设,试以顺流换热器效能的计算式推导过程为例予以说明。 答:传热单元数法中也用到了推导平均温差时的基本假设,说明略o 8、什么叫换热器的设计计算,什么叫校核计算?

传热学题库

传热学题库: 一、判断题 1、抽出保温瓶胆玻璃夹层中的空气,一则可以减少热对流;二则可以防止热辐 射。 2、通常认为 Bi<0.1 时,物体内部的温度趋于均匀一致,亦即不存在温度梯度。 3、当流体外绕管束作对流换热时,通常总认为管束的顺排和叉排比较,叉排比 顺排换热效果较好些。 4、热辐射的动力是温度,因此任何物体的温度只要大于0℃都在不断地向外辐 射能量。 5、当圆管直径 d>dcr (临界热绝缘直径)时,在管子外面包托一层绝热材料 才能起隔热保温作用。 1、只要是黑体,看起来都是黑的。 2、对一个圆筒状物体而言,只要外面包以保温材料,就一定能起到 隔热保温作用。 3、物理量相似,则对应的几何量相似。 4、一般来说,膜状凝结换热比珠状凝结换热强。 5、判别集总参数法的唯一判据为V Bi = M 1.0)A /V (h <λ ,式中:对于无限大平板M = 1;对于无限长圆柱M = 1/2;对于球M = 1/3。 二、选择题 1、大多数金属都是良好的热导体,这是因为 a、由于分子振动的能量传递; b、许多自由电子的存在; c、特殊的微生物存在晶体结构中;d、中子从热端向冷端的迁移。 2、识别对流换热是根据下面的哪几条? a、价电子的移动; b、能量传递是流体整体运动的结果; c、紧靠固体表面的少量流体分子层的纯导热作用;d、流体----固体界面出现 轻微的扰动。 3、气体辐射具有什么样的特点? a、容积辐射;b、表面辐射;c、与固体辐射相同;d、都不是。 1、当速度边界层的厚度δ大于热边界层厚度δt 时,则普朗特数 a、Pr>1; b、Pr =1; c、Pr<1; d、两者无关。 2、为了强化传热,一般说来我们采用何种措施? a、尽量减小在传热过程中热阻大的环节热阻;b、尽量减小在传热过程中热阻 小的环节热阻;c、尽量减小在传热过程中各个热阻的大小; d、采用加肋片 的办法。 3、气体辐射和固体辐射所不同的其中之一表现在对投射辐射的反应时: a、α+τ=1; b、τ+ρ=1; c、ρ+α=1; d、α+τ+ρ=1 1.对于过热器中:高温烟气→金属外壁→金属内壁→过热蒸汽的传热过程次序 为

公需课《弘扬爱国奋斗精神,建功立业新时代》试题之五答案

《弘扬爱国奋斗精神,建功立业新时代》试题与答案 单选题(共30题,每题2分) 1 .陈学俊教授出生在大变革时代,使得他的命运和祖国的命运紧紧联系在一起,他提出了()的呐喊。 A.工程救国B.工学救国C.力学救国D.热能救国 参考答案:A 2 .屈梁生教授是国内机械检测与()学科的开创者和奠基人之一。 A.检测诊断B.故障诊断C.错误诊断D.线路诊断 参考答案:B 3 .2015年8月21日,中共中央政治局常委、国务院总理李克强主持题为“先进制造与3D 打印”的国务院专题讲座,西安交通大学哪位教授受邀主讲() A.徐宗本B.卢秉恒C.陶文栓D.何雅玲 参考答案:B 4 .机械学科是交大的传统优势学科,它创建于()年。 A.1913年B.1912年C.1911年D.1914年 参考答案:A 5 .唐照千,力学家、振动工程学家和力学教育家,交通大学工程力学的创人和奠基人之一,在国际上,首先提出了()。 A.“机械工程手册分析法” B.“斜激波后物体壁面振动分析法” C.“圆锥壳自由振动的分解方法” D.“圆柱自由振动的简化计算方法” 参考答案:C 6 .2003年初,学校决定由档案馆承建一所永久性的纪念馆——(),以此表彰为西安交通大学建设和发展做出无私奉献的西迁教职工,弘扬“西迁精神”,激励交大人发奋进取的斗志。 A.“交通大学西迁历史纪念馆” B.“西迁博物馆” C.“西迁实物展馆” D.“西迁人物纪念馆” 参考答案:A 7 .江泽民学长先后()次专程回母校看望师生,称赞校园苍松翠柏,环境优美,是学习的好地方,应该出科学,出智慧,出新的科学家。 A.2次B.3次C.4次D.5次 参考答案:C 8 .交通大学西迁以后以身殉职的第一人是()。 A.彭康B.朱城C.钟兆琳D.陈学俊 参考答案:B 9 .陈学俊教授1980年当选为中国科学院院士(学部委员),1996年当选为( )院士。A.中国工程院院士B.美国科学院院士C.美国工程院院士D.第三世界科学院院士 参考答案:D 10 .朱楚珠通过对女童死亡率的研究,建立了世界上第一个,也是唯一一个“改善女孩生存环境试验区”,直接推动了国家关爱女孩行动,其地点在()。 A.陕西洛川B.陕西商南C.安徽巢湖D.安徽蚌埠 参考答案:C 11 .1983年,陶文栓教授根据在美国进修时的体会,把()实验室建成了西安交通大学第一个对研究生全天候开放的实验室。 A.热工实验室B.热力实验室C.电力实验室D.电器实验室

传热学_杨茉_部分习题与解答

第一章: 1-1 对于附图所示的两种水平夹层,试分析冷、热表面 间热量交换的方式有何不同?如果要通过实验来测定夹层中流体的导热系数,应采用哪一种布置? 解:(a )中热量交换的方式主要有热传导和热辐射。 (b )热量交换的方式主要有热传导,自然对流和热辐射。 所以如果要通过实验来测定夹层中流体的导热系数,应采用( a )布置。 1-2 一炉子的炉墙厚13cm ,总面积为20m 2 ,平均导热系数为 1.04w/m 〃k ,内外壁温分别是520 ℃及50 ℃。试计算通过炉墙的热损失。如果所燃用的煤的发热量是 2.09 ×10 4 kJ/kg ,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式 每天用煤 1-3 在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度t w = 69 ℃,空气温度t f = 20 ℃,管子外径d= 14mm ,加热段长80mm ,输入加热段的功率8.5w ,如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式

1-4宇宙空间可近似的看作0K 的真空空间。一航天器在太空中飞行,其外表面平均温度为250K ,表面发射率为0.7 ,试计算航天器单位表面上的换热量? 解:航天器单位表面上的换热量 1-5附图所示的空腔由两个平行黑体表面组成,孔腔内抽成真空,且空腔的厚度远小于其高度与宽度。其余已知条件如图。表面 2 是厚δ= 0.1m 的平板的一侧面,其另一侧表面 3 被高温流体加热,平板的平均导热系数λ=17.5w/m ? K ,试问在稳态工况下表面3 的t w3 温度为多少? 解: 表面1 到表面2 的辐射换热量= 表面2 到表面3 的导热量 第二章:

数值传热学陶文铨第三章

3-7证明对流项的背风差分总使扰动逆流而传递。 证明:Taylor 展开法中逆风差分的构造法: 1,i i i x x φφφ+-?=?? u>0 1,i i i x x φφφ--?=?? u<0 下面以u>0的情形来分析.对于节点i+1,在n 时层产生在节点i 的扰动对i+1的影响由下式确定: 11112n n n n i i i i u t x φφφφ+++++--=-?? (1n i φ+=0,2n i φ+=0) 由此得 11n i φ++=0 而i-1处则有 1111n n n n i i i i u t x φφφφ+-----=-?? (1n i φ-=0) 得 11n i u t x φε+-???= ???? 因此可知对流项的背风差分总使扰动逆流而传递。 3-10一阶导数的而二阶差分格式称为二阶迎风格式(在来流方向区节点构成差分格式)。试分析其迁移性。 解:经查表2-1可知在来流方向区节点的一阶导数二阶迎风格式为:

n n n i i-1i-2i n 34=x 2x φφφφ -+???, u>0 下面以u>0的情形来分析.对于节点i+1,在n 时层产生在节点i 的扰动对i+1的影响由下式确定: n+1n n n n i+1i+1 i+1i i-1n+1i+134=-u t 2x 2u t =x φφφφφφε--+????? ???? (n i+1φ=0,n i-1φ=0) 得 n+1i+12u t =x φε??? ???? 而i-1处则有 n n n n+1n i-1i-2i-3i-1i-134=-u t 2x φφφφφ-+-?? (n i-1φ=0,n i-2φ=0,n i-3φ=0) 因此得 n+1i-1φ=0 因此可知一阶导数的二阶迎风格式(在来流方向区节点构成差分格式)具有迁移性。扰动只向后传动!!!

数值传热学报告

数 值 传 热 学 近代发展及数值方法 建环:屈锐 2011年10月5日

数值传热学的发展史及数值方法 一、计算传热学的发展史 首先,计算传热学(Numerical Heat Transfer)与计算流体动力学(Computational Fluid Dynamics)之间的关系密切,可以认为,他们的主要研究内容是一致的,因此,计算传热学的发展史很大程度上也就是计算流体动力学的发展史,但他们之间还有不少区别,流体动力学的一个主要研究内容是讨论无粘流动及跨、超音速流动数值计算中的一些特殊问题。应用计算机和数值方法求解流动及传热问题在全世界范围内逐渐形成规模而且得出有益的结果,大致始于60年代,故从60年代起,可以把数值传热学的发展过程分为3个阶段: 1、萌芽初创阶段 主要有以下重大事件: (1)交错网格的提出。初期的数值传热学出现的两大困难之一是,网格设置不当时会得出具有不合理的压力场的解。1965年美国科学家首先提出了交错网格的思想,有效解决了这一难题,促使了求解NS 方程的原始变量法的发展。 (2)对流项差分迎风格式的再次确认。初期发展遇到的另一难题是

对流项采用中心差分时,对流速较高的情况的计算会得出振荡的解,1966年,科学家撰稿介绍了迎风格式在求解可压缩流体及非稳态层流流动中的作用,使流动与对流换热问题的求解建立在一个健壮的数值方法上发展。 (3)世界上第一本介绍流体及计算传热学的杂志于1966年创刊。(4)求解抛物型流动的P-S方法出现。由于受到计算机资源的限制,边界层类型问题的数值计算得到更多的关注,如何把有限个节点数目都充分利用起来成为了一个重要的问题。 (5)1969年Spalding在英国帝国理工学院创建了CHAM,旨在把他们研究组的成果推广应用到工业界。 (6)1972年SIMPLE算法问世。所谓分离式的求解方法应运而生,这个算法的基本思路是,在流场迭代求解的任何一个层次上,速度场都必须满足质量守恒方程,这一思想被以后的大量数值计算实例证明,是保证流场迭代计算收敛的一个十分重要的原则。 1974年美国学者提出了采用微分方程来生成适体坐标的方法。由于有限元法对不规则区域有很强的适应性,有限差分法与有限容积法则对复杂区域的适应能力很差,但对于流动问题的数值处理则要比有限元法容易得多。TTM方法的提出,为有限差分法与有限容积法处理不规则边界问题提出了一条崭新的道路。 2、开始走向工业应用阶段

相关主题
文本预览
相关文档 最新文档