当前位置:文档之家› 圆锥曲线常用几何性质整理

圆锥曲线常用几何性质整理

圆锥曲线常用几何性质整理
圆锥曲线常用几何性质整理

圆锥曲线常用几何性质整理

圆锥曲线的几何性质及其解题应用

圆锥曲线的几何性质及其解题应用 一、正确掌握圆锥曲线的几何性质,提高解题效率 1、椭圆中一些线段的长度及其关系如: ①椭圆上的点到焦点最近的距离为AF a c =-,最近的距离为BF a c =+; ②Rt OFC ?中,2 2 2 a b c =+; ④△F PQ '的周长与菱形F CFD '的周长相等,为4a . 例题1、如下图,椭圆中心为O ,F 是焦点,A 、C ,P Q 在椭圆上且PD l ⊥于D ,QF OA ⊥于F ① PF PD ② QF BF ③ AO BO ④ AF BA ⑤ FO AO ⑥ OF FC 能作为椭圆的离心率的是 (填正确的序号)2① 12OB OB b ==;12OA OA a ==. ② 焦点F 向渐近线引垂线,垂足为P ,则 bc PF b c = = =, 又因为OF c =,故有OP a = ③ 由②可知2Rt OA Q Rt OPF ???. ⑥ A A B B ③当PQ x ⊥轴时,2 2b PQ a =?,叫椭圆的通径.

例题2.已知双曲线22 214x y b -=的右焦点与抛物线x y 122=的焦点重合,则该双曲线的 焦点到其渐近线的距离等于 . 【解析】双曲线的焦点到其渐近线的距离等于b ,由抛物线方程x y 122 =易知其焦点坐标 为)0,3(,又根据双曲线的几何性质可知2234=+b ,所以5= b . 【点评】平时如果能理解并记住一些有用的结论,可以在考试中节省许多宝贵的时间. 3、抛物线中一些线段的长度及其关系如: ① 通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段AB 叫做抛物线的通径,且2AB p =. ② 2DF p =,几何意义知道吗? ③ 由①②易知Rt ADF ? ④ 题目中涉及到焦点F 虑定义PF PQ =这个性质.

圆锥曲线经典性质总结材料及证明

圆锥曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆切.(第二定义) 4. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求 导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上 根据第8条,证毕 10. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。(点差法)

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

第五讲 圆锥曲线及其几何性质

回顾复习五:圆锥曲线及其几何性质 ☆考点梳理 1.圆锥曲线的轨迹定义与统一定义. 2.圆锥曲线的标准方程及其推导. 3.圆锥曲线的几何性质:范围、对称性、焦点、离心率、准线、渐近线.☆基础演练 1.如图,椭圆中心为O,A、B为左右顶点,F为左焦点, 左准线l交x轴于C,点P、Q在椭圆上,PD⊥l于D, QF⊥OA于F.给出下列比值: 其中为离心率的有_________________. 2.若 12 ,F F为椭圆 22 1 25 x y m +=的焦点,且 12 8 F F=,则m的 值为. 3.过抛物线的焦点F作直线交其于A、B两点,A、B在抛物线准线上的射影分别为A1、 B1,则 11 A FB ∠=____________. 4.经过两点() 143 ,, ?? - ? ? ?? 的圆锥曲线的标准方程是________________. 5.过双曲线 22 22 1 x y a b -=的右焦点F作一条渐近线的垂线分别交于A、B两点,O为坐标 原点,若OA、AB、OB成等差数列,且BF,FA u u u r u u u r 同向,则离心率e=_________. 6.椭圆 22 1 2516 x y +=的两个焦点为F1、F2,弦AB过F1,若 2 ABF ?的内切圆周长为π, ()() 1122 A x,y, B x,y,则 12 y y -=____________. ☆典型例题 1.椭圆的定义 例1.如图,已知E,F为平面上的两个定点,G为动点, 610 EF,FG, ==点P为线段EG的中垂线与GF的交点. ⑴建立适当的平面直角坐标系求出点P的轨迹方程; ⑵若点P的轨迹上存在两个不同的点A、B,且线段AB 的中垂线与EF(或EF的延长线)相交于一点C,线段EF 的中点为O,证明: 9 5 OC<. 2.中点弦问题 例3.直线l交椭圆 22 1 2016 x y +=于M,N两点,点() 04 B,,若⊿BMN的重心恰为椭圆 右焦点,则直线l的方程是_________________. 3.椭圆的几何性质 例2.已知 1 F、 2 F分别是椭圆() 22 22 10 x y a b a b +=>>的左右焦点,右准线l,离心率e. ⑴若P为椭圆上的一点,且 12 F PF ∠=θ,则 12 PF F S ? =_____________. ⑵若椭圆上存在一点P,使得 12 PF PF ⊥,则e的范围是_____________. ⑶若椭圆上存在一点P,使得 12 PF ePF =,则e的范围是_____________. ⑷若在l上存在一点P,使得线段 1 PF的中垂线经过 2 F,则e的范围是___________. ⑸若P为椭圆上的一点,线段 2 PF与圆222 x y b +=相切于中点Q,则e=________. ⑹过F且斜率为k的直线交椭圆于A、B两点,且3 AF FB = u u u r u u u r ,若 2 e=,则k=___. 4.最值问题 例4.已知动点P在椭圆 22 1 1612 x y +=上,(,(2,0) A B. ⑴若2 PA PB +取最小值,则点P的坐标为____________; ⑵若动点M满足||1 BM= u u u u r ,且0 PM BM= u u u u r u u u u r g,则| |的最小值是; ⑶PA PB +的取值范围是________________________. 例5.椭圆W的中心在原点,焦点在x轴上,离心率为 3 两条准线间的距离为6.椭 圆W的左焦点为F,过左准线与x轴的交点M任作一条斜率不为零的直线l与椭圆W 交于不同的两点A、B,点A关于x轴的对称点为C. ⑴求椭圆W的方程;⑵求证:CF FB λ = u u u r u u u r ;⑶求MBC ?面积S的最大值. ☆方法提炼 1.椭圆的标准方程有两种形式,有时需要就焦点位置进行讨论. 2.椭圆有两种定义方式,解题时要学会“回到定义去”. 3.椭圆有两个焦点、两条准线,解题时建议联系起来考虑. 4.解解析几何问题,“画个图”是个好建议;中点弦问题利用“点差法”可简化运算. 5.在处理直线与椭圆相结合的问题时,要学会利用韦达定理整体处理. P H E F G 第 1 页

高考数学圆锥曲线的经典性质50条

For pers onal use only in study and research; not for commercial use 1. 2. 3. 4. 5. 6. 7. 8 . For pers onal use only in study and research; not for commercial use 椭圆与双曲线的对偶性质--(必背的经典结论) 椭圆 点P处的切线PT平分△ PF1F2在点P处的外角. PT平分△ PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点 以焦点弦PQ为直径的圆必与对应准线相离. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 若 F0(X 若 P0(X0 2 x ,y0)在椭圆一亍 a 2 、x ,y0)在椭圆一2 a 2 2 2 2 y - b y - b =1上,则过P0的椭圆的切线方程是一0厂?辔=1. a b =1外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦 2 x 椭圆 一2 a 2 x 椭圆一 2 a 2 2 2 2 y b y - b =1 (a>b> 0)的左右焦点分别为F1, F2,点P为椭圆上任意一点一RPF2 - =1 ( a > b> 0)的焦半径公式: P1P2的直线方程是°2 - =1. a b 戈,则椭圆的焦点角形的面积为S A:1PF2 = b2 tan—

|MF i |=a ex o ,|MF 2p a-( Fj-c,0) , F 2(c,0) M (心 y °)). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和AQ 分别交相应于焦点 F 的椭圆准线于 M 、N 两点,贝U MF 丄NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点 P 、Q, A i 、A 2为椭圆长轴上的顶点, A i P 和A 2Q 交于点M , A 2P 和A i Q 交于点N ,则MF 丄NF. 2 2 2 2 -2 y ^ = 1内,则过Po 的弦中点的轨迹方程是一2 y^ - ―02 - a b a b a b 双曲线 1. 点P 处的切线PT 平分△ PF 1F 2在点P 处的内角. 2. PT 平分△ PF 1F 2在点P 处的内角,则焦点在直线 PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点 3. 以焦点弦PQ 为直径的圆必与对应准线 相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆 相切.(内切:P 在右支;外切:P 在左支) 2 2 5. 若F 0(x 0, y 0)在双曲线 令-占=1( a > 0,b > 0)上,则过F 0的双曲线的切线方程是 彎一呼 =1. a b a b 2 2 6. 若i =0(x 0, y 0)在双曲线—~2 ^2 -1(a >0,b >0)外,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦 P 1P 2的直线方程是■X 0,__y°y = 11. AB 是椭圆 即 K AB 2 2 a 2 b 2 b 2X 0 —2 。 a y ° =1的不平行于对称轴的弦, M (x 0, y 0)为AB 的中点,_则k OM k AB = b 2 ~2 , a 12. F 0(X o , y o )在椭圆 2 2 7占=1内,则被Po 所平分的中点弦的方程是翠晋色 止 a 2 b 2 13. F 0(x 0,y °)在椭圆

高二数学 圆锥曲线的几何性质练习

圆锥曲线的几何性质 一、选择题(' ' 6636?=) 1. .设22221(0)x y a b a b +=>>为 黄金椭圆,F 、A 分别是它的左焦点和右端点,B 是它的短轴的一个端点,则ABF ∠=( ) A ,60 B ,75 C ,90 D ,120 2.已知双曲线22 221(0,0)x y a b a b -=>>右焦点为F ,右准线为l ,一直线交双曲线于P ,Q 两点,交l 于R 点,则( ) A ,PFR QFR ∠>∠ B ,PFR QFR ∠=∠ C ,PFR QFR ∠<∠ D ,PFR ∠与QFR ∠的大小不确定 3.已知点A(0,2)和抛物线24y x =+上两点B 、C ,使得AB BC ⊥,当点B 在抛物线上移动时,点C 的纵坐标的取值范围是 ( ) A ,(,0][4,)-∞+∞ B ,(,0]-∞ C ,[4,)+∞ D ,[0,4,] 4.设椭圆方程2 213 x y +=,(0,1)A -为短轴的一个端点,M ,N 为椭圆上相异两点。若总存在以MN 为底边的等腰AMN ?,则直线MN 的斜率k 的取值范围是 ( ) A ,(1,1)- B ,[1,1]- C ,(1,0]- D ,[0,1] 5.已知12,F F 分别为双曲线22 221(0,0)x y a b a b -=>>的左、右焦点,P 为双曲线右支上的任 意一点,若 2 12 PF PF 的最小值为8a ,则双曲线的离心率e 的取值范围是 ( ) A ,(1,)+∞ B ,(1,2] C , D ,(1,3] 6.已知P 为抛物线2 4y x =上一点,记P 到此抛物线的准线的距离为1d ,P 到直线 2120x y +-=的距离为2d ,则12d d +的最小值为 ( )

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:122 2 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. > ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆 )0(12222 b a b y a x =+ 上的一点,21,F F 为左、右焦点,则 》 ii.设),(00y x P 为椭圆)0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆: 12 22 2=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 ? -=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

高考数学圆锥曲线的经典性质50条

椭圆与双曲线的对偶性质--(必背的经典结论) 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是002 21x x y y a b +=. 6. 若000 (,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为12 2 tan 2F PF S b γ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2 OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。

圆锥曲线经典性质总结及证明!!!

Gandongle 椭圆双曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆内切.(第二定义) 4. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

圆锥曲线的概念与几何性质

第十六单元圆锥曲线的概念与几何性质 考点一椭圆的标准方程和几何性质 1.(2017年全国Ⅰ卷)设A,B是椭圆C:+=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是(). A.(0,1]∪[9,+∞) B.(0,]∪[9,+∞) C.(0,1]∪[4,+∞) D.(0,∪[4,+∞) 【解析】当03时,焦点在y轴上, 要使C上存在点M满足∠AMB=120°, 则≥tan 60°=,即≥,解得m≥9. 故m的取值范围为(0,1]∪[9,+∞). 故选A. 【答案】A 2.(2014年大纲卷)已知椭圆C:+=1(a>b>0)的左,右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点.若△AF1B的周长为4,则C的方程为(). A.+=1 B.+y2=1 C.+=1 D.+=1 【解析】因为△AF1B的周长为4,所以|AF1|+|AB|+|BF1|=|AF1|+|AF2|+|BF1|+|BF2|=4a=4,所以a=.又因为椭圆的离心率e==,所以c=1,所以b2=a2-c2=3-1=2,所以椭圆C的方程为+=1,故选A. 【答案】A 3.(2013年全国Ⅱ卷)设椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为(). A. B. C. D.

【解析】(法一)由题意可设|PF2|=m,结合条件可知|PF1|=2m,|F1F2|=m,故离心率e=====. (法二)由PF2⊥F1F2可知点P的横坐标为c,将x=c代入椭圆方程可解得y=±,所以|PF2|=.又由∠PF1F2=30°可得 |F1F2|=|PF2|,故2c=·,变形可得(a2-c2)=2ac,等式两边同除以a2,得(1-e2)=2e,解得e=或e=-(舍去). 【答案】D 4.(2017年全国Ⅲ卷)已知椭圆C:+=1(a>b>0)的左,右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为(). A.B.C.D. 【解析】由题意知以A1A2为直径的圆的圆心坐标为(0,0),半径为a. ∵直线bx-ay+2ab=0与圆相切, ∴圆心到直线的距离d==a,解得a=b, ∴=, ∴e==- =-= -=.故选A. 【答案】A 考点二双曲线的标准方程和几何性质 5.(2016年全国Ⅰ卷)已知方程- - =1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(). A.(-1,3) B.(-1,) C.(0,3) D.(0,) 【解析】若已知方程表示双曲线,则(m2+n)(3m2-n)>0,解得-m20,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为(). A.-=1 B.-=1 C.-=1 D.-=1 【解析】因为双曲线C的渐近线方程为y=±x,所以=.又因为椭圆与双曲线的焦点为(±3,0),即c=3,且c2=a2+b2,所以a2=4,b2=5,故双曲线C的方程为-=1. 【答案】B 7.(2017年全国Ⅱ卷)若双曲线C:-=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为().

圆锥曲线几何性质总汇

圆锥曲线的几何性质 一、椭圆的几何性质 (以22a x +22 b y =1(a ﹥b ﹥0)为例) 1、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义 12121212242AF AF a AF AF BF BF a BF BF a +=?? ?+++=?+=?? 即2 4ABF C a = 2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2 tan 2θ?b (2)(S ⊿PF1F2)max = bc (3)当P 在短轴上时,∠F 1PF 2最大 证明:(1)在 12AF F 中 ∵ 2 2 21212 4cos 2PF PF c PF PF θ+-=? ∴ () 2 1212 122cos 2PF PF PF PF PF PF θ?=+-?∴ 2 1221cos b PF PF θ ?=+ ∴ 12 22112sin cos tan 21cos 2 PF F b S b θθθθ-=??=?+ (2)(S ⊿PF1F2)max = max 1 22 c h bc ??= (3 ()()() 2 2 22 2 2 22 12002 2222 2 212 00 4444cos 12222PF PF c a ex a ex c a c PF PF a e x a e x θ+-++---= = =-?-+ 当0x =0时 cos θ有最小值22 2 2a c a - 即∠F 1PF 2最大 3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M 则M 的轨迹是x 2+y 2=a 2 证明:延长1F M 交2F P 于F ,连接OM x x x

圆锥曲线的定义及几何性质

圆锥曲线的定义及几何性质 1. 椭圆 222 2 1x y a b + =和 222 2 x y k a b + =(0)k >一定具有( ) A .相同的离心率 B .相同的焦点 C .相同的顶点 D .相同的长轴长 2. 已知1F 、2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2 ABF ?是正三角形,则这个椭圆的离心率是( ) A . 2 B . 3 C 2 D 3 3. 已知1F 、2F 是椭圆的两个焦点,满足120M F M F ?= 的点M 总在椭圆内部,则椭圆离心率的 取值范围是( )A .(01), B .1(0]2 , C .(02 D .1)2 4. 过椭圆 222 2 1(0) x y a b a b + =>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若 1260F PF ∠=°,则椭圆的离心率为( ) A . 2 B . 3 C .12 D .1 3 5. 已知椭圆 2222 1x y a b +=的左、 右焦点分别为1F 、2F ,且12||2F F c =,点A 在椭圆上,1120AF F F ?= ,2 12AF AF c ?= ,则椭圆的离心率e = ( ) A . 3 B . 2 C 2 D 2 6. 已知P 是以12F F ,为焦点的椭圆 222 2 1(0)x y a b a b + =>>上的一点,若 120 PF PF ?= , 121tan 2 PF F ∠= ,则此椭圆的的离心率为( ) A . 12 B . 23 C .1 3 D 3 7. 已知椭圆 2 2 15 x y m + = 的离心率e 5 =m 的值为( ) A .3 B . 253 或3 C . D 8. 椭圆的长轴为12A A ,B 为短轴的一个端点,若∠012120A BA =,则椭圆的离心率为( ) A . 12 B 3 C 3 D 2 9. 椭圆 222 2 1(0)x y a b a b + =>>的四个顶点为A 、B 、C 、D ,若四边形ABC D 的内切圆恰好过椭 圆的焦点,则椭圆的离心率是( ) A . 2 B . 4 C 2 D 4 10. 设12F F ,分别是椭圆 222 2 1x y a b + =(0a b >>)的左、右焦点,若在直线2 :a l x c = 上存在P (其 中c =),使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( ) A .0, 2? ?? B .0, 3? ? ? C .,12????? D .,13? ???? 11. 椭圆上一点A 看两焦点的视角为直角,设1AF 的延长线交椭圆于B ,又2||||AB AF =,则椭圆的 离心率e =( ) A .2-+ B . C 1- D 12. 椭圆() 222 2 10x y a b a b + =>>的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点满足线 段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( ) 13. A .02? ? ? B .102? ? ?? ?, C .)11 , D .112 ???? ??, 14. 已知椭圆() 222 2 10x y a b a b + =>>,A 是椭圆长轴的一个端点,B 是椭圆短轴的一个端点,F 为 椭圆的一个焦点. 若AB BF ⊥,则该椭圆的离心率为 ( ) 224416. 在ABC △中,A B B C =,7cos 18 B =- .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离 心率e = . 17. 在平面直角坐标系xOy 中,设椭圆 222 2 1(0) x y a b a b +=>>的焦距为2c ,以点O 为圆心,a 为 半径作圆M .若过点20a P c ?? ? ?? ,作圆M 的两条切线互相垂直,则椭圆的离心率为 . 18. 直线:220l x y -+=过椭圆的左焦点1F 和一个顶点B ,该椭圆的离心率为_________. 19. 设12(0)(0)F c F c -,,,是椭圆 222 2 1(0) x y a b a b + =>>的两个焦点,P 是以12F F 为直径的圆与椭 圆的一个交点,若12 21 2PF F PF F ∠=∠,则椭圆的离心率等于________. 20. 椭圆 222 2 1(0)x y a b a b + =>>的半焦距为c ,若直线2y x =与椭圆一个交点的横坐标恰为c ,椭圆 的离心率为_________ 21. 已知1F ,2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A B ,两点,若 2ABF △是正三角形,则这个椭圆的离心率是_________.

圆锥曲线几何性质总汇

,. 圆锥曲线的几何性质 一、椭圆的几何性质 (以22a x +22 b y =1(a ﹥b ﹥0)为例) 1、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义 12121212242AF AF a AF AF BF BF a BF BF a +=?? ?+++=?+=?? 即24ABF C a =< 2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2 tan 2θ?b (2)(S ⊿PF1F2)max = bc (3)当P 在短轴上时,∠F 1PF 2最大 证明:(1)在12AF F <中 ∵ 2 2 2 1212 4cos 2PF PF c PF PF θ+-= ? ∴ () 2 1212 122cos 2PF PF PF PF PF PF θ?=+-?- ∴ 21221cos b PF PF θ ?=+ ∴ 12 22112sin cos tan 21cos 2 PF F b S b θθθθ-=??=?+ (2)(S ⊿PF1F2)max = max 1 22 c h bc ??= ()()2 2 2 2 2222 12004444PF PF c a ex a ex c a c +-++---x x

,. 当0x =0时 cos θ有最小值22 2 2a c a - 即∠F 1PF 2最大 3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M 则M 的轨迹是x 2+y 2=a 2 证明:延长1F M 交2F P 于F ,连接OM 由已知有 1PF FP = M 为1 F F 中点 ∴ 212OM FF = =()121 2 PF PF +=a 所以M 的轨迹方程为 2 2 2 x y a += 4、以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切 证明:取1PF 的中点M ,连接OM 。令圆M 的直径1PF ,半径为∵ OM =()211111 2222 PF a PF a PF a r =-=-=- ∴ 圆M 与圆O 内切 ∴ 以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切 5、任一焦点⊿PF 1F 2的内切圆圆心为I ,连结PI 延长交长轴于则 ∣IR ∣:∣IP ∣=e 证明:证明:连接12,F I F I 由三角形内角角平分线性质有 ∵ 1212121222F R F R F R F R IR c e PI PF PF PF PF a +=====+ x x y x

解析几何-- 圆锥曲线的概念及性质

4.2解析几何--圆锥曲线的概念及性质 一、选择题 1.(2010·安徽双曲线方程为x2-2y2=1,则它的右焦点坐标为 ( A. B. C. D.(,0 解析:∵原方程可化为-=1,a2=1, b2=,c2=a2+b2=, ∴右焦点为. 答案:C 2.(2010·天津已知双曲线-=1(a>0,b>0的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为 ( A.-=1 B.-=1 C.-=1 D.-=1 解析:∵渐近线方程是y=x,∴=.① ∵双曲线的一个焦点在y2=24x的准线上, ∴c=6.② 又c2=a2+b2,③ 由①②③知,a2=9,b2=27, 此双曲线方程为-=1. 答案:B

4.(2010·辽宁设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-,那么|PF|= ( A.4 B.8 C.8 D.16 解析:解法一:AF直线方程为: y=-(x-2, 当x=-2时,y=4,4A(-2,4. 当y=4时代入y2=8x中,x=6, 4P(6,4, 4|PF|=|PA|=6-(-2=8.故选B. 解法二:5PA∞l,4PA%x轴.

又5 AFO=60°,4 FAP=60°, 又由抛物线定义知PA=PF, 4≥PAF为等边三角形. 又在Rt≥AFF′中,FF′=4, 4FA=8,4PA=8.故选B. 答案:B 5.高8 m和4 m的两根旗杆笔直竖在水平地面上,且相距10 m,则地面上观察两旗杆顶端仰角相等的点的轨迹为 ( A.圆 B.椭圆 C.双曲线 D.抛物线 解析:如图1,假设AB、CD分别为高4 m、8 m的旗杆,P点为地面上观察两旗杆顶端仰角相等的点,由于∠BPA=∠DPC,则Rt△ABP∽Rt△CDP,=,从而 PC=2PA.在平面APC上,以AC为x轴,AC的中垂线为y轴建立平面直角坐标系(图2,则A(-5,0,C(5,0,设P(x,y,得=2 化简得x2+y2+x+25=0,显然,P点的轨迹为圆. 答案:A 二、填空题 解析:由题知,垂足的轨迹为以焦距为直径的圆,则c

江苏高考数学圆锥曲线性质总结

高考数学圆锥曲线性质总结 椭圆与双曲线的对偶性质 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为 122tan 2 F PF S b γ ?=.

8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线 于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N , 则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的角.

Song神圆锥曲线的性质整理 (1)

数学 椭圆与双曲线的对偶性质--(必背的经典结论) 椭圆必背的经典结论 1.点P处的切线PT平分△PF1F2在点P处的外角. x 2.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的 轨迹是以长轴为直径的圆,除去长轴的两个端点. x 3.以焦点弦PQ为直径的圆必与对应准线相离. x 4.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. x 5.若 000 (,) P x y在椭圆 22 22 1 x y a b +=上,则过 P的椭圆的切线方程是 00 22 1 x x y y a b +=. x 6.若 000 (,) P x y在椭圆 22 22 1 x y a b +=外,则过Po作椭圆的两条切线切点

为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. x 7. 椭圆 2 2 22 1x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF θ∠=,则椭圆的焦点三角形的面积为 122tan 2 F PF S b θ ?=. x 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+, 20||MF a ex =- (1(,0)F c - , 2(,0)F c 00(,)M x y ). x 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴的一个 顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. x 10. 过椭圆一个焦点F 的直线与椭圆交 于两点P 、Q, A 1、A 2为椭圆长轴上 的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中

最新各圆锥曲线的定义与性质整理

各圆锥曲线的定义与 性质整理

圆锥曲线的定义与性质 一、基本知识点 1、椭圆 ①椭圆的定义:椭圆的定义中,平面内动点与两定点?Skip Record If...?、?Skip Record If...?的距离的和大于|?Skip Record If...??Skip Record If...?|这个条件不可忽视.若这个距离之和小于|?Skip Record If...??Skip Record If...?|,则这样的点不存在;若距离之和等于|?Skip Record If...??Skip Record If...?|,则动点的轨迹是线段?Skip Record If...??Skip Record If...?. ②椭圆的标准方程:?Skip Record If...?(?Skip Record If...?>?Skip Record If...?>0),?Skip Record If...?(?Skip Record If...?>?Skip Record If...?>0). 椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果?Skip Record If...?项的分母大于?Skip Record If...?项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上. 求椭圆的标准方程的方法:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解. 椭圆?Skip Record If...?(?Skip Record If...?>?Skip Record If...?>0)的参数方程为?Skip Record If...?(θ为参数). ③椭圆的简单几何性质:设椭圆方程为?Skip Record If...?(?Skip Record If...?>?Skip Record If...?>0). 1°范围: -a≤x≤a,-b≤x≤b,所以椭圆位于直线x=?Skip Record If...?和y=?Skip Record If...?所围成的矩形里. 2°对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心. 3°顶点:有四个?Skip Record If...?(-a,0)、?Skip Record If...?(a,0)?Skip Record If...?(0,-b)、?Skip Record If...?(0,b). 线段?Skip Record If...??Skip Record If...?、?Skip Record If...??Skip Record If...?分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.

相关主题
文本预览
相关文档 最新文档