当前位置:文档之家› 高二数学 圆锥曲线的几何性质练习

高二数学 圆锥曲线的几何性质练习

高二数学 圆锥曲线的几何性质练习
高二数学 圆锥曲线的几何性质练习

圆锥曲线的几何性质

一、选择题('

'

6636?=)

1.

.设22221(0)x y a b a b +=>>为

黄金椭圆,F 、A 分别是它的左焦点和右端点,B 是它的短轴的一个端点,则ABF ∠=( ) A ,60

B ,75

C ,90

D ,120

2.已知双曲线22

221(0,0)x y a b a b

-=>>右焦点为F ,右准线为l ,一直线交双曲线于P ,Q

两点,交l 于R 点,则( )

A ,PFR QFR ∠>∠

B ,PFR QFR ∠=∠

C ,PFR QFR ∠<∠

D ,PFR ∠与QFR ∠的大小不确定 3.已知点A(0,2)和抛物线24y x =+上两点B 、C ,使得AB BC ⊥,当点B 在抛物线上移动时,点C 的纵坐标的取值范围是 ( )

A ,(,0][4,)-∞+∞

B ,(,0]-∞

C ,[4,)+∞

D ,[0,4,]

4.设椭圆方程2

213

x y +=,(0,1)A -为短轴的一个端点,M ,N 为椭圆上相异两点。若总存在以MN 为底边的等腰AMN ?,则直线MN 的斜率k 的取值范围是 ( ) A ,(1,1)- B ,[1,1]- C ,(1,0]- D ,[0,1]

5.已知12,F F 分别为双曲线22

221(0,0)x y a b a b

-=>>的左、右焦点,P 为双曲线右支上的任

意一点,若

2

12

PF PF 的最小值为8a ,则双曲线的离心率e 的取值范围是 ( )

A ,(1,)+∞

B ,(1,2] C

, D ,(1,3] 6.已知P 为抛物线2

4y x =上一点,记P 到此抛物线的准线的距离为1d ,P 到直线 2120x y +-=的距离为2d ,则12d d +的最小值为 ( )

图1

图2

A ,

B ,5

C ,15

+ D ,不存在 二、填空题('

'

9654?=)

7.设双曲线226x y -=的左、右顶点分别为1A 、2A ,P 为双曲线右支上一点,且2PA x ∠

=1310PA x ∠+

,则1PA

x ∠的度数是 。 8.如图1,设椭圆22

221(0)x y a b a b

+=>>的左、右

焦点分别为12,F F ,左准线为l ,P 为椭圆上一点, PQ l ⊥于点Q 。若四边形12PQF F 为平行四边形, 则椭圆离心率e 的取值范围是 。

9.圆心在x 轴上,半径为1的动圆与抛物线22y x =相交,交点处的切线互相垂直,动圆的圆心坐标是 。

10.已知直线(5)tan (0,)2y x π

θθπθ=-<<≠且与双曲线

22

1169

x y -=的两条准线交于 A ,B 两点。若OA OB ⊥,则sin θ= 。

11.设椭圆方程为22

221(0)x y a b a b

+=>>,PQ 是过左焦点F 且与x 轴不垂直的弦。若在左准

线l 上存在点R ,使PQR ?为正三角形,则椭圆离心率e 的取值范围是 。 12.设点B 、C 分别在第四、第一象限,且点B 、C 都在抛物线2

2(0)y px p =>上,O 为

坐标原点,30,60OBC BOC ∠=∠=

,k 为直线OC 的斜率,则3

2k k +的值为 。

三、解答题(''

20360?=)

13.如图2,给定椭圆2

2

221x y

a b

+=和圆

2

2

2

2

(0)x y a b a b +=+>>,CD 为圆的任一 条直径,CD 交椭圆于P 点,在CD 的一侧, 以P 为圆心,1PF 为半径画弧交圆于点A ;

在CD 的另一侧,以P 为圆心,2PF 为半径画弧交圆于点B ,求证:A 、P 、B 三点共线.

图3

14.设抛物线22(0)y px p =>的焦点为F ,AB 为抛物线的焦点弦,点M 在抛物线上,O 为坐标原点。求证:

(I )直线MA 、MF 、MB 的斜率成等差数列; (II )当MA MB ⊥时,MFO BMF AMF ∠=∠-∠.

15.如图3,A 、B 为椭圆22

221(0)x y a b a b

+=>>

和双曲线22

221x y a b

-=的公共顶点.P 、Q 分别

为双曲线和椭圆上不同于A 、B 的动点,且满

足()AP BP AQ BQ λ+=+

(,1)R λλ∈>.

设直线AP 、BP 、AQ 、BQ 的斜率分别是12,k k ,

34,k k .

(I)求证:12340k k k k +++=;

(II )设12,F F 分别为椭圆和双曲线的右焦点;若21//PF QF ,求2222

1234k k k k +++的值.

参考答案: 一、1.C

c a =

,得22

0a ac c --=, 而2

2

2

222222()()2()0AB BF FA a b a a c a ac c +-=++-+=--=,知90ABF ∠=

2.B 设l 为双曲线的右准线,作'',PP l QQ l ⊥⊥,由三角形相似有

''

PP PR RQ

QQ =

.

由双曲线定义得,

'

'

PF QF e PP

QQ

==

。所以

PR PF RQ

QF

=

,知FR 平分PFQ ∠。

3.A 设211(4,)B y y -、2

(4,)C y y -,显然2140y -≠。 又121121

,42

AB y k y y -=

=-+且AB BC ⊥,得1(2)BC k y =-+.

由2

1112(2)[(4)]4

y y y x y y x ?-=-+--??=+??,消去y ,得211(2)(21)0y y y y ++++=. 由0?≥,得0y ≤或4y ≥。

4.A 设MN :y kx b =+,代入2

213

x y +=,得222(13)6330k x kbx b +++-=. 由0?>,得22

13b k <+.又由AM AN =,得121212()()(2)x x x x y y +-+++

12()0y y -=.因为1212()y y k x x -=-,12122()22y y k x x b ++=+++,

所以212(1)()2(1)0k x x k b ++++=,将122

613kb

x x k

+=-

+代入, 得2213b k =+,代入2213b k <+,得2

1k <,于是11k -<<.

5.D 2

22122222(2)44448PF a PF a PF a a a a PF PF PF +==++≥+=,当且仅当2

224a PF PF = 即22PF a =时取等号。这时14PF a =.由1212PF PF F F +≥,得

62a c ≥, 即3c

e a

=

≤,得(1,3]e ∈. 6.B 设2

(,2)P t t

,则2121d d t +=++

(1)当6t ≤-或2t ≥时,2

12(11d d t +=++-

.所以当2t =时, 12min ()5d d +=.

(2)当62t -<<时,2

12(1d d t +=+,所以当t =

12min ()5

d d +=

.

由(1),(2)知,12min ()d d +=

二、7.20

. 设00(,)P x y ,则22006x y -=.

1tan PA x ∠=2tan PA x ∠=201220

tan tan 6y PA x PA x x ∠?∠=-=1

于是2190PA x PA x ∠=-∠ ,由1231090PA

x PA x ∠+=-∠ ,得120PA x ∠=

. 8.1(,1)2. 设00(,)P x y ,则由12PQ F F =,得202a x c c +=,即2

02a x c c =-. 由0a x a -<<,得2

2a a c a c

-<-

<。解得112c a <<,即1(,1)2e ∈.

9. 设圆心为(,0)a ,则圆的方程为:22()1x a y -+=.设圆与抛物线的交点为 2(2,2)P t t ,则22(2)41t a t -+=。抛物线在点P 处的切线方程为222ty x t =+。

又上述直线与圆在点P 处的切线互相垂直,于是直线必过圆心(,0)a ,得2

2t a =-。

代入22

(2)41t a t -+=,得2

4210a a --=。解得a =

(舍去正值)。 10.

1625

将直线与准线165x =±联立,求得169(,tan )55A θ-、1641

(,tan )55B θ--

。 由OA OB ⊥,得1616941()(tan )(tan )05555θθ?-+-?-=,即22

sin 256

cos 369

θθ=, 解得16sin 25

θ=

11.(

3

设弦PQ 的中点为M ,过点P 、M 、Q 分别作左准线l 的垂线,垂足分别为 ''',,P M Q ,则'''111

()()222MM PP QQ PF QF PQ e e

=+=+=

。 假设存在点R

,则RM =

,且'MM RM <

,有3

e >

设BC 交x 轴于点A ,记AOC θ∠=,OC r =,则(cos ,sin )C r r θθ。 由60,30BOC OBC ∠=∠= ,知90OCB ∠=

,2OB r =, 于是(2cos(60),2sin(60))B r r θθ-- 。

点B 、C 均在抛物线2

2y px =上,得22

22sin 2cos 4sin (60)4cos(60)

r pr r pr θθ

θθ?=??-=-??

,消去,p r ,

得3

tan

2tan θθ+=

32k k +=

三、解答题

13.连结AP 交圆于点'

B ,在圆中,由相交弦定理,在12PF F ?中,由中线长公式,得

22

'()()PA PB PC PD OC PO OC PO OC PO ?=?=-?+=-

=222

2

2

1211(2)2a b PF PF OF +-

+-=222212121[()22]2a b PF PF PF PF c +-+-?- =2222

12121[422]2

a b a PF PF c PF PF +--?-=?。

又1

PA PF =,有'2PB PF PB ==。 但以点P 为圆心,PB 为半径的圆与已知圆在CD 一侧的交点是唯一的(两圆的两个交点位于连心线的两侧),故'

B 与B 重合。 因此,A 、P 、B 三点共线。

14. (1)设直线MA 、MF 、MB 的斜率分别为13,,k k k ,点11(,)A x y 、22(,)B x y 、

(,)2p M m -

,直线AB :2

p

x ty =+。 由222p x ty y px ?=+???=?

,得2220y pty p --=。于是212y y p =-。 又2

2

11222,2y px y px ==,

得2221111()2222y p p x y p p p +=+=+,2222

2212

11()()222p p x y p p y p y +=+=+。 因此,2

2

1

22

1211

12222211122()2()()()22

p y m y m y m p y m y k k p p p y p p y p x x -----+=+=+++++ 222211122

122222()p y p m p y my m

p y p p

---==-+。 又m

k p

=-

,得122k k k +=。 故直线MA 、MF 、MB 的斜率成等差数列。

(2)由(1)知12k k k k -=-。又MA MB ⊥,得121k k ?=-。 不妨设120,0k k ><,则11211211

1

tan 1k k k k AMF k k k k k k k k --∠====-+?-?+?。

同理,1tan BMF k ∠=, 所以211221tan()1()2

k k k k

AMF BMF k k k --+∠-∠=

=-=-+-,

即tan()tan AMF BMF k MFO ∠-∠==∠。故MFO BMF AMF ∠=∠-∠。

15.(1)设11(,)P x y 、22(,)Q x y ,则222

2

1

12a x a y b

-=.

所以211111

1222

2111122y y x y x b k k x a x a x a a y +=+==?+--。 ① 同理可得22

34222x b k k a y +=-?。 ②

设O 为原点,则2AP BP OP += ,2AQ BQ OQ +=

而()AP BP AQ BQ λ+=+ ,得OP OQ λ=

,于是O 、P 、Q 三点共线。 所以

12

12

x x y y =。由①、②得12340k k k k +++=。

(2)由点Q 在椭圆上,有22

12221x y a b

+=。

由OP OQ λ=

,得1122(,)(,)x y x y λ=。

所以211

x x λ=,211

y y λ=,从而222

1222x y a b

λ+=。 ③

又由点P 在双曲线上,有22

11221x y a b

-=。 ④

由③、④得22

2

1

1

2

x a λ+=

,2221

1

2

y b λ-=

因为21//PF QF ,所以21OF OF λ=,得222

22a b a b λ+=-。有2224

1222

41(1)(1)x a a y b b

λλ+==-。 由①得2444

2

1124244144()4x b b a k k a y a b

+=?=?=。

同理可得234()4k k +=。

另一方面,22

1111222

2111y y y b k k x a x a x a a

=?==+--。 类似地,2

342b k k a

=-。

故222222123412341234()()2()44208k k k k k k k k k k k k +++=+++-+=+-?=。

(柯正摘自《中学数学教学参考》2006年第1~2期)

人教新课标版数学高二-数学选修2-1练习2.3.2双曲线的简单几何性质

2.3.2 双曲线的简单几何性质 一、基础过关 1.双曲线2x 2-y 2=8的实轴长是 ( ) A .2 B .2 2 C .4 D .4 2 2.双曲线3x 2-y 2=3的渐近线方程是 ( ) A .y =±3x B .y =±13x C .y =±3x D .y =±33 x 3.双曲线x 24-y 2 12 =1的焦点到渐近线的距离为 ( ) A .2 3 B .2 C. 3 D .1 4.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于 ( ) A .-14 B .-4 C .4 D.14 5.双曲线x 2a 2-y 2 b 2=1 (a >0,b >0)的左、右焦点分别是F 1、F 2,过F 1作倾斜角为30°的直线,交双曲线右支于M 点,若MF 2垂直于x 轴,则双曲线的离心率为 ( ) A. 6 B. 3 C. 2 D.33 6.已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 ( ) A.x 25-y 2 4 =1 B.x 24-y 25=1 C.x 23-y 2 6=1 D.x 26-y 2 3=1 7.已知双曲线C :x 24-y 2 m =1的开口比等轴双曲线的开口更开阔,则实数m 的取值范围是________. 二、能力提升 8.已知圆C 过双曲线x 29-y 2 16 =1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是__________. 9.如图所示,ABCDEF 为正六边形,则以F 、C 为焦点,且经过A 、 E 、D 、B 四点的双曲线的离心率为____________________. 10.根据下列条件,求双曲线的标准方程.

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题及详细答案 一、选择题: 1、双曲线 22 1102x y -=的焦距为( ) 2.椭圆14 22 =+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( ) A . 2 3 B .3 C .27 D .4 3.已知动点M 的坐标满足方程|12512|132 2-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对 4.设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( ) A. 1或5 B. 1或9 C. 1 D. 9 5、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三 角形,则椭圆的离心率是( ). A. B. C. 2 D. 1 6.双曲线)0(12 2≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( ) A . 163 B .83 C .316 D .3 8 7. 若双曲线22 21613x y p -=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( ) (A)2 (B)3 (C)4 8.如果椭圆 19 362 2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 9、无论θ为何值,方程1sin 22 2=?+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对

双曲线的简单几何性质总结归纳

双曲线的简单几何性质 一.基本概念 1 双曲线定义: ①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹 (21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点. ②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线 这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线 2、双曲线图像中线段的几何特征: ⑴实轴长122A A a =,虚轴长2b,焦距122F F c = ⑵顶点到焦点的距离:11A F =22A F c a =-,12A F =21A F a c =+ ⑶顶点到准线的距离:21122 a A K A K a c ==-;21221 a A K A K a c ==+ ⑷焦点到准线的距离:22 11221221 a a F K F K c F K F K c c c ==-==+或 ⑸两准线间的距离: 2 122a K K c = ⑹21F PF ?中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将 有关线段1PF 、2PF 、21F F 和角结合起来,122 12 cot 2 PF F F PF S b ?∠= ⑺离心率: 121122121122PF PF A F A F c e PM PM A K A K a ======∈(1,+∞) ⑻焦点到渐近线的距离:虚半轴长b ⑼通径的长是a b 22,焦准距2b c ,焦参数2b a (通径长的一半)其中2 22b a c +=a PF PF 221=- 3 双曲线标准方程的两种形式: ①22 a x -22 b y =1, c =22b a +,焦点是F 1(-c ,0),F 2(c ,0) ②22a y -22 b x =1, c =22b a +,焦点是F 1(0,-c )、F 2(0,c ) 4、双曲线的性质:22 a x -22b y =1(a >0,b >0) ⑴范围:|x |≥a ,y ∈R ⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线: ①若双曲线方程为12222=-b y a x ?渐近线方程?=-02222b y a x x a b y ±= ②若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x ③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上) ④特别地当?=时b a 离心率2=e ?两渐近线互相垂直,分别为y=x ±,

人教版高二文科数学《圆锥曲线》基础练习题

圆锥曲线文科基础练习题 姓名: 班别: 一、选择题: 1. 已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为 ( ) A . B . C . D . 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为,焦距为,则椭圆的 方程为 ( ) A . B . C .或 D .以上都不对 3.动点到点及点的距离之差为,则点的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条 射线 4.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( ) A .椭圆 B .线段 C .双曲线 D .两条射线 5.方程11122=-++k y k x 表示双曲线,则k 的取值范围是 ( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-

双曲线的简单几何性质(教案)(精)

双曲线的简单几何性质 山丹一中周相年 教学目标: (1 知识目标 能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程等,熟练掌握双曲线的几何性质 . (2能力目标 通过类比椭圆的简单几何性质的方法来研究双曲线的简单几何性质, 在老师的指导下让学生积极讨论、归纳,培养学生的观察、研究能力,增强学生的自信心 . (3 情感目标 通过提问、讨论、合作、探究等主动参与教学的活动,培养学生自尊、自强、自信、自主等良好的心理潜能和主人翁意识、集体主义精神 . 教学重点:双曲线的几何性质 . 教学难点:双曲线的渐近线 . 教学方法:启发诱导、练讲结合 教学用具 :多媒体 教学过程: 一、复习回顾,问题引入: 问题 1:双曲线的定义及其标准方程?

问题 2:椭圆的简单几何性质有哪些?我们是如何研究的?双曲线是否也有类似性质?又该怎样研究? 二、合作交流,探究性质: 类比椭圆的几何性质的研究方法,我们根据双曲线的标准方程 0, 0(122 22>>=-b a b y a x 研究它的几何性质 1. 范围: 双曲线在不等式x ≥ a 与x ≤-a 所表示的区域内 . 2. 对称性: 双曲线关于每个坐标轴和原点都对称, 这时, 坐标轴是 双曲线的对称轴, 原点是双曲线的对称中心, 双曲线的对称 中心叫双曲线中心 . 3.顶点: (1 双曲线和它的对称轴有两个交点 A1(-a,0 、 A2(a,0, 它们叫做双曲线的顶点 . (2 线段 A1A2叫双曲线的实轴, 它的长等于 2a,a 叫做双曲线的实半轴长; 线段B1B2叫双曲线的虚轴,它的长等于 2b, b叫做双曲线的虚半轴长 .

高二数学圆锥曲线同步练习题

高二(理科)数学(圆锥曲线)同步练习题 一、选择题 1.下面双曲线中有相同离心率,相同渐近线的是( ) A.x 2 3-y 2 =1,x 29-y 23=1 B.x 2 3-y 2=1,y 2 -x 2 3=1 C .y 2 -x 2 3=1,x 2 -y 23=1 D.x 2 3-y 2 =1,y 23-x 2 9 =1 2.椭圆x 29+y 2 25=1的焦点为F 1、F 2,AB 是椭圆过焦点F 1的弦,则△ABF 2的周长是( ) A .20 B .12 C .10 D .6 3.已知椭圆x 210-m +y 2 m -2=1的长轴在y 轴上,若焦距为4,则m 等于( ) A .4 B .5 C .7 D .8 4.椭圆的中心在坐标原点,焦点在坐标轴上,两顶点分别是(4,0),(0,2),则此椭圆的方程是( ) A.x 24+y 216=1或x 216+y 24=1 B.x 24+y 216=1 C.x 216+y 24=1 D.x 216+y 2 20 =1 5.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A.45 B.35 C.25 D.15 6、 双曲线与椭圆4x 2 +y 2 =64有公共的焦点,它们的离心率互为倒数,则双曲线方程为( ) A .y 2 -3x 2 =36 B .x 2 -3y 2 =36 C .3y 2 -x 2 =36 D .3x 2 -y 2 =36 7、双曲线mx 2 +y 2 =1的虚轴长是实轴长的2倍,则m 的值为( ) A .-14 B .-4 C .4 D.14 8.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲 线的标准方程为( ) A.y 24-x 24=1 B.x 24-y 24=1 C.y 24-x 29=1 D.x 28-y 2 4 =1 9.已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的实轴长、虚轴长、焦距成等差数列,则双曲线的离心 率e 为( ) A .2 B .3 C.43 D.5 3

北师大高二数学选修圆锥曲线方程测试题及答案

高二数学选修1-1圆锥曲线方程检测题 斗鸡中学 强彩红 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设定点 () 10,3F -, () 20,3F ,动点 () ,P x y 满足条件 a PF PF =+21(a >)0,则动点 P 的轨迹是( ). A. 椭圆 B. 线段 C. 不存在 D.椭圆或线段或不存在 2、抛物线 2 1y x m = 的焦点坐标为( ) . A .??? ??0,41m B . 10,4m ?? ??? C . ,04m ?? ??? D .0,4m ?? ??? 3、双曲线 22 1mx y +=的虚轴长是实轴长的2倍,则m 的值为( ). A .14- B .4- C .4 D .1 4 4、设双曲线的焦点在x 轴上,两条渐近线为y=± x 2 1 ,则该双曲线的离心率e 为( ) (A )5 (B )5 (C ) 25 (D )4 5 5、线段∣AB ∣=4,∣PA ∣+∣PB ∣=6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是( ) (A )2 (B )2 (C ) 5 (D )5 6、若椭圆13 22 2=++y m x 的焦点在x 轴上,且离心率e=2 1,则m 的值为( ) (A ) 2 (B )2 (C )-2 (D )± 2 7、过原点的直线l 与双曲线42x -32 y =-1有两个交点,则直线l 的斜率的取值范围是 A.(-23,23) B.(-∞,-23)∪(23 ,+∞) C.[-23,23] D.(-∞,-23]∪[23 ,+∞) 8、如图,在正方体ABCD -A1B1C1D1中,P 是侧面BB1C1C 内一动点,若P 到直线BC

双曲线的简单几何性质练习题

课时作业(十一) [学业水平层次] 一、选择题 1.等轴双曲线的一个焦点是F 1(-6,0),则它的标准方程是( ) -x 2 18=1 -y 2 18=1 -y 2 8=1 -x 2 8=1 【解析】 设等轴双曲线方程为x 2a 2-y 2 a 2=1(a >0), ∴a 2+a 2=62,∴a 2=18,故双曲线方程为x 218-y 218=1. 【答案】 B 2.(2014·天水高二考试)已知双曲线方程为x 2-y 24=1,过P (1,0) 的直线l 与双曲线只有一个公共点,则共有l ( ) A .4条 B .3条 C .2条 D .1条 【解析】 因为双曲线方程为x 2-y 2 4=1,所以P (1,0)是双曲线的 右顶点,所以过P (1,0)并且和x 轴垂直的直线是双曲线的一条切线,与双曲线只有一个公共点,另外还有两条就是过P (1,0)分别和两条渐近线平行的直线,所以符合要求的共有3条,故选B. 【答案】 B 3.(2014·大纲全国卷)双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( )

A .2 B .2 2 C .4 D .42 【解析】 由已知得e =c a =2,所以a =12c ,故b =c 2-a 2 =32c ,从而双曲线的渐近线方程为y =±b a x =±3x ,由焦点到渐近线的距离为3,得3 2c =3,解得c =2,故2c =4,故选C. 【答案】 C 4.(2014·广东高考)若实数k 满足00,16-k >0,故方程x 216-y 2 5-k =1 表示焦点在x 轴上的双曲线,且实半轴的长为4,虚半轴的长为5-k ,焦距2c =221-k ,离心率e =21-k 4;同理方程x 216-k -y 25=1也表 示焦点在x 轴上的双曲线,实半轴的长为16-k ,虚半轴的长为5,焦距2c =221-k ,离心率e =21-k 16-k .可知两曲线的焦距相等,故选 D. 【答案】 D 二、填空题 5.(2014·南京高二检测)在平面直角坐标系xOy 中,若双曲线x 2 m -

高二数学圆锥曲线(椭圆专题训练)

1、在直角坐标系xOy中,曲线C的参数方程为 3cos, sin, x y θ θ = ? ? = ? (θ为参数),直线l的参 数方程为 4, 1, x a t t y t =+ ? ? =- ? (为参数). (1)若a=?1,求C与l的交点坐标; (2)若C上的点到l a. 2、已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1 ,P4(1 ,)中恰有三点在椭圆C上. (1)求C的方程; (2)设直线l不经过P2点且与C相交于A,B两点。若直线P2A与直线P2B的斜率的和为–1,证明:l过定点. 22 22 =1 x y a b + 2

3、如图,在平面直角坐标系xOy 中,椭圆22 22:1(0)x y E a b a b +=>>的左、右焦点分 别为12,F F ,离心率为 1 2 ,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程; (2)若直线12,l l 的交点Q 在椭圆E 上,求点P 的坐标. 4 、

5、在平面直角坐标系xOy 中,椭圆E :22 221x y a b +=()0a b >>,焦距为2. (Ⅰ)求椭圆E 的方程; (Ⅱ)如图,动直线l :1y k x =交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k = M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的 最大值,并求取得最大值时直线l 的斜率.

(完整版)双曲线简单几何性质知识点总结,推荐文档

北安一中高二数学导学案 主备人:陈叔彤 审阅人:高二数学组 备课日期 :2012-10-17 课题:§双曲线简单几何性质知识点总结 课时: 课时 班级: 姓名: 【学习目标】 知识与技能:1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等 几何性质 2.掌握双曲线的另一种定义及准线的概念3.掌握等轴双曲线,共轭双曲线等概念 过程与方法:进一步对学生进行运动变化和对立统一的观点的教育情感态度与价值观:辨证唯物主义世界观。【学习重点】双曲线的几何性质及其应用。【学习难点】双曲线的知识结构的归纳总结。 【学法指导】 1.课前依据参考资料,自主完成,有疑问的地方做好标记. 2.课前互相讨论交流,课上积极展示学习成果. 【知识链接】双曲线的定义:_________________________________________________【学习过程】 1.范围: 由标准方程,从横的方向来看,直线x=-a,x=a 之间没有图 122 22=-b y a x 象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大。 X 的取值范围________ y 的取值范围______2. 对称性: 对称轴________ 对称中心________3.顶点:(如图) 顶点:____________特殊点:____________实轴:长为2a, a 叫做半实轴长21A A 虚轴:长为2b ,b 叫做虚半轴长 21B B 双曲线只有两个顶点,而椭圆则有四个顶点, 这是两者的又一差异4.离心率: 双曲线的焦距与实轴长的比,叫做双曲线的离心率 a c a c e == 22范围:___________________ 双曲线形状与e 的关系:,e 越大,即渐112 222 2-=-=-= =e a c a a c a b k 近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔

高二数学圆锥曲线测试题以及详细答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 圆锥曲线测试题及详细答案 一、选择题: 1、双曲线 22 12x y -=的焦距为( ) 2.椭圆14 22 =+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( ) A . 23 B .3 C .2 7 D .4 3.已知动点M 的坐标满足方程|12512|132 2 -+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上 都不对 4.设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则= ||2PF ( ) A. 1或5 B. 1或9 C. 1 D. 9 5、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P , 若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ).

A. 2 2 B. 21 2 - C. 22- D. 21- 6.双曲线)0(122≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42 =的焦点重合,则mn 的值为( ) A .163 B .83 C .316 D .38 7. 若双曲线22 21613x y p -=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( ) (A)2 (B)3 (C)4 (D)42 8.如果椭圆 19 362 2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 9、无论θ为何值,方程1sin 22 2 =?+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对 10.方程02 =+ny mx 与)0(2>>+n m mx 的曲线在同一坐标系 中的示意图应是( ) A B C D 11.以双曲线 116 92 2=-y x 的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A . B. C . D. 12.已知椭圆的中心在原点,离心率2 1 = e ,且它的一个焦点与抛物线 x y 42-=的焦点重合,则此椭圆方程为( ) A . 13422=+y x B .16 822=+y x C .1222 =+y x

双曲线的几何性质(一)

双曲线的几何性质(一) 教学目标 1.掌握双曲线的几何性质 2?能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程? 教学重点 双曲线的几何性质 教学难点 双曲线的渐近线 教学过程 I.复习回顾: 双曲线的标准方程、研究椭圆的几何性质的方法与步骤 II.讲授新课: 1?范围: 双曲线在不等式x>a与x<- a所表示的区域内. 2对称性: 双曲线关于每个坐标轴和原点都对称, 这时, 坐标轴是双曲线的对称轴,原点是双曲线的对称中 心,双曲线的对称中心叫双曲线的中心。 3.顶点: 双曲线和它的对称轴有两个交点A i(— a,0)、A2(a,0),它们叫做双曲线的顶点. 线段A i A2叫双曲线的实轴,它的长等于2a,a叫做双曲线的实半轴长;

线段B1B2叫双曲线的虚轴,它的长等于2b,b叫做双曲线的虚半轴长 4.渐近线 ①我们把两条直线y= ± -x叫做双曲线的渐近线; a 2 2 ②从图可以看出,双曲线笃爲1的各支向 a b 外延伸时,与直线y= ± - x逐渐接近. a ③“渐近”的证明:略 ④等轴双曲线: 实轴和虚轴等长的双曲线叫做等轴双曲线. ⑤利用双曲线的渐近线,可以帮助我们较准确地画出双曲线的草图.具体做法是:画出双曲线的渐近线,先确定双曲线顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限内从渐近线的下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线. 2 2 注意:⑴求渐近线方程的简便方法:令方程左边等于零即务 / 0 a b ⑵等轴双曲线一般可设为x2 y2 k 等轴双曲线的性质:①离心率为 2 ②等轴双曲线的相伴矩形是正方形 ③渐近线方程为y=±x且互相垂直 ④两条渐近线平分双曲线实轴和虚轴所成的角 5.离心率:

高二数学圆锥曲线基础练习题(一)讲义

高二数学圆锥曲线基础练习题(一) 一、选择题: 1.抛物线x y 42=的焦点坐标为 ? ( ) A .)1,0( ?B.)0,1( C . )2,0( D .)0,2( 2.双曲线2 2 1mx y +=的虚轴长是实轴长的2倍,则m = ( ) ?A.1 4 - ?B .4- C.4 D . 14 3.双曲线 22 1916 x y -=的一个焦点到渐近线距离为 ( ) ?A .6 B.5 C .4 D.3 4.已知△ABC 的顶点B、C 在椭圆错误!+y2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点 在BC 边上,则△ABC 的周长是 ( ) ?A.2\r(,3) ?B.6 C.4 3 ?D .12 5.已知椭圆22 1102 x y m m +=--,长轴在y 轴上. 若焦距为4,则m 等于 ?( ) A.4 ?B.5 C .7 ?D.8 6.已知P 是双曲线22 219 x y a - =右支上的一点,双曲线的一条渐近线方程为30x y -=. 设 12F F 、分别为双曲线的左、右焦点. 若23PF =,则1PF = ?( ) ?A . 5 ?B.4 ?C .3 ?D .2 7.将抛物线2 (2)1y x =-+按向量a 平移,使顶点与原点重合,则向量a的坐标是( ) ?A.(2,1)-- B .(2,1) ?C.(2,1)- D .(2,1)- 8.已知双曲线的两个焦点为)0,5(1-F ,)0,5(2F ,P 是此双曲线上的一点,且21PF PF ⊥, 12||||2PF PF ?=,则该双曲线的方程是 ?( ) A.13222=-y x ?B.12322=-y x ?C.1422 =-y x D .14 2 2 =-y x 9.设11229 (,),(4,),(,)5 A x y B C x y 是右焦点为F 的椭圆 221259x y +=上三个不同的点,则“,,AF BF CF 成等差数列”是“128x x +=”的 ?( ) ?A.充要条件 ?B.必要不充分条件

高二数学教案 8.4双曲线的简单几何性质 (二)

课题:8.4双曲线的简单几何性质(二)教学目的: 1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等 2 3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的 4.通过教学使同学们运用坐标法解决问题的能力得到进一步巩固和提高, 教学重点:双曲线的渐近线、离心率 教学难点:渐近线几何意义的证明,离心率与双曲线形状的关系 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程:

一、复习引入: 1.范围、对称性 由标准方程122 22=-b y a x ,从横的方向来看,直线x=-a,x=a 之间 没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大, 双曲线 2.顶点 顶点:()0,),0,(21a A a A - 特殊点:()b B b B -,0),,0(21 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 3.渐近线 过双曲线122 22=-b y a x 的两顶点21,A A ,作Y 轴的平行线a x ±=,经

过21,B B 作X 轴的平行线b y ±=,四条直线围成一个矩形 矩形的两 条对角线所在直线方程是x a b y ±=(0=±b y a x ) ,这两条直线就是双 4.等轴双曲线 定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂 直;(3)离心率=e 等轴双曲线可以设为:)0(22≠=-λλy x ,当0>λ时交点在x 轴,当0<λ时焦点在y 轴上 5.共渐近线的双曲线系 如果已知一双曲线的渐近线方程为x a b y ± =)0(>±=k x ka kb ,那么此双曲线方程就一定是: )0(1)()(2222>±=-k kb y ka x 或写成λ=-22 22b y a x 6.双曲线的草图

(完整)高二文科数学选修圆锥曲线练习题附标准答案

圆锥曲线单元练习(文) 派潭中学 廖翠兰 时间:100分钟 满分100分 一、选择题:(每题4分,共40分) 1.0≠c 是方程 c y ax =+2 2 表示椭圆或双曲线地( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .不充分不必要条件 2.如果抛物线y 2=ax 地准线是直线x =-1,那么它地焦点坐标为 ( ) A .(1, 0) B .(2, 0) C .(3, 0) D .(-1, 0) 3.直线y = x +1被椭圆x 2+2y 2=4所截得地弦地中点坐标是( ) A .( 31, -3 2 ) B .(- 32, 3 1) C.( 21,-31) D .(-31,2 1 ) 4.一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为( ) A .6m B .26m C .4.5m D .9m 5. 已知椭圆15922=+y x 上地一点P 到左焦点地距离是3 4 ,那么点P 到椭圆地右准线地距离是( ) A .2 B .6 C .7 D . 143 6.曲线 2 25 x + 2 9 y =1与曲线 2 25k x -+ 2 9k y -=1(k <9 )地( ) A.长轴长相等 B.短轴长相等 C.离心率相等 D.焦距相等 7.已知椭圆 2 5 x + 2 m y =1地离心率 e= 5 ,则m 地值为( ) A .3 B. 25 3 或 3 D.3 8.已知椭圆C 地中心在原点,左焦点F 1,右焦点F 2均在x 轴上,A 为椭圆地右顶点,B 为 椭圆短轴地端点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,则此椭圆地离心率等于( ) A . 12 B .2 C .1 3 D .5 9 2)0>>n m 地曲线在同一坐标系 10.椭圆 2 25 x + 2 9 y =1上一点M 到左焦点 1 F 地距离为2,N 是M 1 F 地中点,,则2ON

双曲线的简单几何性质 (第二课时) 教案 2

课 题:8.4双曲线的简单几何性质 (二) 教学目的: 1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质 2.掌握等轴双曲线,共轭双曲线等概念 3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题 4.通过教学使同学们运用坐标法解决问题的能力得到进一步巩固和提高,“应用数学”的意识等到进一步锻炼的培养 教学重点:双曲线的渐近线、离心率 教学难点:渐近线几何意义的证明,离心率与双曲线形状的关系 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.范围、对称性 由标准方程122 22=-b y a x ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方 向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭 圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心 2.顶点 顶点:()0,),0,(21a A a A - 特殊点:()b B b B -,0),,0(21 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 3.渐近线 过双曲线122 22=-b y a x 的两顶点21,A A ,作Y 轴的平行线a x ±=,经过21,B B 作X 轴的 平行线b y ±=,四条直线围成一个矩形 矩形的两条对角线所在直线方程是x a b y ± =( 0=±b y a x ),这两条直线就是双曲线的渐近线 4.等轴双曲线 定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e x y Q B 1 B 2A 1A 2N M O

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题及详细答案 一、选择题: 1、双曲线 22 1102x y -=的焦距为( ) 2.椭圆14 22 =+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( ) A . 23 B .3 C .2 7 D .4 3.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对 4.设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1 =PF ,则=||2PF ( ) 】 A. 1或5 B. 1或9 C. 1 D. 9 5、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角 形,则椭圆的离心率是( ). A. B. C. 2 D. 1 6.双曲线)0(12 2≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( ) A .163 B .83 C .316 D .38 7. 若双曲线22 21613x y p -=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( ) (A)2 (B)3 (C)4 8.如果椭圆 19 362 2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 9、无论θ为何值,方程1sin 22 2=?+y x θ所表示的曲线必不是( ) |

高二数学圆锥曲线复习题

高二文圆锥曲线与方程复习 一,知识点总结 1.椭圆,双曲线,抛物线的定义和标准方程 2.掌握圆锥曲线的几何性质 3能运用知识解决综合问题 【基础训练】 1.设F 1,F 2是椭圆16 4942 2=+y x 的两个焦点,P 是椭圆上的点,且3:4:21=PF PF ,则21F PF ?的面积为 A .4 B .6 C .22 D .24 ( ) 2.已知对k R ∈,直线10y kx --=与椭圆22 15x y m +=恒有公共点,则实数m 的取值范围是 A .(0,1) B .(0,5) C .),5()5,1[+∞? D .[1,5) ( ) 3.椭圆的长轴为A 1A 2,B 为短轴一端点,若?=∠12021BA A ,则椭圆的离心率为 A .33 B .63 C .32 D .12 4.双曲线2288kx ky -=的一个焦点为(0,3),则k 的值为______________。 5.若直线1y kx =-与双曲线22 4x y -=始终有公共点,则k 取值范围是 。 6.双曲线与椭圆136 272 2=+y x 有相同焦点,且经过点4),求其方程。 7.在抛物线2 4y x =上求一点,使这点到直线45y x =-的距离最短。 8.当000180α从到变化时,曲线22cos 1x y α+=怎样变化?

【巩固练习】 一、选择题 1. 已知椭圆116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为A .2 B .3 C .5 D .7 ( ) 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( ) A .116922=+y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 4 以椭圆116 252 2=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A .1481622=-y x B .127922=-y x C .1481622=-y x 或127 92 2=-y x D .以上都不对 5.21,F F 是椭圆17 92 2=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则 Δ12AF F 的面积为( ) A .7 B . 47 C .27 D .257 6.若抛物线x y =2上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( ) A .1 (,44± B .1(,84± C .1(,44 D .1(,84 7. 若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在抛物线上移动时,使 MA MF +取得最小值的M 的坐标为( ) A .()0,0 B .??? ??1,21 C .() 2,1 D .()2,2 8.与椭圆14 22 =+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A .1222=-y x B .1422=-y x C .13 32 2=-y x D .1222=-y x

(完整版)双曲线简单几何性质知识点总结

四、双曲线 一、双曲线及其简单几何性质 (一)双曲线的定义:平面内到两个定点F 1,F 2的距离差的绝对值等于常数2a (0<2a <|F 1F 2|)的点的轨 迹叫做双曲线。 定点叫做双曲线的焦点;|F 1F 2|=2c ,叫做焦距。 ● 备注:① 当|PF 1|-|PF 2|=2a 时,曲线仅表示右焦点F 2所对应的双曲线的一支(即右支); 当|PF 2|-|PF 1|=2a 时,曲线仅表示左焦点F 1所对应的双曲线的一支(即左支); ② 当2a=|F 1F 2|时,轨迹为以F 1,F 2为端点的2条射线; ③ 当2a >|F 1F 2|时,动点轨迹不存在。 双曲线12222=-b y a x 与122 22=-b x a y (a>0,b>0)的区别和联系

(二)双曲线的简单性质 1.范围: 由标准方程122 22=-b y a x (a >0,b >0),从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的 方向来看,随着x 的增大,y 的绝对值也无限增大。 x 的取值范围________ ,y 的取值范围______ 2. 对称性: 对称轴________ 对称中心________ 3.顶点:(如图) 顶点:____________ 特殊点:____________ 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做半虚轴长 双曲线只有两个顶点,而椭圆则有四个顶点 4.离心率: 双曲线的焦距与实轴长的比 a c a c e = = 22,叫做双曲线的离心率 范围:___________________ 双曲线形状与e 的关系:1122 222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就越 大,这时双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔 5.双曲线的第二定义: 到定点F 的距离与到定直线l 的距离之比为常数 )0(>>= a c a c e 的点的轨迹是双曲线 其中,定点叫做双 曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率. 准线方程: 对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2 1:-=, 相对于右焦点)0,(2c F 对应着右准线 c a x l 2 2:= ; 6.渐近线 过双曲线122 2 2=-b y a x 的两顶点21,A A ,作x 轴的垂线a x ±=,经过21,B B 作y 轴的垂线b y ±=,四条直线 围成一个矩形 矩形的两条对角线所在直线方程是____________或(0 =±b y a x ),这两条直线就是双曲线 的渐近线 双曲线无限接近渐近线,但永不相交。

双曲线的几何性质(习题)

双曲线的几何性质 年级__________ 班级_________ 学号_________ 姓名__________ 分数____ 一、选择题(共34题,题分合计170分) 1.双曲线9y 2 -x 2 -2x -10=0的渐近线方程是 =±3(x +1) =±3(x -1) =±31(x +1) =±31 (x -1) 2.若双曲线x 2-y 2 =1右支上一点P (a ,b )到直线y =x 的距离为2,则a +b 的值是 A.-21 B.21 C.-21或21 或-2 3.过(0,3)作直线L ,若L 与双曲线 342 2y x =1,只有一个公共点,则L 共有 条 条 条 条 4.双曲线2mx 2 -my 2 =2,有一条准线方程是y =1,则m 应等于 是 21 34

5.双曲线15)1(422=--y x ,经过第一象限内的点) 217 , (m P ,则P 点到双曲线右焦点的距离是__________. 6.双曲线11692 2=-y x 的一个焦点到一条渐近线的距离等于 A.3 7.已知双曲线中心在原点且一个焦点为 )0,7(F ,直线y =x -1与其相交于M ?N 两点,MN 中点的横坐标为, 32 -则此双曲线的方程是 A.14322=-y x B.13422=-y x C.12522=-y x D.1522 2=-y x 8.双曲线虚轴的一个端点为M,两个焦点为F,F ,∠FMF =120°则双曲线的离心率为 A.3 B.26 C.36 D.33 9.双曲线的渐近线方程为y =±2(x -1),一焦点坐标为(1+25,0),则该双曲线的方程是 A.116)1(422=--y x B.1164)1(22=--y x C.1416)1(22=--y x D.116)1(42 2=--y x 10.过双曲线1 22 2 =-y x 的右焦点F 作直线l 交双曲线于A ?B 两点,若|AB |=4,则这样的直线l 有 条 条 条 条 11.以椭圆114416922=+y x 的右焦点为圆心,且与双曲线116922=-y x 的渐近线相切的圆的方程是 A. 91022=+-+x y x B. 91022=--+x y x C. 091022=-++x y x D. 09102 2=+++x y x 12.双曲线1222 2=-b y a x (a >0,b >0)的渐近线与x 轴的夹角为α(0<α<2π ),则过双曲线的焦点且垂直于x 轴的弦的 长度为 tan α tan α tan α tan α 13.若x y x x a a a 31 ,,++(a >0且a ≠1)成等比数列,则点(x ,y )在平面直角坐标系内的轨迹是

相关主题
文本预览
相关文档 最新文档