当前位置:文档之家› 几何概型例子

几何概型例子

几何概型例子
几何概型例子

几何概型例题分析

[例1] 甲、乙两人约定在下午4:00~5:00间在某地相见他们约好当其中一人先到后一定要等

另一人15分钟,若另一人仍不到则可以离去,试求这人能相见的概率。

解:设x 为甲到达时间,y 为乙到达时间.建立坐标系,如图15||≤-y x 时可相见,即阴

影部分167

6045602

22=-=P

[例2] 设A 为圆周上一定点,在圆周上等可能任取一点与A 连接,求弦长超过半径2倍的概

率。

解:R AC AB 2||||=

=. ∴ 2

1

2==

=

?

R R BCD

P ππ圆周

[例3] 将长为1的棒任意地折成三段,求三段的长度都不超过

2

1

的概率。 解:设第一段的长度为x ,第二段的长度为y ,第三段的长度为y x --1,则基本事件

组所对应的几何区域可表示为

}10,10,10|),{(<+<<<<<=Ωy x y x y x ,即图中黄色区域,此区域面积为

2

1。 事件“三段的长度都不超过

21

”所对应的几何区域可表示为 Ω∈=),(|),{(y x y x A ,}2

1

1,21,21<--<

即图中最中间三角形区域,此区域面积为8

1

)21(212=?

此时事件“三段的长度都不超过2

1”的概率为41

2

181

==P

[例4] 两对讲机持有者张三、李四,为卡尔货运公司工作,他们对讲机的接收范围是25km ,

下午3:00张三在基地正东30km 内部处,向基地行驶,李四在基地正北40km 内部处,向基地行驶,试问下午3:00,他们可以交谈的概率。

解:设y x ,为张三、李四与基地的距离]30,0[∈x ,]40,0[∈y ,以基地为原点建立坐标系.他们构成实数对),(y x ,表示区域总面积为1200,可以交谈即2522≤+y x

故192

251200

25

41

2

π

π=

=P [例5] 在区间]1,1[-上任取两数b a ,,运用随机模拟方法求二次方程02

=++b ax x 两根均

为正数的概率。

???

??>=?>-=+≥-=?000

42

1212b x x a x x b a 解:(1)利用计算器产生 0至1区间两组随机数11,b a (2)变换 121-*=a a ,121-*=b b (3)从中数出满足条件 2

4

1a b ≤且0b 的数m (4)n

m

P =

(n 为总组数)

[例6] 在单位圆的圆周上随机取三点A 、B 、C ,求?ABC 是锐角三角形的概率。

解法1:记?ABC 的三内角分别为αβ,,παβ--,事件A 表示“?ABC 是锐角三角形”,则试验的全部结果组成集合

Ω=<<<+<{(,)|,,}αβαβπαβπ00。 因为?ABC 是锐角三角形的条件是 02

<<

αβπ

,且αβπ

+>

2

所以事件A 构成集合 A =+>

<<

{(,)|,,}αβαβπ

αβπ

2

02

由图2可知,所求概率为

P A A ()=的面积的面积

Ω==12212

1

422()

ππ。

解法2:如图3所示建立平面直角坐标系,A 、B 、C 1、C 2为单位圆与坐标轴的交点,当?ABC 为锐角三角形,记为事件A 。则当C 点在劣弧C C 12上运动时,?ABC 即为锐角三

角形,即事件A 发生,所以

P A ()=?=1

42214

π

π

解决问题的关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率。

[例7]将长为L 的木棒随机的折成3段,求3段构成三角形的概率.

解:设M =“3段构成三角形”.x y ,分别表示其中两段的长度,则第三段的长度为

L x y --.{}()000x y x L y L x y L Ω=<<<<<+<,,

,|. 由题意,x y L x y --,,要构成三角形,须有x y L x y +>--,即1

2

x y +>

; ()x L x y y +-->,即2

L

y <

;()y L x y x +-->,即2

L x <

. 故()|222L L L M x y x y y x ?

?=+><

?,,,.

如图

1

所示,可知所求概率为

2

21122()42

L M P M L ?? ???===Ω·的面积的面积. [例8]在区间[01],

上任取三个实数x y z ,,,事件222{()1}A x y z x y z =++<,,|. (1)构造出此随机事件对应的几何图形; (2)利用该图形求事件A 的概率.

解:(1)如图2所示,构造单位正方体为事件空间Ω,正方体以O 为球心,以1为半径

在第一卦限的

1

8

球即为事件A . (2)3314π1

π

83()16

P A ?==·

[例9] 例5、如图所示,在矩形ABCD 中,AB =5,AC =7.现在向该矩形内随机投一点P ,求0

90>∠APB 时的概率。

解:由于是向该矩形内随机投一点P ,点P 落在矩形内的机会是均等的,故可以认为矩形ABCD 是区域Ω.要使得0

90>∠APB ,须满足点P 落在以线段AB 为直径的半圆内,以线段AB 为直径的半圆可看作区域A.记“点P 落在以线段AB 为直径的半圆内”为事件A ,于是求0

90>∠APB 时的概率,转化为求以线段AB 为直径的半圆的面积与矩形ABCD 的面积的比,依题意得,8

25)25(212ππμ=?=

A ,矩形ABCD 的面积为35=Ωμ,故所求的概率为.56

535825)(π

π

==A P

点评:挖掘出点P 必须落在以线段AB 为直径的半圆内是解答本题的关键。

[课后习题]

1.一枚硬币连掷3次,至少出现两次正面的概率是( ) A.

14 B.

12 C.

38 D.

2

3

答案:B 2.在正方形ABCD 内任取一点P ,则使90APB ∠<°的概率是( ) A.

π8

B.

π4

C.π18

-

D.π

14

-

答案:C 3.已知地铁列车每10min 到站一次,且在车站停1min ,则乘客到达站台立即乘上车的概率是( ) A.

110

B.

16

C.

1160

D.

1

11

答案:D 4.在两根相距6m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2m 的概率是( ) A.

12

B.

13

C.

14

D.

1

5

答案:B 5.在腰长为2的等腰直角三角形内任取一点,使得该点到此三角形的直角顶点的距离不大于1的概率是( ) A.

π16

B.

π8

C.

π4

D.

π

2

答案:B 6.在线段[03],

上任取一点,则此点坐标小于1的概率是 . 答案:13

7.在1万平方千米的海域中有40平方千米的大陆架贮藏着石油,假如在海域中任意一点钻探,钻到油层面的概率是 . 答案:

1

250

8.从1L 高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10ml ,则其含有麦锈病的种子的概率是 . 答案:0.01 9.将数2.5随机地(均匀地)分成两个非负实数,例如2.143和0.357或者3和2.5-3,然后对每一个数取与它最接近的整数,如在上述第一个例子中是取2和0,在第二个例子中

取2和1.那么这两个整数之和等于3的概率是多少?(答案:

5

2) 11.在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率。(答案:

4

3) 12.设p 在[0,5]上随机地取值,求方程02142

=++

+p px x 有实根的概率。(答案:5

3) 13.在集合}40,50|),{(≤≤≤≤y x y x 内任取一个元素,能使代数式012

19

34≥-

+y x 的概率是多少?(答案:10

3

概率论习题全部

习题一 1. 用集合的形式写出下列随机试验的样本空间与随机事件A : (1)掷两枚均匀骰子,观察朝上面的点数,事件A 表示“点数之和为7”; (2)记录某电话总机一分钟内接到的呼唤次数,事件A 表示“一分钟内呼唤次数不超过3次”; (3)从一批灯泡中随机抽取一只,测试它的寿命,事件A 表示“寿命在2 000到2 500小时之间”. 2. 投掷三枚大小相同的均匀硬币,观察它们出现的面. (1)试写出该试验的样本空间; (2)试写出下列事件所包含的样本点:A ={至少出现一个正面},B ={出现一正、二反},C ={出现不多于一个正面}; (3)如记i A ={第i 枚硬币出现正面}(i =1,2,3),试用123,,A A A 表示事件A ,B ,C . 3. 袋中有10个球,分别编有号码1~10,从中任取1球,设A ={取得球的号码是偶数},B ={取得球的号码是奇数},C ={取得球的号码小于5},问下列运算表示什么事件: (1)A B U ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)B C U ;(7)A C -. 4. 在区间上任取一数,记112A x x ??=<≤????,1 34 2B x x ??=≤≤????,求下列事件的表 达式:(1)A B U ;(2)AB ;(3)AB ,(4)A B U . 5. 用事件A ,B ,C 的运算关系式表示下列事件: (1)A 出现,B ,C 都不出现; (2)A ,B 都出现,C 不出现; (3)所有三个事件都出现; (4)三个事件中至少有一个出现; (5)三个事件都不出现; (6)不多于一个事件出现; (7)不多于二个事件出现; (8)三个事件中至少有二个出现. 6. 一批产品中有合格品和废品,从中有放回地抽取三个产品,设表示事件“第次抽到废品”,试用的运算表示下列各个事件: (1)第一次、第二次中至少有一次抽到废品; (2)只有第一次抽到废品; (3)三次都抽到废品; (4)至少有一次抽到合格品; (5)只有两次抽到废品. 7. 接连进行三次射击,设={第i 次射击命中}(i =1,2,3),试用表示下述事件: (1)A ={前两次至少有一次击中目标}; (2)B ={三次射击恰好命中两次}; ]2,0[i A i i A i A 321,,A A A

【免费下载】概率论与数理统计案例

实例1 发行彩票的创收利润某一彩票中心发行彩票 10万张, 每张2元. 设头等奖1个, 奖金 1万元, 二等奖2个,奖金各 5 千元;三等奖 10个, 奖金各1千元; 四等奖100个, 奖金各100元; 五等奖1000个, 奖金各10 元.每张彩票的成本费为 0.3 元, 请计算彩票发行单位的创收利润.解:设每张彩票中奖的数额为随机变量X , 则X 10000 5000 1000 100 10 0p 51/1052/10510/105100/1051000/100p 每张彩票平均能得到奖金 05512()10000500001010E X p =? +?++? 0.5(),=元每张彩票平均可赚20.50.3 1.2(), --=元因此彩票发行单位发行 10 万张彩票的创收利润为:100000 1.2120000().?=元实例2 如何确定投资决策方向?某人有10万元现金,想投资于某项目,预估成功的机会为 30%,可得利润8万元 , 失败的机会为70%,将损失 2 万元.若存入银行,同期间的利率为5% ,问是否作此项投资?解:设 X 为投资利润,则 X 8 -2p 0.3 0.7()80.320.71(),E X =?-?=万元存入银行的利息:故应选择投资.1050.5(),%?=万元实例3 商店的销售策略某商店对某种家用电器的销售采用先使用后付款的方式,记使用寿命为X (以年计),规定1,1500;12,2000;23,2500; 3,3000.X X X X ≤<≤<≤>一台付款元一台付款元一台付款元一台付款元10,1e ,0,()100, 0.x X x f x x Y -?>?=??≤? 设寿命服从指数分布概率密度为试求该商店一台家用电器收费的数学期望定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术、电气课校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料、电气设备调试高中中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并

人教版高中数学必修三导学案 3.3.1几何概型

3.3几何概型 3.3.1几何概型 1.问题导航 (1)当试验的所有可能结果是无穷多的情况,还能用古典概型来计算事件发生的概率吗? (2)什么叫几何概率模型?其求解方法是什么? (3)几何概型有几种模型? 2.例题导读 通过例1的学习,学会如何求解长度型的几何概型的概率. 1.几何概型的定义与特点 (1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. (2)特点:①可能出现的结果有无限多个;②每个结果发生的可能性相等. 2.几何概型中事件A的概率的计算公式 P(A)=构成事件A的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积) . 1.下列概率模型都是几何概型吗?(对的打“√”,错的打“×”) (1)从区间[-10,10]中任取出一个数,求取到1的概率;() (2)从区间[-10,10]中任取出一个数,求取到绝对值不大于1的数的概率;() (3)从区间[-10,10]中任取出一个数,求取到大于1且小于2的数的概率;() (4)向一个边长为4 cm的正方形ABCD内投一点P,求点P离正方形的中心不超过1 cm的概率.() 解析:(1)不是几何概型;(2)(3)(4)是几何概型,满足无限性,且等可能性.

答案:(1)× (2)√ (3)√ (4)√ 2.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为( ) A.13 B.12 C.14 D.23 解析:选D.由|x |≤1,得-1≤x ≤1,所以|x |≤1的概率为P (|x |≤1)=2 3. 3.如图,假设你在如图所示的图形中随机撒一粒黄豆,则它落到阴影部分的概率为________. 解析:设圆的半径为R ,则圆的面积为S =πR 2,阴影的面积S 阴= 12·2R ·R =R 2 ,故所求概率P =S 阴S =R 2πR 2=1π . 答案:1 π 4.古典概型与几何概型有何区别? 解:几何概型也是一种概率模型,它与古典概型的区别是:古典概型的试验结果是有限的,而几何概型的试验结果是无限的. 1.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值. 2.如果一个随机试验可能出现的结果有无限多个,并且每个结果发生的可能性相等,那么该试验可以看作是几何概型. 3.几何概型是不同于古典概型的又一个最基本、最常见的概率模型,对应随机事件及试验结果的几何量可以是长度、面积或体积.

2021学年高中数学第三章概率3.3.1几何概型学案含解析人教A版必修3.doc

3.3 几何概型 3.3.1几何概型 [目标] 1.了解几何概型与古典概型的区别;2.理解几何概型的定义及其特点;3.会用几何概型的概率计算公式求简单的几何概型的概率. [重点] 几何概型的特点及概念的理解. [难点] 应用几何概型的概率公式求概率. 知识点一几何概型的概念 [填一填] 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 几何概型的特点如下: (1)无限性,即在一次试验中,基本事件的个数是无限的; (2)等可能性,即每个基本事件发生的可能性是均等的. [答一答] 1.古典概型和几何概型有何异同点? 提示:相同点:古典概型与几何概型中每一个基本事件发生的可能性都是相等的. 不同点:古典概型要求随机试验的基本事件的总数必须是有限多个;几何概型要求随机试验的基本事件的个数是无限的,而且几何概型解决的问题一般都与几何知识有关.2.下面两个事件是几何概型吗? (1)一个人骑车到路口,恰好红灯; (2)一个人种一颗花生,发芽. 提示:(1)满足无限性和等可能性,是几何概型;(2)种一颗花生所有可能出现的结果只有两种,发芽和不发芽,不满足无限性,发芽与不发芽的概率不相等,不满足等可能性,故不是几何概型.

知识点二几何概型的概率公式 [填一填] 在几何概型中,事件A的概率计算公式为P(A)=构成事件A的区域长度(面积或体积) . 试验的全部结果所构成的区域长度(面积或体积) [答一答] 3.几何概型的概率计算与构成事件的区域形状有关系吗? 提示:几何概型的概率只与构成事件的区域的长度(面积或体积)有关,而与构成事件的区域形状无关. 4.概率为0的事件是否一定是不可能事件? 概率为1的事件是否一定会发生? 提示:在几何概型中,若事件A的概率P(A)=0,则A不一定是不可能事件,如:事件A对应数轴上的一个点,则其长度为0,该点出现的概率为0,但A并不是不可能事件;同样地,若事件A的概率P(A)=1,则A也不一定是必然事件. 类型一几何概型的判断 [例1]判断下列概率模型,为几何概型的是________. ①在区间[-10,10]内任取一个数,求取到1的概率; ②在区间[-10,10]内任取一个数,求取到绝对值不大于1的数的概率; ③在区间[-10,10]内任取一个整数,求取到大于1而小于2的数的概率; ④向一个边长为4 cm的正方形ABCD内投一点P,求点P离中心不超过1 cm的概率. [解析]①中概率模型是几何概型,因为区间[-10,10]有无限多个点,且区间内每个数被取到的机会相等;②中概率模型是几何概型,因为区间[-10,10]和[-1,1]上有无限多个数可取(满足无限性),且在这两个区间内每个数被取到的机会是相等的(满足等可能性);③中概率模型不是几何概型,因为在区间[-10,10]内的整数只有21个(是有限的),不满足无限性特征; ④中概率模型是几何概型,因为在边长为4 cm的正方形和半径为1 cm的圆内均有无数个点,且这两个区域内的任何一个点被投到的可能性相等,故满足无限性和等可能性.[答案]①②④

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

概率论经典实例

概率论经典实例 概率论的研究问题大多与现实世界联系十分密切,有的甚至引人入胜,非常值得我们探讨以便激发我们对概率论学习的兴趣,同时引导我们对生活的思考,这对我们每一个大学生思维能力的培养有着重要的意义。下面我列举几个典型的概率实例加以说明其重要意义。 1990 年9 月9 日,美国一家报纸检阅提出一个有趣的概率问题:电视主持人指着三扇关着的门说,其中一扇后是汽车,另两扇后各有一只山羊。你可随意打开一扇,后面的东西就归你了。你当然想得到汽车。当你选定一扇门,如1 号门(但未打开) ,这时主持人打开有山羊的另一个扇门,不妨说是3号门( 主持人清楚哪扇门后是汽车) ,并对你说:现在再给你一次机会,允许你改变原来的选择。你为了得到汽车是坚持1号门还是改选2号门?问题及答案公诸于众后引发了出乎意料的轰动,编辑部收到了上万封从小学二年级的学生到大学教授的来信,给出了不尽相同的答案(当然正确的答案是唯一的),热烈讨论持续两年之久。此时,无论是一号门还是二号门都有可能门后是汽车,看上去好像每一个都是一半的几率。但从主持人的角度看,他不会让你轻易就得到汽车,于是打开三号门来迷惑你的思想,让你放弃一号门。由此看出,可能一号门的几率会大一点。若从主持人的话语中判断出他没有那种想法,则可以这样思考这个问题。将一号门看成一部分,里面有汽车的概率为0.33,将二号门和三号门看成另一部分,里面有汽车的概率为0.67。当发现三号门里没有汽车时,则一号门和二号门有汽车的概率分别为0.33和0.67。因此,选择二号门比较理智。 稍加留意就会发现若利用概率统计提供的科学思维方法就会大大提高获胜的几率。比如抛两颗均匀骰子,规定如下规则:总数之和小于6为出现小点,大于6为大点,则每局可押大点或小点,若押对了,以出现的点数为对应的奖品数目,若押不中则同样以出现的点数为惩罚品的数目。可以这样思考,当假设骰子理论意义上是均匀的,则六面中点数少的面较重,在抛出后点数多的面朝上的可能性较大,从而抛出点数大的情况的概率应大一些,这样,即可作如下观察:(1)随机抛2颗骰子若干次,观察出现的点数,若点数大于6的次数占多数,则初步判断骰子是均匀的。(2) 当比赛开始时,可做以下决策:刚开始可先押大点,无论押中或不中,第二轮可接着押大点,然后观察一轮,当出现小点后,可继续押大点,当然也可在连续出现几个大点后押一次小点,也有取胜的把握。这是因为,出现大点的机会要多于出现小点的机会,开始出现大点的概率要大一些,故应押大点,当出现几次大点后,小概率的事件也是会发生的,故可押一次小点,若一次不中可继续押,此时出现小点的概率将变大。另外,当连续出现几次小点或大点,则情况即将发生转变,应考虑押相反的情况。运用概率的思想来解决此类问题让我们更有把握赢得我们所要的东西,对此类问题,一味的乱猜,只能让我们处于劣势。 在第二次世界大战中,美国曾经宣布:一个优秀的数学家的作用超过10 个师的兵力,这句话有一个非同寻常的来历。1943年以前,在大西洋的英美运输船队常常受到德国潜艇的袭击。当时,英美两国限于实力,无力增派更多的护航舰,一时间德国的潜艇战搞得盟军焦头烂额。为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后,舰队与潜艇相遇是一个随机事件。从数学角度来看这一问题,它具有一定的规律性,一定数量的船(为100艘),编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌

2019-2020学年高中数学 3.3几何概型学案 新人教A版必修5.doc

2019-2020学年高中数学 3.3几何概型学案 新人教A 版必修5 【学习目标】 1.了解几何概型与古典概型的区别,知道均匀分布的含义. 2.理解几何概型的特点和计算公式. 3.会求几何概型的概率. 【重点难点】 重点:理解几何概型的定义、特点,会用公式计算几何概率 难点:等可能性的判断与几何概型和古典概型的区别. 【学习内容】 一.导入新课 1、复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事 件发生都是等可能的. 2、提出问题:不是所有的试验结果都有有限个,比如: 一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子, 石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要 学习的几何概型. 二.研探新知 (一):几何概型的概念 提出问题:如下图所示,图中有两个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时, 甲获胜,否则乙获胜,在两种情况下分别求甲获胜的概率. 显然,以转盘(1)为游戏工具时,甲获胜的概率为 21;以转盘(2)为游戏工具时,甲获胜的概率为5 3。事实上,甲获胜的概率与字母B 所在扇形区域的圆弧的长度有关,而与字母B 所在区域的位置无关,只要字母B 所在扇形区域的圆弧的长度不变,不管这些区域 是相邻,还是不相邻,甲获胜的概率是不变的。 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样 的概率模型为几何概率模型(geometric models of probability ),简称几何概型. 注: 几何概型的基本特点: a.试验中所有可能出现的结果(基本事件)有无限多个; b.每个基本事件出现的可能性相等. (二)几何概型的概率公式: P(A)=) ()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A 例1、有一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得的两段的长度都不小于 1m 的概率是多少?

几何概型例题分析及习题(含答案)

几何概型例题分析及练习题 (含答案) [例1] 甲、乙两人约定在下午4:00~5:00间在某地相见他们约好当其中一人先到后一定要等 另一人15分钟,若另一人仍不到则可以离去,试求这人能相见的概率。 解:设x 为甲到达时间,y 为乙到达时间.建立坐标系,如图15||≤-y x 时可相见,即阴 影部分167 6045602 22=-=P [例2] 设A 为圆周上一定点,在圆周上等可能任取一点与A 连接,求弦长超过半径2倍的概 率。 解:R AC AB 2||||= =. ∴ 2 1 2== = ? R R BCD P ππ圆周 [例3] 将长为1的棒任意地折成三段,求三段的长度都不超过 2 1 的概率。 解:设第一段的长度为x ,第二段的长度为y ,第三段的长度为y x --1,则基本事件 组所对应的几何区域可表示为 }10,10,10|),{(<+<<<<<=Ωy x y x y x ,即图中黄色区域,此区域面积为 2 1。 事件“三段的长度都不超过 21 ”所对应的几何区域可表示为 Ω∈=),(|),{(y x y x A ,}2 1 1,21,21<--<

下午3:00张三在基地正东30km 内部处,向基地行驶,李四在基地正北40km 内部处,向基地行驶,试问下午3:00,他们可以交谈的概率。 解:设y x ,为张三、李四与基地的距离]30,0[∈x ,]40,0[∈y ,以基地为原点建立坐标系.他们构成实数对),(y x ,表示区域总面积为1200,可以交谈即2522≤+y x 故192 251200 25 41 2 π π= =P [例5] 在区间]1,1[-上任取两数b a ,,运用随机模拟方法求二次方程02 =++b ax x 两根均 为正数的概率。 ??? ??>=?>-=+≥-=?000 42 1212b x x a x x b a 解:(1)利用计算器产生 0至1区间两组随机数11,b a (2)变换 121-*=a a ,121-*=b b (3)从中数出满足条件 2 4 1a b ≤且0b 的数m (4)n m P = (n 为总组数) [例6] 在单位圆的圆周上随机取三点A 、B 、C ,求?ABC 是锐角三角形的概率。 解法1:记?ABC 的三内角分别为αβ,,παβ--,事件A 表示“?ABC 是锐角三角形”,则试验的全部结果组成集合 Ω=<<<+<{(,)|,,}αβαβπαβπ00。 因为?ABC 是锐角三角形的条件是 02 << αβπ ,且αβπ +> 2 所以事件A 构成集合 A =+> << {(,)|,,}αβαβπ αβπ 2 02 由图2可知,所求概率为 P A A ()=的面积的面积 Ω==12212 1 422() ππ。 解法2:如图3所示建立平面直角坐标系,A 、B 、C 1、C 2为单位圆与坐标轴的交点,当?ABC 为锐角三角形,记为事件A 。则当C 点在劣弧C C 12上运动时,?ABC 即为锐角三

几何概型教学设计

3.3.1 几何概型济宁市实验中学陈秀伟

【课题】 3.3.1 几何概型 【教材】普通高中课程标准实验教科书数学3 必修 人民教育出版社A版 【授课教师】陈秀伟 【教材分析】 本节课是高中数学人教A版必修三第三章第三节第一课时几何概型,是新课程改革后新增的内容,是在学习了随机事件的概率及古典概型之后,引入的另一类等可能模型,在概率论中占有相当重要的地位. 学好几何概型有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些现象. 【学情分析】 学生通过古典概型的学习初步形成了解决概率问题的思维模式,但还不是很成熟.学生在学习本节课时特别容易和古典概型相混淆,究其原因是思维不严谨,对几何概型的概念理解不清.另外,在解决几何概型的问题时,几何度量的选择也需要特别重视,在实际授课时,应当引导学生发现规律,找出适当的方法来解决问题. 【教学目标】 知识与技能:初步体会几何概型的意义,会用公式求解简单的几何概型的概率. 过程与方法:通过试验,与已学过计算概率的方法进行比较,提出新问题,师生共同探究,提出可行性解决问题的建议或想法. 情感态度与价值观:感知生活中的数学,培养学生用随机的观点来理解世界,加强与现实生活的联系,以科学的态度评价身边的随机现象,学会用科学的方法去观察世界和认识世界. 【重点难点】 教学重点: 几何概型的基本特征及如何求几何概型的概率. 教学难点: 如何判断一个试验是否是几何概型,如何将实际背景转化为几何度量. 【教法学法】 本节课教师采用层层设疑、启发引导学生自主探究的教学模式;使用多媒体来辅助教学,为学生提供直观感性的材料,有助于学生对问题的理解和认识. 【教学基本流程】 创设情境 ↓ 探究生成 ↓ 形成概念 ↓ 巩固深化 ↓ 课堂梳理 ↓ 布置作业

高中数学 必修三 导学案:3.3

§3.3 几何概型 课前预习案 教材助读 预习教材P135-P136,完成以下问题。 几何概型的两个特点:(1)________________性,(2)_________________性. 课内探究案 一、新课导学 1.模拟方法:通常借助____________来估计某些随机事件发生的概率。用模拟方法可以在短时间内完成大量的重复试验,对于某些无法确切知道概率的问题,模拟方法能帮助我们得到其概率的近似值。 2.几何概型: (1)向平面上有限区域(集合)G内随机地投掷点M,若点M落在的概率与G1的成正比,而与G的、无关,即P(点M落在G1) = ,则称这种模型为几何概型。 (2)几何概型中G也可以是或的有限区域,相应的概率是或 。 二、合作探究 探究1:飞镖游戏:如图所示,规定射中红色区域表示中奖。 问题1:各个圆盘的中奖概率各是多少? 问题2:在区间[0,9]上任取一个整数,恰好取在区间[0,3]上的概率为多少? 问题3:在区间[0,9]上任取一个实数,恰好取在区间[0,3]上的概率为多少? 新知1:几何概型:如果每个事件发生的概率只与构成该事件区域的______________,____________或______________,则称这样的概率模型为几何概率模型,简称几何概型。几何概型的两个特点:(1)_______________性,(2)_________________性. 几何概型概率计算公式:

P(A)=____________________________________ ※ 典型例题 例1某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,求他等待的时间不多于10分钟的概率. 例2 如图,假设你在每个图形上随机撒一粒黄豆,则图1、图2落到阴影部分的概率分别为 ___________,__________. 例2、(选讲)在区间[-1,1]上任取两个数,则 (1)求这两个数的平方和不大于1的概率; (2)求这两个数的差的绝对值不大于1的概率。 例3 取一根长为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都大于1米的概率是_______. 三、当堂检测 1、平面上画了一些彼此相距a 2的平行线,把一枚半径为)(a r r 的硬币任意掷在这平面上

2019届一轮复习全国通用版 第59讲几何概型 学案

第59讲 几何概型 1.几何概型 如果事件发生的概率只与构成该事件区域的__长度(面积或体积)__成比例,而与A 的形状和位置无关则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的两个特点 一是__无限性__,即在一次试验中,基本事件的个数可以是无限的;二是__ 等可能性__,即每一个基本事件发生的可能性是均等的.因此,用几何概型求解的概率问题和古典概型的思路是相同的,同属于“比例解法”,即随机事件A 的概率可以用“事件A 包含的基本事件所占的__图形面积(体积、长度)__”与“试验的基本事件所占的__总面积(总体积、总长度)__”之比来表示. 3.在几何概型中,事件A 的概率的计算公式 P (A )=__构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)__. 4.几种常见的几何概型 (1)与长度有关的几何概型,其基本事件只与一个连续的变量有关. (2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本就构成了平面上的一个区域,即可借助平面区域解决问题; (3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题. 1.思维辨析(在括号内打“√”或“×”). (1)随机模拟方法是以事件发生的频率估计概率.( √ ) (2)相同环境下两次随机模拟得到的概率的估计值是相等的.( × ) (3)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ ) (4)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √ )

几何概型习题

E D O B A C 3.3 几何概型 重难点:掌握几何概型中概率的计算公式并能将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题. 考纲要求:①了解几何概型的意义,并能正确应用几何概型的概率计算公式解决问题. ②了解随机数的意义,能运用模拟方法估计概率. 经典例题:如图,60AOB ∠= ,2OA =,5OB =,在线段OB 上任取一点C , 试求:(1)AOC ?为钝角三角形的概率; (2)AOC ?为锐角三角形的概率. 当堂练习: 1.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85](g )范围内的概率是( ) A .0.62 B .0.38 C .0.02 D .0.68 2.在长为10 cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25 cm 2 与49 cm 2 之间的概率为( ) A . 310 B . 15 C . 25 D . 45 3.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( ) A .1 B . 216 C . 3 D . 14 4.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( ) A . 34 B . 38 C . 14 D . 18 5.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则 求两人会面的概率为( ) A .13 B . 49 C . 59 D . 710 6如图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为( ) A .2 π B . 1 π C . 23 D . 13

几何概型案例

《几何概型》教学案例 教学目标 一、知识与技能目标 (1)通过学生对几个几何概型的实验和观察,了解几何概型的两个特点。 (2)能识别实际问题中概率模型是否为几何概型。 (3)会利用几何概型公式对简单的几何概型问题进行计算。 二、过程与方法 让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会。 教学重点 几何概型的特点,几何概型的识别,几何概型的概率公式。 教学难点 建立合理的几何模型求解概率。 教学过程 一、创设情境引入新课 师:上节课我们共同学习了概率当中的古典概型,请同学们回想一下其中所包含的主要内容,并依据此举一个生活当中的古典概型的例子。 生甲:掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。 师:请同学们判断这个例子是古典概型吗?你判断的依据是什么? 生乙:是古典概型,因为此试验包含的基本事件的个数是有限个,并且每个基本事件发生的 可能性相等。 师:非常好,下面允许老师也举一个例子,请同学们作以判断。 如图:把一块木板平均分成四部分,小球随机的掉到木板上,求小球掉在阴影区 域内的概率。 生丙:此试验不是古典概型,因为此试验包含的基本事件的个数有无数多个。 师:非常好,此试验不是古典概型,由此我们可以看到,在我们的生活中确实 存在着诸如这样的不是古典概型的实际问题,因此我们有必要对这样的问题作进一步更加深入的学习和研究。今天这节课我们在学习了古典概型的基础上再来学习几何概型。那到底什

么是几何概型,它和古典概型有联系吗?在数学里又是怎样定义的呢?为此,我们接着来看刚才这个试验。 试验一 师:请同学们根据我们的生活经验回答此试验发生的概率是多少? 生丁:四分之一 师:很好,那你是怎样得到这个答案的呢? 生丁:就是用阴影的面积比上总面积。 师:非常好,下面我们再来看图中的右边这种情形,现在阴影的面积仍是总面积的四分之一,只不过阴影的形状及其位置发生了变化,那么此时小球落在阴影区域内的概率又是多少? 生丁:仍是四分之一,还是用阴影的面积比上总面积。 师:非常好,请坐。我们梳理一下我们刚才的发现。首先此试验所包含的基本事件的个数为无数多个,并且每个基本事件发生的可能性相等,而所求的概率就是用阴影的面积比上总面积,所以此概率仅与阴影的面及有关系,而与阴影的形状和位置并无关系。 试验二 在500ml的水中有一只草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率. 师:首先请同学们观察这个试验跟刚才那个试验有没有共同本质的东西。 生戊:此试验所包含基本事件的个数仍是无限多个,每个基本事件发生的可能行都相等。师:所求的概率是多少?

2019-2020学年高中数学 3.3《几何概型》导学案(2) 苏教版必修3.doc

2019-2020学年高中数学 3.3《几何概型》导学案(2)苏教版必修3 学习目标: (1)能运用模拟的方法估计概率,掌握模拟估计面积的思想; (2)增强几何概型在解决实际问题中的应用意识. 学习重点、难点: 将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题. 学习过程: 一、课前热身 【复习回顾】 1.几何概型的特点: ⑴、有一个可度量的几何图形S; ⑵、试验E看成在S中随机地投掷一点; ⑶、事件A就是所投掷的点落在S中的可度量图形A中. 2.几何概型的概率公式. 3.古典概型与几何概型的区别. 相同:两者基本事件的发生都是等可能的; 不同:古典概型要求基本事件有有限个, 几何概型要求基本事件有无限多个. 4.几何概型问题的概率的求解. (1)某公共汽车站每隔5分钟有一辆公共汽车通过,乘客到达汽车站的任一时刻都是等可能的,求乘客等车不超过3分钟的概率. (2)如图,假设你在每个图形上随机撒一粒黄豆,分别计算它落到阴影部分的概率. (3)某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会. 如果转盘停止时,指针正好对准红、黄或绿的区域,顾客就可以获得100元、50元、20元的购物券(转盘等分成20份)。甲顾客购物120元,他获得购物券的概率是多少?他得到100元、50元、20元的购物券的概率分别是多少? 二、数学运用

例1 在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率.("测度"为长度) 【分析】点M 随机地落在线段AB 上,故线段AB 为区域D .当点M 位于图335--中线段'AC 内时,AM AC <,故线段'AC 即为区域d . 例2、抛阶砖游戏 “抛阶砖”是国外游乐场的典型游戏之一.参与者只须将手 上的“金币”(设“金币”的直径为 r )抛向离身边若干距离的阶砖平面上,抛出的“金币”若恰好落在任何一个阶 砖(边长为a 的正方形)的范围内(不与阶砖相连的线重叠), 便可获奖.问:参加者获奖的概率有多大? 练习 :有一个半径为5的圆,现在将一枚半径为1硬币向圆投去,如果不考虑硬币完全落在圆外的情况,试求硬币完全落入圆内的概率. 例 3.甲、乙二人约定在 12 点到 17点之间在某地会面,先到者等一个小时后即离去设二人在这段时间内的各时刻到达是等可能的,且二人互不影响.求二人能会面的概率.

2019-2020学年高中数学 3.3.1几何概型学案 新人教A版必修3 .doc

2019-2020学年高中数学 3.3.1几何概型学案 新人教A 版必修3 一、自学要求: ①正确理解几何概型的定义,掌握几何概型的概率公式: ; ②会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概型的计算 二、自学过程: 1、 几何概型的定义: 如果每个事件发生的概率只与构成该事件区域的 ,则称这样的概率模型为 ,简称为 。 2、几何概型的特点: (1)试验中所有可能出现的基本事件有 (2)每个基本事件出现的 3、几何概型求事件A 的概率公式:P(A)= 4、古典概型与几何概型的区别: 基本事件的个数 基本事件的可能性 概率公式 古典概型 几何概型 三.课堂展示 例1、下列概率问题中哪些属于几何概型? ⑴从一批产品中抽取30件进行检查,有5件次品,求正品的概率。⑵箭靶的直径为1m ,其中,靶心的直径只有12cm ,任意向靶射箭,射中靶心的概率为多少?⑶随机地向四方格里投掷硬币50次,统计硬币正面朝上的概率。⑷甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时才可离去,求两人能会面的概率。(5)抛掷一颗骰子,求出现一个“4点”的概率;(6)如课本P132图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率。 例2:某公共汽车站每隔15分钟有一辆汽车到达,乘客到达车站的时刻是任意的,求一个乘客到达车 站后候车时间大于10 分钟的概率? 例3:.在地球上海洋占70.9%的面积,陆地占29.1%的面积,现在太空有一颗陨石正朝着地球的方向飞来,将落在地球的某一角.求陨石落在陆地的概率和落在我国国土内的概率(地球的面积约为5.1亿平方千米) 例4:(取水问题):有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率. 积)的区域长度(面积或体试验的全部结果所构成积) 的区域长度(面积或体构成事件A A P )(

几何概型教学设计 高二数学教案 人教版

几何概型教学设计 教学内容: 人教版《数学必修3》第三章第3.3.1节几何概型。 学情分析: 这部分是新增加的内容,介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的,随机模拟部分是本节的重点内容。几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个。 本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例2中的随机撒豆子的模型等,教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性。几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个;它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关。 教材的地位与作用: 概率的初步知识在初中已经介绍,在选修模块的系列2中还将继续学习概率的其他内容,因此,本章在高中阶段概率的学习中,起了承前启后的作用。 本章的核心是运用数学方法去研究不确定现象的规律,让学生初步形成用科学的态度、辩证的思想、随机的观念去观察、分析研究客观世界的态度,并获取认识世界的初步知识和科学方法;这对全面系统地掌握概率知识,对于学生辩证思想的进一步形成具有促进的作用。 教学目标: 知识与技能 了解几何概型的意义,会运用几何概型的概率计算公式,会求简单的几何概型事件的概率。 过程与方法 通过游戏、案例分析,学习运用几何概型的过程,初步体会几何概型的含义,体验几何概型与古典概型的联系与区别。 情感、态度与价值观 通过对几何概型的研究,感知生活中的数学,体会数学文化,培养学生的数学素养。 教学重点: 几何概型的特点,几何概型的识别,几何概型的概率公式。 教学难点: 将现实问题转化为几何概型问题,从实际背景中找几何度量。 教学过程: 一、复习引入 1、古典概型的两个基本特征是什么? 2、如何计算古典概型的概率?

高中数学测评 几何概型学案 新人教A版必修3

第6节 几何概型 1.两根相距6 m 的木杆上系一根绳子,并在绳子上挂盏灯,则灯与两端距离都大于2 m 的概率是( ) A. 12 B. 13 C. 14 D. 16 2.1升水中有1只微生物,任取0.1升水化验,则有微生物的概率为( ) A. 0.1 B. 0.2 C. 0.3 D. 0.4 3.在半径为1的半圆内,放置一个边长为 12的正方形ABCD,向半圆内任投一点,落在正方形内的概率为( ) A. 12 B. 14 C. 14π D. 12π 4.一个游戏盘上有四种颜色:红、黄、蓝、黑,并且它们所占面积的比为6∶2∶1∶4,则指针停在红色或蓝色的区域的概率为( ) A. 613 B. 713 C. 413 D. 1013 5.某公共汽车站每隔5分钟有一辆汽车到达,乘客到达汽车站的时刻是任意的,则一个乘客候车时间不超过3分钟的概率为( ) A. 15 B. 25 C. 35 D. 45 6.函数f(x)=x 2-x-2,x ∈[-5,5],那么任取一点x 0,使f(x 0)>0的概率为( ) A. 0.5 B. 0.6 C. 0.7 D. 0.8 7. (2009·辽宁)ABCD 为长方形,AB=2,BC=1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ) A. 4π B. 1-4π C. 8π D. 1-8 π 8. (2009·福建)点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为___________. 9.如图,在直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA.求射线OA 落在∠xOT 内的概率.

几何概型大题

3 4 5 6 停靠时 间 12 12 17 20 15 13 83 轮船 数量 (Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为a小时,求a的值; (Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠a小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率. 2.假设小明家订了一份报纸,送报人可能在早上6:30﹣7:30之间把报纸送到小明家,小明父亲离开家去工作的时间在早上7:00﹣8:00之间,问小明父亲在离开家前能得到报纸(称为事件A)的概率是多少 3.空气质量按照空气质量指数大小分为七档(五级),相对应空气质量的七个类别,指数越大,说明污染的情况越严重,对人体危害越大.

别 0~50 Ⅰ 优 可正常活动 51~100 Ⅱ 良 101~150 Ⅲ 轻微污染 易感人群症状有轻度加剧,健康人群出现刺激症状,心脏病和呼吸系统疾病患者应减少体积消耗 和户外活动. 151~200 轻度污染 201~250 Ⅳ 中度污染 心脏病和肺病患者症状显著加剧,运动耐受力降低,健康人群中普遍出现症状,老年人和心脏病、 肺病患者应减少体力活动. 251~300 中度重污染 301~500 Ⅴ 重污染 健康人运动耐受力降低,由明显强烈症状,提前出现某些疾病,老年人和病人应当留在室内,避免体力消耗,一般人群应尽量减少户外活动. 现统计邵阳市市区2016年10月至11月连续60天的空气质量指数,制成如图所示的频率分布直方图. (1)求这60天中属轻度污染的天数; (2)求这60天空气质量指数的平均值; (3)将频率分布直方图中的五组从左到右依次命名为第一组,第二组,…,第五组.从第一组和第五组中的所有天数中抽出两天,记它们的空气质量指数分别为x ,y ,求事件|x ﹣y|≤150的概率. 4.设有关于x 的一元二次方程x 2+ax+b 2=0. (1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;

古典概型与几何概型

古典概型与几何概型 古典概型与几何概型 【知识网络】 1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基 本事件数及事件发生的概率。 2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、 特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。 【典型例题】 [例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( ) A . 4 9 B .2 9 C .23 D .13 (2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6), 骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ( ) A . 6 1 B . 36 5 C . 12 1 D . 2 1 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形 的面积介于36cm 2与81cm 2之间的概率为 ( ) A . 56 B . 12 C .13 D . 16 (4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3 S ”的概率为 . (5)任意投掷两枚骰子,出现点数相同的概率为 . [例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。 [例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟, 过时即可离去.求两人能会面的概率.

相关主题
文本预览
相关文档 最新文档