当前位置:文档之家› 红外线遥控器的工作原理

红外线遥控器的工作原理

红外线遥控器的工作原理

红外线遥控器是一种广泛应用于家电控制和其他无线设备的遥控器。其工作原理基于红外线通信技术。下面将详细介绍红外线遥控器的工作原理。

红外线遥控器的工作原理主要涉及红外线的发射和接收过程。遥控器由发射器和接收器两部分组成。

发射器通常包含一颗红外线发射二极管(IR LED)和一个微

控制器。当我们按下遥控器上的按钮时,微控制器会发送相应的红外线编码信号。这个编码信号是一个特定序列的数字信号,其格式会根据遥控器的不同而不同。红外线发射二极管会根据这个编码信号发射红外线。

红外线是一种电磁辐射,波长在0.75至1000微米之间,处于

可见光和微波之间。在红外线通信中,我们通常使用的是近红外线(IR-A)范围的红外线,其波长在0.75至3微米之间。

这种红外线的特点是能够穿透空气,并避免对设备和人体产生光学损伤。

接收器部分通常由一个红外线接收二极管和一个解码器组成。当我们按下遥控器上的按钮时,发射的红外线会经过空气传播到被控设备的红外线接收二极管。红外线接收二极管会将接收到的红外线信号转化为电信号,并传输给解码器。

解码器会将电信号转化为与按键对应的数字编码。这个解码过程是通过对红外线信号进行解调和解码操作实现的。解调是指

将接收到的红外线信号进行滤波和放大,以获得稳定的电信号。解码是指将解调后的电信号进行数字化,并与预先设定的编码进行比较,以确定按下的是哪个按键。

一旦解码器确定了按下的是哪个按键,它就会通过连接到被控设备的红外线接口发送相应的控制指令。这个控制指令可以是开关设备、调节音量、切换频道等等。被控设备会根据接收到的指令进行相应的操作。

总结一下,红外线遥控器的工作原理是通过发射器发射特定编码的红外线信号,接收器接收并解码这个信号,将其转化为相应的控制指令发送给被控设备。这种工作原理使得红外线遥控器成为一种简单、方便的远程控制方式,在家电控制和其他无线设备中得到广泛应用。红外线遥控器是一种无线遥控设备,可以通过发射和接收红外线信号来实现远程控制。它是许多家用电器和其他电子设备中常见的控制方式之一。下面将继续介绍红外线遥控器的相关内容。

在红外线遥控器的设计中,发射器和接收器通常可以配对使用。发射器是遥控器的主要部分,其中包含一个红外线发射二极管(IR LED)和一个微控制器。微控制器负责生成红外线编码

信号并控制IR LED的发射。红外线发射二极管是专门设计用

来发射近红外线的光源。它可以在微控制器的控制下,以一定的频率和编码方式发射红外线信号。

接收器是被控设备中的一部分,它通常由一个红外线接收二极管和一个解码器组成。红外线接收二极管是一种能够将近红外

线信号转化为电信号的光电器件。当遥控器发射的红外线信号到达接收器时,红外线接收二极管会将其接收并转化为电信号。这个电信号随后经过解码器的处理,解码器将其转化为相应的数字编码,用于确定按下的是哪个按键。

红外线遥控器的工作原理基于红外线通信技术。红外线是一种电磁辐射,波长长于可见光,在光谱上位于红色的一侧。它是肉眼无法看见的,但可以被特定的光电器件感知和传输。在红外线遥控中,我们使用的是近红外线(IR-A)范围的红外线。这种红外线的波长在0.75至3微米之间,具有适度的穿透能力,能够穿透空气并在一定距离内传输信号。

红外线遥控器的工作过程可以简要描述为:当用户按下遥控器上的按钮时,微控制器会产生一个特定的红外线编码信号。红外线发射二极管接收到这个信号后,会以一定的频率和编码方式发射红外线。这个红外线信号在空气中传输,直到接收器中的红外线接收二极管接收到它。红外线接收二极管将其转化为电信号,并将其传输给解码器。解码器会将电信号解码为预先设定的数字编码,确定按下的是哪个按键。根据这个编码,解码器会发送相应的控制指令到被控设备,实现远程控制的功能。

红外线遥控器的工作原理主要涉及两个方面:红外线的发射和接收,以及信号的编码和解码。红外线的发射和接收是通过红外线发射二极管和红外线接收二极管完成的。这两个二极管都是光电器件,能够将红外线转化为电信号或将电信号转化为红外线。信号的编码和解码是通过遥控器中的微控制器和接收器中的解码器实现的。微控制器负责生成和控制红外线编码信号

的发射,解码器负责将接收到的红外线信号解码为数字编码。

红外线遥控器具有许多优点。首先,它具有无线控制的特性,无需与被控设备直接连接,使得控制更为方便灵活。其次,红外线可以穿透隔离物和光学透明物,不受遮挡,可以实现遥控信号的传输。此外,红外线遥控器的信号编码方式多样,具有一定的安全性,可以避免与其他红外线设备的干扰。

然而,红外线遥控器也存在一些局限性。首先,红外线的传输距离有限,通常在几米到十几米。其次,红外线通信对于环境光线的干扰较大。强烈的太阳光或其他光源可能对红外线信号的接收和解码造成干扰。此外,不同的遥控器之间使用的红外线编码方式可能不同,需要相应的解码器进行解码匹配。

综上所述,红外线遥控器是一种基于红外线通信技术的无线遥控设备,可以通过发射和接收红外线信号实现远程控制的功能。发射器通过红外线发射二极管发射红外线信号,接收器通过红外线接收二极管接收和解码红外线信号,将其转化为数字编码并发送相应的控制指令。红外线遥控器具有无线控制、适度穿透力、方便灵活等优点,被广泛应用于家电控制和其他无线设备中。

红外遥控器的基本原理

红外遥控器的基本原理 ?红外线的特点人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,红光的波长范围为0.62μm~0.7μm,比红光波长还长的光叫红外线。红外线遥控器就是利用波长0.76μm~1.5μm 之间的近红外线来传送控制信号的。 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。 红外线发射和接收 人们见到的红外遥控系统分为发射和接收两部分。发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光。 常用的红外发光二极管发出的红外线波长为 940nm 左右,外形与普通φ5mm 发光二极管相同,只是颜色不同。一般有透明、黑色和深蓝等三种。判断红外发光二极管的好坏与判断普通二极管一样的方法。单只红外发光二极管的发射功率约100mW。红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头。红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。

红外遥控器的协议 ?鉴于家用电器的品种多样化和用户的使用特点,生产厂家对红外遥控器进行了严格的规范编码,这些编码各不相同,从而形成不同的编码方式,统一称为红外遥控器编码传输协议。了解这些编码协议的原理,不仅对学习和应用红外遥控器是必备的知识,同时也对学习射频(一般大于300MHz)无线遥控器的工作原理有很大的帮助。 到目前为止,笔者从外刊收集到的红外遥控协议已多达十种,如: RC5、SIRCS、 S ON y、 RECS80、Denon、NEC、Motorola、Japanese、SAMSWNG 和 Daewoo 等。我国家用电器的红外遥控器的生产厂家,其编码方式多数是按上述的各种协议进行编码的,而用得较多的有 NEC协议。 红外遥控器的结构特征 ?红外遥控发射器由键盘矩阵、遥控专用集成电路、激励器和红外发光二极管组成。遥控专用集成电路(采用 AT89S52 单片机)是发射系统的核心部分,其内部由振荡电路、定时电路、扫描信号发生器、键输入编码器、指令译码器、用户码转换器、数码调制电路及缓冲放大器等组成。它能产生键位扫描脉冲信号,并能译出按键的键码,再经遥控指令编码器得到某键位的遥控指令(遥控编码脉冲),由 38KHZ 的载波进行脉冲幅度调制,载有遥控指令的调制信号激励红外二极管发出红外遥控信号。 在红外接收器中,光电转换器件(一般是光电二极管或光电三极管,我们这里用的是 PIN 光电二极管)将接收到的红外光指令信号转换成相应的电信号。此时的信号非常微弱而且干扰特别大,为了实现对信号准确的检测和转换,除了高性能的红外光电转换器件,还应合理地选择并设计性能良好的电路形式。最常用的

红外遥控工作原理

红外遥控工作原理 红外遥控是一种利用红外线进行信号传输的遥控技术,它的应用范围非常广泛,例如电视、空调、音响等设备的遥控。本文将介绍红外遥控的工作原理。 一、红外线的特性 红外线是一种电磁辐射,它的频率范围位于可见光之下,但高于无线电波。红外线具有一些独特的特性,这些特性使得红外线在遥控通信中具有优势。 1、可见光和红外线的关系 可见光和红外线都是电磁波,但它们的波长和频率不同。可见光的波长范围是400-700纳米,而红外线的波长范围是750-1000纳米。由于波长不同,可见光和红外线在传输过程中的行为也不同。可见光可以被物体反射,而红外线则能够穿透一些物体。 2、红外线的穿透性 红外线的波长较长,因此它能够穿透一些物体,如玻璃、塑料等。这种特性使得红外线在遥控通信中具有优势,因为遥控器和接收器之间

的遮挡物不会影响遥控信号的传输。 3、红外线的安全性 红外线不像可见光一样刺眼,因此使用红外线进行遥控通信不会对人的眼睛造成伤害。此外,由于红外线的波长较长,它的能量较低,因此使用红外线进行遥控通信不会对其他电子设备产生干扰。 二、红外遥控的通信过程 红外遥控的通信过程可以分为三个步骤:发送、传输和接收。 1、发送 遥控器通过按下按钮等操作发出信号。这个信号经过编码处理,然后通过红外发射器发射出去。红外发射器将编码后的信号转化为红外光信号,通过空气传输到接收器。 2、传输 在传输阶段,红外光信号通过空气传输到接收器。由于红外线的波长较长,它的能量较低,因此在这个过程中不会受到其他电磁波的干扰。 3、接收

接收器接收到红外光信号后,将其转化为电信号,并进行解码处理。解码后的信号通过接口传递给被控制的设备,实现遥控操作。 三、总结 红外遥控是一种利用红外线进行信号传输的遥控技术。它的优势在于具有穿透性、安全性和抗干扰能力强等特点。在遥控通信过程中,遥控器通过按下按钮等操作发出信号,并将信号编码为红外光信号进行传输。接收器接收到信号后进行解码处理,并将解码后的信号传递给被控制的设备,实现遥控操作。这种技术在许多领域都有广泛应用,例如电视、空调、音响等设备的遥控。 随着科技的不断发展,红外遥控技术广泛应用于各种电器设备中,为我们的生活带来了极大的便利。然而,由于不同设备采用的红外遥控协议可能存在差异,因此开发一种基于单片机的红外遥控开关控制器,具有很高的实用价值。本文将介绍一种基于单片机的红外遥控开关控制器设计方案。 在单片机的基础上设计红外遥控开关控制器,首先要选取合适的单片机型号。考虑到通用性和易用性,我们选用常见的STM32F103C8T6单片机。该单片机具有丰富的I/O端口,适合红外遥控开关控制器的开

红外线遥控器的工作原理

红外线遥控器的工作原理 红外线遥控器是我们日常生活中常见的一种电子设备,广泛应用于电视、空调、音响等家电产品中。它通过发射和接收红外线信号来实现对家电的远程控制。本文将详细介绍红外线遥控器的工作原理。 一、发射模块 红外线遥控器中的发射模块是实现遥控功能的核心部件。发射模块由红外发射二极管、驱动电路和控制芯片组成。 1. 红外发射二极管:红外发射二极管是一种半导体器件,可以在电流通过的作用下发射红外线信号。它的发射频率通常在30kHz至 60kHz之间,能够覆盖红外光谱中的红外区域。 2. 驱动电路:驱动电路是指红外发射二极管的电流驱动电路,通过对发射二极管施加适当的电压和电流,使其工作在合适的发射频率范围内。驱动电路中通常包含晶振、稳压电路和功率放大电路等。 3. 控制芯片:控制芯片是红外线遥控器的主控部分,它负责解析遥控器按键的输入信号,并将相应的红外指令发送给发射模块。控制芯片内部存储有遥控器所支持的不同设备的红外指令码,通过按键输入和红外指令码的匹配,控制芯片能够实现对家电设备的具体操作。 二、接收模块

红外线遥控器的接收模块用于接收远程发送的红外信号,并将其解 码成对应的指令。接收模块一般由红外接收二极管、解码电路和传输 电路组成。 1. 红外接收二极管:红外接收二极管是一种特殊的光电传感器,它 能够接收红外线信号,并将其转换成电信号输出给解码电路。红外接 收二极管的特点是只能接收特定频率范围内的红外信号,因此能够过 滤掉其他频率的干扰信号。 2. 解码电路:解码电路是对接收到的红外信号进行解码和处理的电 路部分。接收到的红外信号首先经过滤波电路进行初步处理,去除可 能存在的噪音和干扰信号。然后进入解码电路,解码电路根据事先设 定的解码协议和信号特征,将接收到的红外信号解析为具体的指令码。 3. 传输电路:传输电路负责将解码后的指令发送给被控设备,从而 实现对设备的控制。传输电路根据解码后的指令码,通过与被控设备 的通信协议进行通信,将指令传输给被控设备。 三、工作原理 红外线遥控器的工作原理可简单概括为:通过按下遥控器上的按键,发送指令信号给被控设备。具体的工作流程如下: 1. 用户按下遥控器上的按键,触发按键开关,使控制芯片产生相应 的控制信号。 2. 控制信号送入发射模块,经过控制芯片的解码和校验,生成对应 的红外指令码。

红外遥控器原理

红外遥控器原理 红外遥控器是一种常见的无线遥控电子设备,它可以通过使用红外线信号与目标设备进行通信,从而实现遥控对其进行操作。一般情况下,红外遥控器可以用于电视、音响、机顶盒等电器设备的远程操作。本文将会详细地阐述红外遥控的原理、工作原理以及使用方法。 红外遥控的基本原理是采用红外光作为通信载体,通过以不同的编码方式将信号进行传输,实现遥控目标设备。红外遥控器使用的编码方式可以是固定编码、学习编码和编码识别三种。固定编码指的是遥控器和设备之间的编码是预先设置好的,一般情况下使用遥控器和设备品牌一致的固定编码方式。而学习编码是指遥控器可以通过学习设备的编码来实现操作。编码识别则是指一种技术,通过识别无线信号的编码格式来实现遥控目标设备。 红外遥控系统由两个基本组成部分组成:发送器和接收器。发送器是指放置在遥控器内部的电路板,用于发送红外光信号;接收器是指放置在被遥控的设备中的电路板,用于接收红外光信号并转化为相应的控制信号。 在遥控器按下指令键时,发送器会产生一个包含特定编码的红外光信号。这个信号会被发射出去,并被接收器接收后进行解码。接收器先通过红外光探测器接收信号,然后将其传递到解码器进行解码,得到与编码相对应的指令信号。然后控制器会将相应的指令发送到设备内部的电路板,使设备发生相应的控制操作。 三、红外遥控的使用方法 1.使用红外遥控器前需要先将遥控器与设备进行配对。通常情况下,这一过程是由遥控器中的按键自带的配对代码完成的。 2.当需要进行遥控操作时,准确地按下遥控器上所需操作的按键。这就会产生对应的红外信号,通过空气中传输到设备接收器处,被设备内部电路板接收并执行相应指令。一般红外遥控器都有一定的有效距离,在使用时需要注意距离和方向的选择。 3.如若发生无法操作设备,请先检查遥控器电池是否正常,以及接收器处是否有遮挡物。 总结:红外遥控技术是现代家庭电器中不可或缺的一部分,它大大方便了人们控制电器设备。红外遥控技术的应用范围也越来越广泛,不仅仅局限于家庭电器、电子产品,还被应用到了无人机、智能家居和医疗设备等领域。下面,我们将更深入地介绍红外遥控技术的应用。 一、家庭电器领域

红外线遥控器的工作原理

红外线遥控器的工作原理 红外线遥控器是一种广泛应用于家电控制和其他无线设备的遥控器。其工作原理基于红外线通信技术。下面将详细介绍红外线遥控器的工作原理。 红外线遥控器的工作原理主要涉及红外线的发射和接收过程。遥控器由发射器和接收器两部分组成。 发射器通常包含一颗红外线发射二极管(IR LED)和一个微 控制器。当我们按下遥控器上的按钮时,微控制器会发送相应的红外线编码信号。这个编码信号是一个特定序列的数字信号,其格式会根据遥控器的不同而不同。红外线发射二极管会根据这个编码信号发射红外线。 红外线是一种电磁辐射,波长在0.75至1000微米之间,处于 可见光和微波之间。在红外线通信中,我们通常使用的是近红外线(IR-A)范围的红外线,其波长在0.75至3微米之间。 这种红外线的特点是能够穿透空气,并避免对设备和人体产生光学损伤。 接收器部分通常由一个红外线接收二极管和一个解码器组成。当我们按下遥控器上的按钮时,发射的红外线会经过空气传播到被控设备的红外线接收二极管。红外线接收二极管会将接收到的红外线信号转化为电信号,并传输给解码器。 解码器会将电信号转化为与按键对应的数字编码。这个解码过程是通过对红外线信号进行解调和解码操作实现的。解调是指

将接收到的红外线信号进行滤波和放大,以获得稳定的电信号。解码是指将解调后的电信号进行数字化,并与预先设定的编码进行比较,以确定按下的是哪个按键。 一旦解码器确定了按下的是哪个按键,它就会通过连接到被控设备的红外线接口发送相应的控制指令。这个控制指令可以是开关设备、调节音量、切换频道等等。被控设备会根据接收到的指令进行相应的操作。 总结一下,红外线遥控器的工作原理是通过发射器发射特定编码的红外线信号,接收器接收并解码这个信号,将其转化为相应的控制指令发送给被控设备。这种工作原理使得红外线遥控器成为一种简单、方便的远程控制方式,在家电控制和其他无线设备中得到广泛应用。红外线遥控器是一种无线遥控设备,可以通过发射和接收红外线信号来实现远程控制。它是许多家用电器和其他电子设备中常见的控制方式之一。下面将继续介绍红外线遥控器的相关内容。 在红外线遥控器的设计中,发射器和接收器通常可以配对使用。发射器是遥控器的主要部分,其中包含一个红外线发射二极管(IR LED)和一个微控制器。微控制器负责生成红外线编码 信号并控制IR LED的发射。红外线发射二极管是专门设计用 来发射近红外线的光源。它可以在微控制器的控制下,以一定的频率和编码方式发射红外线信号。 接收器是被控设备中的一部分,它通常由一个红外线接收二极管和一个解码器组成。红外线接收二极管是一种能够将近红外

红外遥控原理

很多电器都采用红外遥控,那么红外遥控的工作原理是什么呢?首先我们来看看什么是红外线。 人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。比紫光波长还短的光叫紫外线,比红光波长还长的光叫红外线。 红外线遥控就是利用波长为0.76~1.5μm之间的近红外线来传送控制信号的。 常用的红外遥控系统一般分发射和接收两个部分。 发射部分的主要元件为红外发光二极管。它实际上是一只特殊的发光二极管,由于其内部材料不同于普通发光二极管,因而在其两端施加一定电压时,它便发出的是红外线而不是可见光。 目前大量使用的红外发光二极管发出的红外线波长为940nm左右,外形与普通5发光二极管相同,只是颜色不同。 红外发光二极管一般有黑色、深蓝、透明三种颜色。 判断红外发光二极管好坏的办法与判断普通二极管一样:用万用表电阻挡量一下红外发光二极管的正、反向电阻即可。 红外发光二极管的发光效率要用专门的仪器才能精确测定,而业余条件下只能用拉距法来粗略判定。接收部分的红外接收管是一种光敏二极管。 在实际应用中要给红外接收二极管加反向偏压,它才能正常工作,亦即红外接收二极管在电路中应用时是反向运用,这样才能获得较高的灵敏度。 红外接收二极管一般有圆形和方形两种。 由于红外发光二极管的发射功率一般都较小(100mW左右),所以红外接收二极管接收到的信号比较微弱,因此就要增加高增益放大电路。 前些年常用μPC1373H、CX20106A等红外接收专用放大电路。最近几年不论是业余制作还是正式产品,大多都采用成品红外接收头。 成品红外接收头的封装大致有两种:一种采用铁皮屏蔽;一种是塑料封装。均有三只引脚,即电源正(VDD)、电源负(GND)和数据输出(VO或OUT)。红外接收头的引脚排列因型号不同而不尽相同,可参考厂家的使用说明。成品红外接收头的优点是不需要复杂的调试和外壳屏蔽,使用起来如同一只三极管,非常方便。但在使用时注意成品红外接收头的载波频率。 红外遥控常用的载波频率为38kHz,这是由发射端所使用的455kHz陶振来决定的。 在发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9 kHz≈38kHz。也有一些遥控系统采用36kHz、40kHz、56kHz等,一般由发射端晶振的振荡频率来决定。 红外遥控的特点是不影响周边环境、不干扰其它电器设备。由于其无法穿透墙壁,故不同房间的家用电器可使用通用的遥控器而不会产生相互干扰;电路调试简单,只要按给定电路连接无误,一般不需任何调试即可投入工作;编解码容易,可进行多路遥控。 由于各生产厂家生产了大量红外遥控专用集成电路,需要时按图索骥即可。因此,现在红外遥控在家用电器、室内近距离(小于10米)遥控中得到了广泛的应用。 多路控制的红外遥控系统多路控制的红外发射部分一般有许多按键,代表不同的控制功能。当发射端按下某一按键时,相应地在接收端有不同的输出状态。

红外线遥控器的原理

红外线遥控器的原理 红外线遥控器是一种常用的遥控设备,可以控制家电、汽车等设备。它的工作原理是利用红外线传输数据信号,使接收器接收到信号后执行相应的操作。 红外线 红外线是一种电磁波。它的波长较长,无法被人眼所看见,但可以被红外线接收器感知。红外线是一种常见的通信方式,常用于遥控器、无线键盘、无线鼠标等设备。 遥控器的工作原理 遥控器内置有一个发射器,发射出一定频率的红外线信号。接收器则接收到这个红外信号之后,识别出信号中的数据信息,并执行相应的操作。 遥控器发射器通过电路控制红外线二极管发射出红外线。信号由二极管内部的电路产生,然后通过二极管转化为红外线信号发射出去。因为红外线的传输距离比较短,所以红外线遥控器通常被设计成使用电池供电,这样可以更方便地携带和使用。 接收端主要由一颗红外线接收器和一颗解码器芯片组成。当接收器接收到红外线信号后,解码器芯片将会对这个信号进行解码,解码出信号中的数据信息,并将其进行转换和处理,然后将操作信号传输给被控制的设备。这样就完成了遥控器对被控制设备的操作。 红外线遥控器的优缺点 和其他通信方式相比,红外线遥控器有以下优缺点: 优点 1.通信速度快 - 这种遥控器可以实现即时通信,保证了用户能够快速地 操纵被控制的设备,提高了用户的使用体验。 2.成本低廉 - 使用红外线通信方式的设备通常价格比较低,这使得该种 设备在市场上较为流行。 3.安全可靠 - 红外线的传输距离非常有限,所以可以避免一些非法用户 或干扰信号的干扰因素,从而提高了系统的安全性和可靠性。 缺点 1.传输距离有限 - 红外线只能在一定范围内传输信号,如果超出这个范 围,信号会丢失或变得不稳定。

红外遥控技术的原理及应用

红外遥控技术的原理及应用 一、红外遥控技术的原理 1. 红外辐射原理 红外辐射是指电磁波在电磁谱中位于可见光之外的一段波长范围。红外辐射具 有较高的穿透能力,能够穿过物体并被物体吸收、反射或透射。红外光的波长范围通常为0.7至1000微米。 2. 红外遥控技术的工作原理 红外遥控技术通过利用红外辐射的特性,将遥控信号编码传输,实现设备之间 的无线控制。其工作原理如下: - 发射器发射:遥控器通过红外LED发射器发射 红外信号; - 信号编码:遥控器通过对按键进行编码,将不同功能的信号区分发送;- 信号传输:红外信号传输到接收器,并经过解码; - 控制设备响应:接收器解码 后将信号传递给被控设备,使之执行相应的功能。 二、红外遥控技术的应用 1. 家电遥控 红外遥控技术广泛应用于各类家电产品,如电视机、空调、音响、DVD播放器等。用户可以通过遥控器进行操作,方便快捷。 2. 汽车遥控 红外遥控技术也被应用于汽车的遥控功能。用户可以通过遥控器锁定、解锁汽车,控制车内音响、空调等功能。 3. 安防监控 红外遥控技术在安防监控领域得到广泛应用。通过红外遥控技术,用户可以通 过遥控器控制安防摄像机进行转动、对焦等操作。 4. 医疗设备 红外遥控技术在医疗设备中有着重要的应用,如远程控制医疗器械、控制医疗 设备参数等。 5. 工业自动化 在工业自动化领域,红外遥控技术也有着广泛的应用。通过红外遥控技术,可 以远程控制机器设备的操作以及监测设备的状态。

6. 智能家居 红外遥控技术是智能家居的重要组成部分。用户可以通过智能遥控器将灯光、窗帘、电器等设备进行集中控制,提高居住的便利性和舒适度。 7. 电子游戏 红外遥控技术在电子游戏中也有着重要的应用。通过红外遥控器,玩家可以进行游戏操作,享受更好的游戏体验。 三、总结 红外遥控技术通过利用红外辐射的特性,实现无线控制设备的功能。它广泛应用于各个领域,如家电遥控、汽车遥控、安防监控、医疗设备、工业自动化、智能家居和电子游戏等。随着科技的不断进步和创新,红外遥控技术在未来的应用领域还将不断拓展和发展。

红外遥控基本原理

红外遥控基本原理 红外遥控是一种利用红外光信号进行远程控制的技术。它广泛应用于 家用电器、汽车、电视、空调、音响等各种电子产品中。红外遥控的基本 原理是通过发射器发送编码信号,然后通过接收器接收并解码,最后执行 相应的控制操作。下面将详细介绍红外遥控的基本原理。 首先,红外遥控使用的是红外光信号进行通信。红外光指的是波长在 红色光波和微波之间的电磁辐射。这种光在人眼中是看不见的,但是可以 通过红外线接收器接收和解码。 其次,红外遥控器由发射器和接收器两部分组成。发射器包含一个红 外光发射二极管,通过正弦波振荡器产生的高频信号驱动二极管发射红外 光信号。接收器则包含一个红外光接收二极管和一个解码器。当红外光信 号照射到接收二极管上时,它会产生微弱的电流信号,然后经过放大和解 码处理,最后输出对应的控制信号。 在发射器中,红外光发射二极管的工作原理是利用泊松效应。当二极 管正向偏置时,电子从n型半导体区域向p型半导体区域注入,同时空穴 从p型半导体区域向n型半导体区域注入。由于p型区域的空穴浓度远大 于n型区域的电子浓度,所以注入的空穴会很快与n型区域中的电子复合,从而产生光子。这些光子就是红外光信号。 在接收器中,红外光接收二极管的工作原理是利用肖特基势垒效应。 当二极管反向偏置时,形成一个势垒,当红外光照射到二极管上时,它会 产生电子和空穴对,并受到势垒的作用,使得电子和空穴无法再次结合。 这样就形成了一个电流,称为光电流,用来表示红外光信号的强度。

然后,在接收器中,解码器的作用是将接收到的红外光信号解码为对应的控制信号。解码器通常由红外光接收二极管、放大器、滤波器和解码器组成。红外光接收二极管接收到红外光信号后,产生微弱电流信号,然后经过放大器放大,再经过滤波器滤除杂波干扰,最后经过解码器解码成相应的控制信号。 最后,解码器会将解码后的控制信号输出给电子产品的处理器或者相关电路,来执行相应的操作。这个控制信号可以包含很多信息,比如按键信息、模式信息、音量信息等等,电子产品会根据不同的信息来执行不同的操作。 总结起来,红外遥控的基本原理是通过发射器发射红外光信号,然后通过接收器接收并解码,最后输出对应的控制信号。红外光发射二极管通过泊松效应产生红外光信号,红外光接收二极管通过肖特基势垒效应产生光电流信号。解码器则将接收到的红外光信号解码成相应的控制信号,并输出给电子产品的处理器或者相关电路来执行相应的操作。这就是红外遥控的基本原理。

遥控器工作原理

遥控器工作原理 遥控器是一种电子设备,它可以通过无线通信方式控制其他设备的操作。遥控器的工作原理基于红外线通信技术,下面将详细介绍遥控器的工作原理。 一、红外线通信技术 红外线通信技术是一种通过红外线传输信息的无线通信技术。它利用红外线的特性,可以在没有线缆连接的情况下实现设备之间的通信。在遥控器中,红外线被用作传输命令和数据的介质。 二、遥控器的组成部分 1. 发射器:遥控器的发射器是一个红外线发射二极管。当按下遥控器上的按钮时,发射器会发射一系列红外脉冲信号。每个按钮对应一个特定的红外脉冲编码,用于区分不同的操作命令。 2. 接收器:被控制的设备上装有一个红外线接收器,用于接收遥控器发射的红外脉冲信号。接收器接收到红外信号后,会将其转换为电信号,并传递给设备的控制电路。 3. 控制电路:设备上的控制电路负责解析接收到的红外信号,并根据信号的编码执行相应的操作。控制电路通常由微处理器或专用芯片组成,它能够识别不同的红外编码,并将其转化为设备的操作指令。 三、遥控器的工作过程 1. 按下按钮:当用户按下遥控器上的按钮时,按钮会闭合电路,使电流流经发射器。 2. 发射红外信号:电流流经发射器时,发射器会产生一系列的红外脉冲信号。每个按钮对应一个特定的红外编码,这些编码被编程到遥控器的控制芯片中。

3. 红外信号传输:发射器发出的红外信号会以无线方式传输到被控制设备上的 红外接收器。 4. 信号接收:被控制设备上的红外接收器接收到红外信号后,将其转换为电信号,并传递给设备的控制电路。 5. 信号解析:设备的控制电路会解析接收到的红外信号,并根据信号的编码执 行相应的操作。例如,如果接收到的编码是音量增加的命令,控制电路会将音量增加的指令发送给设备的音频控制电路。 6. 设备操作:设备根据控制电路发送的指令执行相应的操作。例如,如果接收 到的指令是音量增加,设备会将音量调高。 四、遥控器的应用 遥控器广泛应用于各种电子设备,包括电视机、空调、音响、DVD播放器等。它们通过红外线通信技术实现了用户与设备之间的无线控制,提供了便利和舒适的用户体验。 总结: 遥控器是一种基于红外线通信技术的电子设备,可以通过无线方式控制其他设 备的操作。它由发射器、接收器和控制电路组成。当用户按下按钮时,发射器会发射红外脉冲信号,被控制设备上的接收器接收到信号后,将其转换为电信号,并传递给设备的控制电路。控制电路解析信号并执行相应的操作。遥控器的应用广泛,可以控制电视机、空调、音响等各种电子设备,为用户提供了便利和舒适的使用体验。

电视遥控器红外线原理

电视遥控器红外线原理 电视遥控器是我们日常生活中常用的电子设备之一。它通过无线红外线技术来实现与电视之间的通信和控制。本文将深入探讨电视遥控器红外线原理的工作流程以及其在电子设备中的应用。 一、红外线的介绍 红外线是一种电磁辐射,其波长范围在700纳米至1毫米之间。与可见光相比,红外线的波长更长,无法被人眼直接看到。然而,许多电子设备都能感知和利用红外线的特性。 二、电视遥控器的工作原理 1. 发射端 电视遥控器的发射端包含了一个红外发射二极管(IR LED),它被用来发射红外线信号。当我们按下遥控器上的按钮时,相应的按键电路会给红外发射二极管提供电流,使其发射脉冲的红外线信号。 2. 接收端 电视机上的接收端包含了一个红外接收二极管(IR Receiver)。当红外线信号到达接收端时,红外接收二极管会接收并将其转化为电信号。然后,这些电信号经过一系列处理和解码,最终被传递给电视机的主板。 三、电视遥控器红外线信号编码

为了实现不同按键对应不同功能的控制,电视遥控器需要将每个按 键输入映射为特定的红外线编码。这通常通过红外线编码器来实现。 红外线编码器将不同按键的信号转化为特定的红外线编码序列,以 便电视机能够正确地识别并执行相应的操作。常见的红外线编码协议 包括NEC、RC-5、RC-6等,每个协议都有自己特定的编码格式和解码规则。 四、电视遥控器的应用 除了在电视机上,电视遥控器的原理和技术也被广泛应用在其他电 子设备上。例如空调遥控器、音频设备遥控器、家电遥控器等。这些 设备通常采用类似的红外线原理,使用红外线信号进行通信和控制。 电视遥控器的优势在于它的方便性和灵活性。通过遥控器,我们可 以在不需要亲身接触电子设备的情况下,轻松控制它们的各种功能。 这极大地提高了我们的生活便利性。 总结: 电视遥控器通过红外线技术实现了人机交互和设备控制。发射端的 红外发射二极管发射红外线信号,接收端的红外接收二极管接收并转 化为电信号。红外线编码器将按键信号编码为特定的红外线编码序列,以实现不同按键对应不同功能的控制。电视遥控器的应用不仅限于电 视机,还广泛应用于其他电子设备上,为我们的生活带来了便利。通 过深入了解电视遥控器红外线原理,我们能更好地理解和使用这一技术。

红外遥控器的基本原理

红外遥控器的基本原理 红外线的特点人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,红光的波长范围为0.62μm~0.7μm,比红光波长还长的光叫红外线。红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。 红外线发射和接收 人们见到的红外遥控系统分为发射和接收两部分。发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光。 常用的红外发光二极管发出的红外线波长为940nm 左右,外形与普通φ5mm 发光二极管相同,只是颜色不同。一般有透明、黑色和深蓝等三种。判断红外发光二极管的好坏与判断普通二极管一样的方法。单只红外发光二极管的发射功率约100mW。红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头。红外线一体化接收头是集红外接收、放大、滤波和比较器输出

等的模块,性能稳定、可靠。所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。 红外遥控器的协议 ∙鉴于家用电器的品种多样化和用户的使用特点,生产厂家对红外遥控器进行了严格的规范编码,这些编码各不相同,从而形成不同的编码方式,统一称为红外遥控器编码传输协议。了解这些编码协议的原理,不仅对学习和应用红外遥控器是必备的知识,同时也对学习射频(一般大于300MHz)无线遥控器的工作原理有很大的帮助。 到目前为止,笔者从外刊收集到的红外遥控协议已多达十种,如:RC5、SIRCS、S ON y、RECS80、Denon、NEC、Motorola、Japanese、SAMSWNG 和Daewoo 等。我国家用电器的红外遥控器的生产厂家,其编码方式多数是按上述的各种协议进行编码的,而用得较多的有NEC协议。 红外遥控器的结构特征 ∙红外遥控发射器由键盘矩阵、遥控专用集成电路、激励器和红外发光二极管组成。遥控专用集成电路(采用AT89S52 单片机)是发射系统的核心部分,其内部由振荡电路、定时电路、扫描信号发生器、键输入编码器、指令译码器、用户码转换器、数码调制电路及缓冲放大器等组成。它能产生键位扫描脉冲信号,并能译出按键的键码,再经遥控指令编码器得到某键位的遥控指令(遥控编码脉冲),由38KHZ 的载波进行脉冲幅度调制,载有遥控指令的调制信号激励红外二极管发出红外遥控信号。

红外线遥控原理

红外线遥控原理 1、红外遥控系统 通用红外遥控系统由发射和接收两大部分组成,应用编/解码专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。图1 2、遥控发射器及其编码 遥控发射器专用芯片很多,根据编码格式可以分成脉冲宽度调制和脉冲相位调制两大类。 编码原理:日本NEC的UPD6121G 当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。 这种遥控码具有以下特征: 1) 采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组 合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表 示二进制的“1”。图2 2) 上述“0”和“1”组成的42位二进制码经38kHz的载频进行二次调制以提高发射效率, 达到降低电源功耗的目的。然后再通过红外发射二极管(二极管HSR7021-2.3-21)产生红外线向空间发射图3 图3遥控型号编码波形图 3)UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码, 能区别不同的电器设备,防止不同机种遥控码互相干扰。该芯片的用户识别码固定 为十六进制01H;后16位为8位操作码(功能码)及其反码。UPD6121G最多额 128种不同组合的编码。 4)遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。一

组码本身的持续时间随它包含的二进制“0”和“1”的个数不同而不同,大约在45~63ms之间,图4。 图4遥控信号的周期性波形 5)当一个键按下超过36ms,振荡器使芯片激活,将发射一组108ms的编码脉冲,这 108ms发射代码由一个起始码(9ms),一个结束码(4.5ms),低8位地址码(9ms~18ms),高8位地址码(9ms~18ms),8位数据码(9ms~18ms)和这8位数据的反码(9ms~18ms)组成。如果键按下超过108ms仍未松开,接下来发射的代码(连发代码)将仅由起始码(9ms)和结束码(2.5ms)组成。 代码格式(以接收代码为准,接收代码与发射代码反向) ①位定义 ②单发代码格式

相关主题
文本预览
相关文档 最新文档