当前位置:文档之家› 生理学实验 神经干动作电位的测定

生理学实验 神经干动作电位的测定

生理学实验   神经干动作电位的测定
生理学实验   神经干动作电位的测定

实验四 神经干动作电位的测定

【实验目的】

学习生物电活动的细胞外记录法;观察坐骨神经干动作电位的基本波形、潜伏期、幅值 以及时程。

【实验原理】

神经组织属于可兴奋组织,其兴奋的客观标志是产生动作电位,即当受到有效刺激时, 膜电位在静息电位的基础上将发生一系列的快速、可逆、可扩布的电位变化。

动作电位可以沿着神经纤维传导。在神经细胞外表面,已兴奋的部位带负电,未兴奋的 部位带正电。 采用电生理学实验方法可以引导出此电位差或电位变化, 根据引导的方式不同, 所记录到的动作电位可呈现单向或双向的波形。

由于坐骨神经干是由许多神经纤维组成的, 所以其产生的动作电位是众多神经纤维动作 电位的叠加,即为一个复合动作电位。这些神经纤维的兴奋性是不同的,所以在一定范围内 增大刺激强度可以使电位幅度增大。这和单一细胞产生的动作电位是有区别的。本实验所引 导出的动作电位即为坐骨神经干的复合动作电位。

【实验对象】

蛙或蟾蜍。

【实验材料】

两栖类手术器械 1 套、滴管、BL-410生物机能实验系统、神经屏蔽盒、刺激电极、接 收电极、任氏液。

【实验步骤】

1. 制备坐骨神经干标本

坐骨神经干标本的制备方法与制备坐骨神经-腓肠肌标本相似。首先按照制备坐骨神经- 腓肠肌标本的方法分离坐骨神经, 当游离至膝关节处时, 在腓肠肌两侧找到胫神经和腓神经, 任选其一剪断,然后分离留下的一支直至足趾并剪断。保留与坐骨神经相连的一小段脊柱, 其余组织均剪除。此时,即制成了坐骨神经干标本。将标本浸于任氏液中,待其兴奋性稳定 后开始实验。

2.接标本与实验仪器

1)棉球沾任氏液擦拭神经标本屏蔽盒内的电极,将标本的脊柱端置于屏蔽盒的刺激电

(图 4-1 屏蔽盒)

极端(即 0刻度端),其神经部分横搭在各个电极上。

2)取出 BL-410 生物机能实验系统专用刺激电极,将其插头插在与主机“刺激”插口 中, 另一端的两个鳄鱼夹分别夹在屏蔽盒左侧的两个刺激接口上。 红色接正极, 黑色接负极。 保持两鳄鱼夹的间距为 1cm。

3)取出 BL-410 生物机能实验系统专用生物电信号引导电极。引导电极的一端是一个5 芯插口,将该插口与主机的 1 通道相连;另一端有三个不同颜色的鳄鱼夹,其中黑色的夹子 用于接地,夹在屏蔽盒的接地接口上并和屏蔽盒本身的接地鳄鱼夹相对应的接在同一电极 上;红色的夹子引导正电信号,黄色的夹子引导负电信号,分别夹在屏蔽盒的两个接收电极 接口上(红、黄鳄鱼夹的连接位置可以任选,但要保证间距为 1cm,且所接的电极上搭有神

经) 。 (图 4-2 引导电极)

3.打开计算机,进入 BL-410 生物机能实验系统,开始实验数据的采集

1)菜单条中点击“实验项目”按钮,在“肌肉神经实验”中选择“神经干动作电位的 ,进入该实验模块。此时,1 通道的信号类型位置已标注为“动作电位” 。

引导”

2)观察双向动作电位:在窗口下方刺激器栏中将刺激类型定为“单刺激” ,强度定为 “1.5V” ,之后单击右侧的“启动/停止刺激”按钮,此时在 1 通道中可观察到一个刺激伪迹 和随后出现的双向动作电位。此双向动作电位的第一相和第二相的方向相反(先上后下), 注意两者是否对称。

3)观察单向动作电位:用一小块浸有高浓度 KCl 溶液的滤纸片贴附在后一个记录电极 上或用眼科镊夹伤两个记录电极之间的神经,按(2)中的刺激条件给予刺激,可见到双向动 作电位的第二相逐渐减小,数分钟后完全消失。此时得到的即为单向动作电位。

①刺激强度与复合动作电位幅度的关系:用上述记录单向动作电位的方法进行如下实 验。

②“打开刺激器设置对话框”中选择对话框中的“设置”面板,选择 “设置”面板,

。将强度调整 在“模式”下拉菜单中选择“细电压”

;在“方式”下拉菜单中选择“单刺激”

为最小值即 0.005V,并开始刺激。注意观察此时 1 通道是否有动作电位波形出现。之后逐 渐增大刺激强度,并仔细观察,直至当强度增大到某一特定数值时,波形突然出现,标志着 此时在神经干中兴奋性最好的某个神经纤维发出了一个动作电位。 那么引起这第一个动作电 位的刺激强度即为该神经纤维的阈值;该刺激称阈刺激。

③进一步增大刺激强度, 观察不同神经纤维共同产生的复合电位的幅度以及刺激伪迹的 变化。 待复合电位的幅度不再随刺激强度而增大时, 记录此时的刺激强度值, 即为最大刺激。 再继续增大刺激强度,观察波形是否变化。

【参数设定】

实验参数详见下表(可据实际情况调整各参数)

通道 电极类型 增益选项 时间常数 滤波调节 扫描速度 50Hz滤波

采样参数

1 引导电极 200 DC 10k 0.63ms/div 关

刺激模式 刺激方式 延时 波宽 波间隔 频率 强度

刺激器参数

粗电压 单刺激 - - - - 1.00V 【注意事项】

1.标本的神经部分一定要尽量长一些, 并应仔细清除附着于神经干上的结缔组织 及血管。

2.神经在屏蔽盒中摆放时不可折叠,并应与各个电极均接触良好。

3.实验过程中屏蔽盒盖应保持关闭。

【思考题】

1.采用细胞外记录法所记录的神经干动作电位的原理是什么?

2. 在引导神经干双相动作电位时, 为什么动作电位的第一相的幅值比第二相的幅值大?

3.在实验中,神经干复合动作电位的幅值可在一定范围内随刺激强度的增加而增大, 这与“全或无”定律矛盾吗?

实验一 神经干动作电位的引导,兴奋传导速度及不应期的测定

神经干动作电位、传导速度及不应期的测定 【目的和原理】 神经纤维的兴奋表现为动作电位的产生和传导,神经纤维上传导的动作电位通常称为神经冲动。在神经细胞外表面,已兴奋部位带“负电”,未兴奋部位带“正电”,用引导电极引导出此电位差,输入到示波器,则可记录到动作电位的波形。本实验用细胞外记录法,可引导出坐骨神经的复合动作电位。 神经纤维兴奋的标志是产生一个可以传导的动作电位,它依局部电流或跳跃传导的方式沿神经纤维传导。其传导速度取决于神经纤维的直径、内阻、有无髓鞘等因素,可用电生理学方法来记录和测量。 神经纤维在一次兴奋过程中,其兴奋性可发生周期性变化,包括绝对不应期、相对不应期、超常期和低常期。本实验主要目的是学习电生理仪器的使用方法,掌握离体神经干动作电位的细胞外记录法及其基本波形的判断和测量。掌握神经干动作电位传导速度及其不应期的测定方法,通过调整条件刺激和测试刺激之间的时间间隔,来测定坐骨神经干的绝对不应期。 【实验对象】 蟾蜍或蛙。 【实验器材和药品】 蛙类手术器械一套、电子刺激器、示波器(或计算机实时分析系统)、神经屏蔽盒、任氏液。 【实验步骤】 1.制备坐骨神经——胫、腓神经标本操作方法详见3.8。 2.连接装置(见图8-1-1)。 3.准备仪器: (1)刺激器:调节刺激器各项参数:刺激方式连续刺激,频率16Hz,刺激强度0.5v,波宽0.1ms。调节延迟使动作电位的图像位于示波器荧光屏的中央。 (2)示波器:灵敏度:1~2mv/cm,扫描速度:1~2ms/cm,引导电极输入到示波器的“AC”端,双边输入,刺激器的“同步输出”接示波器“外触发输入”,触发选择设置为“同步触发”。 4.观察项目:

蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告

实验二蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定 一、蟾蜍坐骨神经干动作电位引导及传导速度测定 实验目的:加强理解兴奋传导的概念,掌握测定神经干动作电位传导速度的方法。 熟悉仪器设备的操作。 实验原理:通过测出示波器上动作电位传导的距离和传导所需的时间,计算传导速度,可以了解神经的兴奋状态。 1.潜伏期法:测量第一个通道动作电位潜伏期的时间t,输入刺激电极到第一个引导电极间的距离s,v=s/t。 2.潜峰法:测量两个通道的动作电位波峰间的时间差和两对引导电极间的距离,v=(s2-s1)/(t2-t1)。 实验步骤:1.制备坐骨神经-腓神经标本,放入神经屏蔽盒。 2.连接仪器,引导动作电位波形。 3.剪裁编辑图形,计算传导速度。 实验结果:1.(见图) 2.计算 S=10mm,t=0.33ms,v=10mm/0.33ms=33m/s 分析讨论: 1.我们通过对潜伏期法和潜峰法测定结果的比较,结合神经干的特性进行分析:动作电位的起点本质是神经干中传导速度最快的一类神经纤维传导兴奋到达记录点引起的,潜伏期法测量的速度本质是此类神经纤维的传导速度。而潜峰法的形成本质是各种神经纤维兴奋相互叠加后最强的部分。如果采用潜峰法

测量,由于“迁延效应”代表的时间不够准确,不能代表神经干的传导速度,故应该采用潜伏期测量才更准确。 2,.兴奋以局部电流的方式沿着神经干表面传导,兴奋传播过程中造成引导电极下电位改变,故可记录到双相动作电位.通过两对引导电极可观察到兴奋由一对引导电极下传至另一对引导电极下所需时间,根据兴奋传播的距离和所需时间即可计算出传导速度. 实验结论:本实验中测出神经干动作电位的传导速度为33m/s。由实验可知,神经纤维在静息状态下受到有效刺激可产生动作电位,同一条神经干中不同的神经纤维兴奋性不完全相同,且在一次兴奋后兴奋性发生改变,兴奋以一定的速度在神经干表面传导,神经兴奋的传导依赖于神经纤维的完整性。 二、兴奋性不应期的测定 实验目的:了解测定不应期的方法和原理,并加深对兴奋性在兴奋过程中的变化过程的理解。 实验原理:神经纤维受到适宜刺激后,产生兴奋,即动作电位。一次兴奋产生后,必须经绝对不应期、相对不应期、超常期等变化后,兴奋性才能恢复。本实验中先给一个条件刺激,再用另一个检验刺激在兴奋的不同时期给予刺 激,检查神经对检验性刺激反应的兴奋阈值及所引起动作电位的幅度。即可观察到神经组织兴奋性的变化过程。 实验步骤: 1.制备坐骨神经-腓神经标本,并浸在任氏液中,待其兴奋性稳定后实验。 2.连接仪器,设置实验参数,观察并测量神经干的不应期。 实验结果:(见图) 分析讨论:

生理学考试试题附 答案

基本组织: 一、单项选择题 1.衡量组织兴奋性的指标是()。 A.动作电位B.肌肉收缩或腺体分泌C.阈电位D.刺激阈E.以上均不是 2.下列关于反射的叙述,正确的是()。 A.反射弧都是固定不变的B.同一刺激的反射效应相同C.刺激传入神经所产生的反应也是反射D.反射弧的传出途径可以通过体液环节E.反射活动不一定需要反射弧的完整3.下列生理过程中,哪一个不是正反馈()。 A.排尿反射B.血液凝固C.分娩D.组织细胞受到刺激后,通过细胞膜的再生式钠内流E.血浆晶体渗透压增高时,ADH增多使肾脏对水的重吸收增强 4.下列生理过程中,不属于出胞作用的是()。 A.胃腺粘液细胞将粘液分泌到胃腔中B.胰腺细胞分泌胰蛋白酶原到导管中 C.肾小管上皮细胞向管腔分泌NH3D.副交感神经节后纤维末梢释放乙酰胆碱E.交感神经节后纤维末梢释放去甲肾上腺素 5.如果动作电位的持续时间为2ms,理论上每秒能传导的动作电位数不可能超过()。 A. 100次B. 200次C. 300次D. 400次E. 500次 6.降低细胞外液中Na+浓度时,发生的变化是()。 A.静息电位增大,动作电位幅值不变B.静息电位增大,动作电位幅值增高 C.静息电位不变,动作电位幅值降低D.静息电位不变,动作电位幅值增高 E.静息电位减小,动作电位幅值增高 7.安静时,细胞膜内K+向膜外移动是由于()。

A.单纯扩散B.易化扩散C.主动转运D.出胞作用E.以上都不是 8.肠上皮细胞由肠腔吸收葡萄糖是由于()。 A.单纯扩散B.易化扩散C.主动转运D.出胞作用E.吞噬作用 9.一般细胞用于维持钠泵转运的能量大约占其代谢能量的()。 A. 5~10%B. 10~20%C. 20~30%D. 30~40%E. 40~50% 10.正常细胞膜内K+浓度约为膜外钾离子浓度的()。 A. 12倍B. 30倍C. 50倍D. 70倍E. 90倍 11.正常细胞膜外Na+浓度约为膜内钠离子浓度的()。 A. 1倍B. 5倍C. 12倍D. 18倍E. 21倍 12.神经细胞在接受一次有效刺激后,兴奋性的周期变化是()。 A.相对不应期→绝对不应期→超常期→低常期 B.绝对不应期→相对不应期→低常期→超常期 C.绝对不应期→低常期→相对不应期→超常期 D.绝对不应期→相对不应期→超常期→低常期 E.绝对不应期→超常期→低常期→相对不应期 13.单根神经纤维的动作电位中负后电位出现在()。 A.去极相之后B.超射之后C.峰电位之后D.正后电位之后E.以上都不是14.就绝对值而言,静息电位的实测值与K+平衡电位的理论值相比()。 A.前者约大10%B.前者大C.前者小D.两者相等E.以上都不对 1

实验报告神经干动作电位妇人实验报告_0986文档

2020 实验报告神经干动作电位妇人实验报告_0986文档 EDUCATION WORD

实验报告神经干动作电位妇人实验报告_0986文档 前言语料:温馨提醒,教育,就是实现上述社会功能的最重要的一个独立出来的过程。其目的,就是把之前无数个人有价值的观察、体验、思考中的精华,以浓缩、系统化、易于理解记忆掌握的方式,传递给当下的无数个人,让个人从中获益,丰富自己的人生体验,也支撑整个社会的运作和发展。 本文内容如下:【下载该文档后使用Word打开】 1.捣毁脑脊髓 2.分离坐骨神经 3.安放引导电极 4.安放刺激电极 5.启动试验系统 6.观察记录 7.保存 8.编辑输出 1.观察神经干双相动作电位引导(单通道,单刺激) 如图,观察到一个双相动作电位波形。 2.神经干双相动作电位传导速度测定(双通道,单刺激) (1)选择“神经骨骼肌实验”―“传导速度测定”

(2)改变单刺激强度 (3)传导速度=传导距离(R1--R2-)/传导时间(t2-t1) 如图所示,两个波峰之间的传导时间△t=(t2-t1)=0.66ms 实验中,我们设定在引导电极1和3之间的距离△R=(R1--R2-)=1cm 故传导速度v=△R/△t=1cm/0.66ms=15.2m/s 3.神经干双相动作电位不应期观察 由上图可知,当刺激间隔时间为 4.61ms时,两双相动作电位开始融合,此时为总不应期;当刺激间隔时间为1.05ms时,双相动作电位完全融合,此时为绝对不应期。 故相对不应期=总不应期?C绝对不应期=4.61ms?C1.05ms=3.56ms 4.普鲁卡因对神经冲动传导的阻滞作用 如图所示,在两通道之间滴加普鲁卡因后,两双相电位间的波峰间隔时间为 1.03ms,由引导电极之间的间隔距离1cm,得此时传导速度: V1=1cm/1.03ms=9.71m/s 5.机械损伤对坐骨神经干双向动作电位的影响 由图可知,当剪断两引导电极之间的神经干时,第二通道的双相动作电位消失。故机械损伤对神经动作电位传导的阻滞作用比局麻药强。 6.实验注意事项 a)牛蛙腓肠肌后的神经干分支较难找,可以适当剪开周围软

人体解剖及动物生理学实验报告神经干复合动作电位

人体解剖及动物生理学实验报告 神经干复合动作电位 【实验题目】 神经复合动作电位 1、蟾蜍坐骨神经干复合动作电位(CAP)阈值和最大幅度的测定 2、蟾蜍坐骨神经干复合动作电位(CAP)传导速度的测定 3、蟾蜍坐骨神经干复合动作电位(CAP)不应期的测定 【实验目的】 确定蟾蜍坐骨神经干复合动作电位(CAP)的 1、临界值和最大值 2、传导速度 3、不应期(包括绝对不应期和相对不应期) 【实验原理】 神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联系所采用的信号。多个神经元的轴突集结成束形成神经,APs沿感觉神经经外周传向中枢或沿运动神经由中枢传向外周。坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。一个CAP是一系列具有不同兴奋性的神经纤维产生的多个AP的总和。刺激强度越大,兴奋的神经纤维数目就越多,CAP的幅度也就越大。与胞内引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小。 阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。在一定范围内增加刺激强度,CAP幅度相应增大。最大CAP所对应的最小刺激电位即最大刺激。 动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。它们包括神经的直径、有无髓鞘、温度等等。

神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。兴奋的周期性变化,依次包括绝对不应期、相对不应期等等。绝对不应期内,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期内,神经兴奋性较低,较大的刺激能够引起兴奋。绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返回)的特性。不应期的产生依赖于细胞膜上特定离子通道的特点,如钠、钾离子通道。 【实验方法】 1、制作蟾蜍坐骨神经干标本 (1)双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的坐骨神经干及其下行到小腿的两个分支:胫神经和腓神经,三段结扎,剪去无关分支后离体。注意保持神经湿润。 (2)将神经搭于标本盒内,保证神经与电极充分接触,中枢端接触刺激电极S1和S2,外周端接触记录电极R1-R5,之间接触接地电极。 (3)刺激输出线两夹子分别连接标本盒的刺激电极S1和S2,插头接生物信号采集系统RM6240的刺激输出插口;信号输入倒显得红色和绿色夹子分别连接记录电极(绿色夹子在前,引导出正向波形,即出现的第一个波峰向上),黑色夹子连接接地电极,插头接通道A、蟾蜍坐骨神经干复合动作电位(CAP)临界和最大幅度的确定 (1)打开信号采集软件,从“实验”菜单中选取“神经干动作电位”,出现自动设置的界面,各项参数已设置好,界面中只有一个采集通道,对应仪器面板上的通道1(因此信号输入线应连接在通道1)。 (2)检查装置链接正确,确定装置是否正常工作,以及神经是否具有活性。采用刺激强度1V,刺激时程0.2ms,延时5ms,刺激模式为单刺激。选择“同步触发”,按下“开始刺激”后,正常情况下屏幕上会出现一个双相电位即CAP。 (3)降低刺激强度,确定CAP的阈电位。记录刺激阈值及CAP幅度(波峰与波谷之间的差值)。 (4)以0.05V或更小的间隔,逐渐增大刺激强度,观察CAP幅度的变化,同时,记录刺激电位及对应的CAP幅度,直到CAP达到稳定,即最大值(神经标本在正常生理活性时,1V 以内的刺激强度即可引起最大的CAP)。

生理实验报告神经干复合动作电位

人体解剖及动物生理学实验报告 实验名称神经干复合动作电位 姓名 学号 系别 组别 同组姓名

实验室温度20℃ 实验日期2015年4月24日 一、实验题目 蟾蜍坐骨神经干复合动作电位(CAP) A蟾蜍坐骨神经干CAP阈值和最大幅度的确定 B蟾蜍坐骨神经干CAP传导速度的确定 C蟾蜍坐骨神经干CAP不应期的确定 二、实验目的 确定蟾蜍坐骨神经干复合动作电位(CAP)的 (1)临界值和最大值 (2)传导速度 (3)不应期(相对不应期、绝对不应期) 三、实验原理 神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联系所采用的信号,多个神经元的轴突集结成束形成神经,APs沿感觉神经有外周传向中枢或沿运动神经由中枢传向外周。坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。一个CAP是一系列具有不同兴奋

性的神经纤维产生的多个AP的总和。刺激强度越爱,兴奋的神经纤维数目就越多,CAP 的幅度也就越大。与胞内引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小。 阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。在一定范围内增加刺激强度,CAP幅度相应增大。最大CAP所对应的最小刺激电位即最大刺激。 动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。它们包括神经的直径、有无髓鞘、温度等等。 神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。兴奋的周期性变化,依次包括绝对不应期、相对不应期等等。绝对不应期内,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期内,神经兴奋性较低,较大的刺激能够引起兴奋。绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返回)的特性。不应期的产生依赖于细胞膜上特定离子通道的特点,如钠、钾离子通道。 四、实验方法 蟾蜍坐骨神经标本的制作 1.双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的坐骨神经 干及其下行到小腿的两个分支:胫神经和腓神经,三段结扎,剪去无关分支后离体。注意保持神经湿润。 2. 将神经搭于标本盒内,保证神经与电极充分接触,中枢端接触刺激电极S1和S2, 外周端接触记录电极R1-R2,之间接触接地电极。 3. 刺激输出线两夹子分别连接标本盒的刺激电极S1和S2,插头接生物信号采集系 统RM6240的刺激输出插口;信号输入倒显得红色和绿色夹子分别连接记录电极(绿色夹子在前,引导出正向波形,即出现的第一个波峰向上),黑色夹子连接接地电极,插头接通道1.

生理实验报告神经干复合动作电位

人体解剖及动物生理学实验报告实验名称神经干复合动作电位 姓名 学号 系别 组别 同组姓名 实验室温度20℃ 实验日期2015年4月24日一、实验题目 蟾蜍坐骨神经干复合动作电位(CAP) A蟾蜍坐骨神经干CAP阈值和最大幅度的确定 B蟾蜍坐骨神经干CAP传导速度的确定 C蟾蜍坐骨神经干CAP不应期的确定 二、实验目的 确定蟾蜍坐骨神经干复合动作电位(CAP)的 (1)临界值和最大值

(2)传导速度 (3)不应期(相对不应期、绝对不应期) 三、实验原理 神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联系所采用的信号,多个神经元的轴突集结成束形成神经,APs沿感觉神经有外周传向中枢或沿运动神经由中枢传向外周。坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。一个CAP是一系列具有不同兴奋性的神经纤维产生的多个AP的总和。刺激强度越爱,兴奋的神经纤维数目就越多,CAP的幅度也就越大。与胞内引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小。 阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。在一定范围内增加刺激强度,CAP幅度相应增大。最大CAP所对应的最小刺激电位即最大刺激。 动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。它们包括神经的直径、有无髓鞘、温度等等。 神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。兴奋的周期性变化,依次包括绝对不应期、相对不应期等等。绝对不应期内,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期内,神经兴奋性较低,较大的刺激能够引起兴奋。绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返回)的特性。不应期的产生依赖于细胞膜上特定离子通道的特点,如钠、钾离子通道。 四、实验方法 蟾蜍坐骨神经标本的制作 1.双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经,游离大腿肌肉之间的坐骨神经干及其下行到小腿 的两个分支:胫神经和腓神经,三段结扎,剪去无关分支后离体。注意保持神经湿润。 2. 将神经搭于标本盒内,保证神经与电极充分接触,中枢端接触刺激电极S1和S2,外周端接触记录 电极R1-R2,之间接触接地电极。

机能学实验报告

机能学实验报告 实验一、小肠平滑肌生理特性的观察与分析 一、实验目的—— 1.观察温度、乙酰胆碱、肾上腺素等药物对离体家兔小肠平滑肌的作用; 2.观察消化道平滑肌的一般生理特性及分析理化环境改变对其舒缩活动的影响。 二、实验原理 消化道平滑肌和骨骼肌、心肌一样,也具有兴奋性、传导性和收缩性,有些也具有自律性。相比之下消化道平滑肌的兴奋性低,收缩慢,伸展性大,具有紧张性收缩,对化学物质、温度变化

及牵张刺激较敏感等特性。小肠离体后,置于适宜的溶液中,观察其收缩活动及环境变化的影响,观察分析上述生理特性。 三、实验材料--- 1、实验动物:家兔 2、器械、药品:电热恒温水浴锅、浴槽、张力换能器(量程为25g以下)、BL-410生物记录系统、L型通气管、道氏袋、注射器、培养皿、温度计、烧杯、螺丝夹、三维调节器、台氏液、0.01%去甲肾上腺素、0.01%乙酰胆碱、1mol/L NaOH溶液、lmol/L HCl 溶液、2%CaCI2溶液。 四、实验方法和步骤 1、标本制备流程: ①击昏家兔: 用木槌猛击兔头枕部,使其昏迷。 ②剖开腹腔快速取出肠管: 立即剖开腹腔,找出胃幽门与十二指肠交界处,快速取长20~30cm的肠管,先将与该肠管相连的肠系膜沿肠缘剪去,置于供氧台氏液中轻轻漂洗,把肠内容物基本洗净。 ③制作离体肠标本: 将肠管分成数段,每段长2-3cm,两端各系一条

线,保存于供氧的38C左右的台氏液中 2、仪器安装与调试实验安装(如图): 恒温水浴锅控制加热,恒温工作点定在38C。 将充满氧气的道氏袋与通气钩相连接,将肠段一端系在通气管钩上,另一端与张力换能器相连。控制通气量,使氧气从通气管前端呈单个而不是成串逸出。 仪器调试:BL-410系统的使用,选择“实验项目”中的“消化实验”选中“消化道平滑肌生理特性”。相关参数设置的参考值:时间常数t -DC 高频滤波 F —30Hz,显速—4.00s/div,增益—100g。用鼠标左键单击工具条上的“开始” 按钮,调节参数至波形幅度、密度适当,待收缩曲线稳定后,单击记录按钮。 观察项目现象及解释 1.待标本稳定后,记录小肠平滑肌收缩的对照曲线。 2?乙酰胆碱的作用用滴管吸入0.01%乙酰胆碱向灌流浴槽内滴1~2滴。观察到明显效应后,立即从排水管放出浴槽内含乙酰胆碱的台氏液,加入新鲜温台氏液,由此反复3次,以洗涤或稀释残留的乙酰胆碱,使之达到无效浓度,待小肠运动恢复后进行

神经干动作电位与神经纤维动作电位比较

2.神经干动作电位是神经兴奋的客观标志,给具有兴奋性的神经干以一定强度的刺激,会产生动作电位并传导。在神经细胞外面,已兴奋部位的膜外电位负于静息部位。当神经冲动通过后,兴奋处的膜外电位又恢复到静息时的水平。所以兴奋部位和邻近部位之间可出现电位差,用引导电极引导出此电位差,输入到示波器,则可记录到动作电位的波形。本实验采用细胞外记录法,可引导出坐骨神经的复合动作电位。 3.经纤维兴奋的标志是产生一个可以传导的动作电位,它以局部电流或跳跃式传导的方式沿神经纤维传导。其传导速度取决于神经纤维的直径、内阻、有无髓鞘等因素。坐骨神经-腓神经为一混合神经干,其动作电位是由一群不同兴奋阈值、传导速度和幅值的电位总和而成,为复合动作电位。蛙类坐骨神经干中以Aa类纤维为主,传导速度大约35~40m/s。测定神经冲动在神经干上传导的距离和通过这些距离所需的时间,即可计算出该神经干兴奋传导的速度。 4.动作电位在神经纤维上的传导有一定的速度。不同类型的神经纤维,其传导速度各不相同,取决于神经纤维的直径、有无髓鞘、环境温度等因素。蛙类坐骨神经干中以Aα类纤维为主,传导速度大约35~40m/s。测定神经冲动在神经干上传导的距离(d)与通过这一距离所需的时间(t),即可根据V=d/t 求出神经冲动的传导速度。 5.神经纤维的兴奋部位相对于未兴奋部位来说呈负电位,两点之间存在电位差,通过单极或双极电极的引导在记录系统上进行显示和分析。由于采用的是胞外记录的方法,因而在单极记录时,测得的动作电位实际上是组成神经干中的每根神经纤维兴奋后的超射值在神经干表面的叠加。即此动作电位是一复合波,其上升相、下降相及峰值不是相应的单一动作电位波形的去极化相、复极化相及峰电位。在双极记录时,测得的波形实际上是两个记录电极的电位差,与单一动作电位波形相差更大,这使问题的分析更加复杂。动物实验制作的坐骨神经 腓肠肌标本中,神经干是由具有不同生理特性的不同种类神经纤维所组成,故复合动作电位记录的是复合波。然而,每种纤维兴奋后传导速度各不一样,波长也各不相等,加上引导方式不同,这也增加了我们分析复合双相动作电位的复杂性及带来传导速度测定的困难。 6.对于单根神经纤维,其兴奋后产生负波。对于某一点,负波的产生和终止不是突然的,而需要一定的时间才能达到最高点,故记录曲线的上升和下降都具有一定的斜率。神经干受刺激后,由于不同神经纤维兴奋产生了不同的负波,它们波长不等,传导速度也不相等,所以

生理学理论指导:动作电位及其产生机制

在静息电位的基础上,细胞受到一个适当的刺激,其膜电位所发生的迅速、一过性的极性倒转和复原,这种膜电位的波动称为动作电位。动作电位的升支和降支共同形成的一个短促、尖峰状的电位变化,称为锋电位。锋电位在恢复至静息水平之前,会经历一个缓慢而小的电位波动称为后电位,它包括负后电位和正后电位。 细胞的动作电位具有以下共同特征:①动作电位具有“全或无” 特性,动作电位是由刺激引起细胞产生的去极化过程。而且刺激必须达到一定强度,使去极化达到一定程度,才能引发动作电位。对于同一类型的单细胞来说一旦产生动作电位,其形状和幅度将保持不变,即使增加刺激强度,动作电位幅度也不再增加,这种特性称为动作电位的全或无 ( allornone )现象,即动作电位要么不产生要产生就是最大幅度;②动作电位可以进行不衰减的传导,动作电位产生后不会局限于受刺激的部位,而是迅速沿细胞膜向周围扩布,直到整个细胞都依次产生相同的电位变化。在此传导过程中,动作电位的波形和幅度始终保持不变;③动作电位具有不应期。细胞在发生一次兴奋后,其兴奋性会出现一系列变化,包括绝对不应期、相对不应期、超常期和低常期。绝对不应期大约相当于锋电位期间,相对不应期和超常期相当于负后电位出现的时期;低常期相当于正后电位出现的时期。 (二)动作电位的产生机制 动作电位上升支主要由Na吶流形成,接近于Na啲电-化学平衡电位。 1.细胞内外Na+和K+的分布不均匀,细胞外高Na+而细胞内高K+。 2.细胞兴奋时,膜对Na+有选择性通透,Na+顺浓度梯度内流,形成锋电位的上升支。 3.K+外流增加形成了动作电位的下降支。 在不同的膜电位水平或动作电位发生过程中,Na+通道呈现三种基本

神经干动作电位实验报告

神经干动作电位实验报Experimental report of neUhtstem action potential 告 Intern ship report 实验报告

一、实验目的: 1. 学习蛙坐骨神经干标本的制备 2. 观察坐骨神经干的双相动作电位波形,并测定最大刺激强度 3. 测定坐骨神经干双相动作电位的传导速度 4. 学习绝对不应期和相对不应期的测定方法 5. 观察机械损伤或局麻药对神经兴奋和传导的影响 二、实验材料 1. 实验对象:牛蛙 2. 实验药品和器材:任氏液,2%普鲁卡因,各种带USB接口或插头的连接导线,神经屏 蔽盒,蛙板,玻璃分针,粗剪刀,眼科剪,眼科镊,培养皿,烧杯,滴管,蛙毁髓探针,BL-420N 系统 三、主要方法和步骤: 1. 捣毁脑脊髓 2. 分离坐骨神经 3. 安放引导电极 4. 安放刺激电极 5. 启动试验系统 6. 观察记录 7. 保存 8. 编辑输出 四、实验结果和讨论 1.观察神经干双相动作电位引导(单通道,单刺激) 如图,观察到一个双相动作电位波形。

Pm驴:i SQOQOKi 2.0 ms 7 射¥ 也00z 时间 一—j .................... : .................. 频率: 最大值- ...... ' ........ ' ......... [ ........ ;...... [协小值: -15 - -20 _ 1 OOY oo: oo. m兀卫EQ创 2.神经干双相动作电位传导速度测定(双通道,单刺激) -ID kUUUChz L.U ns ZlT m¥ii J.ttmz j ................. ■:- I 2? 1. WV 1 I --------------- 14 I I 4 I I I ooTio mo oa nr iins on oo oru oom coe co nr n o日on m nn oo oo ni2 DO on rtu OO CIJ ri^ oo oc OIA (1) 选择“神经骨骼肌实验”一“…传导速度测定” (2) 改变单刺激强度 (3) 传导速度=传导距离(R1--R2-)/传导时间(t 2-t 1) 如图所示,两个波峰之间的传导时间△ t = (t 2-t 1) = 0.66ms 实验中,我们设定在引导电极1和3之间的距离△ R = (R 1--R2-) = 1cm 故传导速度v = △ R/ △ t = 1cm / 0.66ms = 15.2 m/s 释: 最 大ii; ■小 值: 平均值: 嶂赠但? 面租 BJ祠; 最知宜. 环值: 平均值: 而租

医学基础知识生理学名词解释

(一)诸论 1.兴奋性:生理学中将可兴奋细胞接受刺激后产生动作电位的能力称为兴奋性。 2.刺激:能使细胞或机体发生反应的一些环境因素的变化称为刺激。 3.兴奋:细胞功能变化由弱变强的过程称为兴奋。 4.抑制:细胞功能变化由强变弱的过程称为抑制。 5.阈值:是指使细胞膜达到阈电位的刺激强度和时间的总和。 6.阈刺激:能使组织细胞发生变化的最小刺激称为阈刺激。 7.内环境:生理学中将围绕在多细胞动物体细胞周围的液体即细胞外液,称为 内环境。 8.反应:活组织接受刺激后发生的功能改变。 9.内环境稳态:是指内环境的理化性质,如温度、PH、渗透压和各种液体成分 的相对恒定状态。 10.神经调节:是通过反射而影响生理功能的一种调节方式,是人体生理功能中 最主要的一种调节方式。 11.体液调节:是指体内某些特殊的化学物质通过体液途径而影响生理功能的一 种方式。 12.自身调节:是指组织细胞不依赖于神经或体液因素,自身对环境刺激发生的 一种适应性反应。 13.反射:是指机体在中枢神经系统的参与下,对内、外环境作出的规律性应答。 14.非条件反射:是指生来就有、数量有限、形式较固定及较低级的反射活动。 15.条件反射:是指通过后天学习和训练而形成的反射,数量无限,是一种高级 的反射活动。 16.反馈:由受控部分发出的信息反过来影响控制部分的活动。 17.正反馈:受控部分发出的反馈信息,促进加强控制部分的活动,最后使受控 部分的活动朝着与它原先活动相同的方向改变,称为正反馈。 18.负反馈:受控部分发出的反馈信息,调整控制部分的活动,最终使受控部分 的活动朝着与它原先活动相反的方向改变。称为负反馈。 (二)细胞基本功能 1.静息电位:静息时,质膜两侧存在着外正内负的电位差,称为静息电位。 2.动作电位:在静息电位的基础上,给细胞一个适当刺激,可触发其发生可传 播的膜电位波动称为动作电位。 3.阈电位:产生动作电位时,要使膜去极化是最小的膜电位,称为阈电位。 4.局部电位:由于去极化电紧张电位和少量离子通道开放产生的主动反应叠加 尔形成的。 5.终板电位:在神经-肌接头处,由于ACH与受体接合,使终板膜上钠离子内流 大于钾离子外流尔形成的去极化电位。 6.局部电流:由于电位差的存在,动作电位的发生部位分邻近部产生的电流, 称为局部电流。 7.极化:通常将平稳的静息电位存在时细胞膜电位外正内负的状态称为极化。 8.去极化:静息电位减小的过程,称为去极化。 9.反极化:去极化至零电位后膜电位如进一步变为正值,称为反极化。 10.复极化:质膜去极化后,静息电位方向恢复的过程,称为复极化。 11.超极化:静息电位增大的过程或状态称为超极化。 12.兴奋-收缩耦联:将肌细胞的电兴奋和机械性收缩联系起来的中介机制。

完整word版,人体机能 蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告

神经干双向动作电位的引导传导速度及不应期的测定作者:2011222681宋利婷组员:2011222702曾惜2011222709张芮2011222698杨袁虹 一、实验对象:蟾蜍 二、实验目的:观察蟾蜍坐骨神经动作电位的基本波形,掌握坐骨神经制备方法与引导动作电位的方法,理解与刺激和最大刺激强度的概念测定潜伏期时程和波幅,学会通过潜伏期法和潜峰法测定神经冲动的传导速度,通过测定神经干不应期理解兴奋性在兴奋过程中的变化过程。 三、实验内容 图一:阈刺激和最大刺激强度的测定 由上图可知,以0.100v为起始刺激强度,在0.100到0.300v的刺激时,不产生动作电位,

逐渐增大强度,一直到当刺激强度为0.4V时,刚好引产生动作电位,即阈刺激为0.4V,当刺激强度达到1.4V后,即使再增加刺激强度,动作电位的幅也不再改变,即最大(适)刺激强度为1.4V. 图二:潜伏期波幅时程及速度的测定 由在最适刺激强度时动作电位原图上进行区间测量可知,潜伏期为0.60ms,时程t1为2.84ms ,波幅为2.72mV,输入刺激电极到第一个引导电极间距离s=1.3cm,以传导速度和根据速度的公式计算传导速度v1=s/t1,求得的速度v1=45m/s 图三:潜峰法测量速度

如图是通过测量两个通道的动作电位波峰间的时间差,为(t1-t2),测量并输入两对引导电极间的距离为(s2-s1),s2=4.7cm,s1=3.8cm,t1-t2=0.28ms,由传导速度和用公式计算传导速度:v2=(s2-s1)/(t1-t2),v2=321m/s 图四:绝对不应期和相对不应期的测定

神经干动作电位传导速度的测定

For personal use only in study and research; not for commercial use 神经干动作电位传导速度的测定 实验对象:蟾蜍 一实验目的 掌握坐骨神经标本的制备方法。 掌握引导神经干复合动作电位和测定其传导速度的基本原理。 二相关知识 (一)兴奋及兴奋性的概念 (二)动作电位的潜伏期、动作电位时程和幅值 1、动作电位:各种可兴奋细胞在受到刺激而兴奋时,可以在细胞膜静息电位的基础 上发生一次短暂的,可向周围扩布的电位波动。这种电位波动称为动作电位。(三)、动作电位的传导 局部电流的形式 1、细胞外记录 2、神经干的动作电位 神经干是由许多粗细不等的有髓和无髓神经纤维组成的混合神经,故神经干动作电位与单根神经纤维的动作电位不同,它是由许多神经纤维的动作电位合成的一种复合电位。 三实验原理 (一)、单根神经纤维动作电位的引导及其传导 1、记录出了一个先升后降的双相动作电位的原理 当神经纤维未受刺激时,膜外与电极所接触的两点之间没有电位差,所以两电极之间也无电位差存在,扫描线为一水平基线。在神经干左端给予电刺激后,则产生一个向右传导的冲动(负电位),当冲动传到1电极(负电极)下方时,此处电位较2处为低,产生了电位差,扫描线向上偏转,记录出一个向上的波形(在电生理实验中,为了便于观察,习惯上规定负波向上)。随后,冲动继续向右侧传导,离开1电极传向2电极处。当它到达2电极(正电极)下方时,因1电极处神经差不多已恢复到原来的状态,于是2电极处又较1电极处为负,引起扫描线向下偏转,记录出一个向下的波形。这样,在神经冲动向右传导的过程中,就记录出了一个先升后降的双相动作电位。 负电极在前时,它首先记录到神经干表面由正变负的电位变化,经历了由正到负再到正的过程,因此记录出动作电位的上相。当在后的正电极记录到这种同样的电位变化过程时,显示相反的情况,记录出动作电位的下相。如果互换正、负电极的位置,则记录到先降后升的双相动作电位。 C.?? A点神经纤维多于B点(次要原因)。 (二)、神经干动作电位的引导及其传导 四实验步骤 (一)、制备蛙类坐骨神经-胫腓神经标本 通过观看录象让学生学习制作方法

实验一_神经干动作电位的引导及其传导速度和不应期的测定

一目的要求: 1.学习蛙类动物单毁髓与双毁髓的方法。 2.学习并掌握蛙类坐骨神经干标本的制备方法。 3.学习电生理学实验方法。 4.观察蟾蜍坐骨神经干复合动作电位的波形,了解其产生的基本原理。 二基本原理: 神经干在受到有效刺激后,可以产生动作电位,标志着神经发生兴奋。如果在神经干另一端引导传来的兴奋冲动,可以引导出双相的动作电位,如在两个引导电极之间将神经麻醉或损坏,则引导出的动作电位即为单相向动作电位。 神经细胞的动作位是以”全或无”方式发生的。坐骨神经干是由很多不同类型的神经纤维组成的,所以,神经干的动作电位是复合动作电位。复合动作电位的幅值在一定刺激强度下是随刺激强度的变化而变化的。 三动物与器材: 蟾蜍、常用手术器械(手术剪、手术镊、金冠剪、眼科剪、毁髓针和玻璃分针)、蛙板、固定针、不锈钢盘、污物缸、粗棉线、任氏液、计算机生理信号处理系统、神经屏蔽盒。 四方法步骤: 1.蟾蜍的单毁髓与双毁髓 一手握住蛙或蟾蜍(可用纱布包裹蟾蜍躯干部),背部向上。用拇指压住蛙或蟾蜍的背部,食指按压其头部前端,使头端向下低垂; 另一手持毁髄针,由两眼之间沿中线向后触划,当触及到两耳中间的凹陷处(此处与两眼的联机成等边三角形)时,持针手即感觉针尖下陷,此处即是枕骨大孔的位置。将毁髄针由凹陷处垂直刺入,即可进入枕骨大孔(图t-1)。然后将针尖向前刺入颅腔,在颅腔内搅动,以捣毁脑组织。如毁髄针确在颅腔内,实验者可感到针尖触及颅骨。此时的动物为单毁髓动物。再将毁髓针退至枕骨大孔,针尖转冋后方,与脊柱平行刺入椎管,以捣毁脊髓。彻底捣毁脊髓时,可看到动物的后肢突然蹬直,而后瘫痪如棉(图t-2),此时的动物为双毁髓动物。如动物仍表现肢肌肉紧张或活动自如,必须重新毁髓。操作过程中应注意使蟾蜍头部向外侧(不要挤压耳后腺),防止耳后腺分泌物射入实验者眼内(如被射入,则需立即手生理盐水冲洗眼睛)。 2.坐骨神经干标本制备 (1) 剥制后肢标本(图t-3) (2) 分离两后肢(图t-4)

【实验报告】骨骼肌的单收缩与复合收缩及神经干动作电位、神经冲动传导速度、神经干不应期的测定

实验二:骨骼肌的单收缩与复合收缩及 神经干动作电位、神经冲动传导速度、神经干不应期的测定 实验人: 同组人: 【实验目的】 ?了解肌肉收缩过程的时相变化 ?观察刺激强度和频率对骨骼肌收缩形式的影响 ?掌握离体神经干动作电位的细胞外记录法及其基本波形的判断和测量。 ?掌握神经干动作电位传导速度及其不应期的测定方法。 【实验原理】 ?骨骼肌的单收缩与复合收缩 肌肉兴奋的外在表现是收缩。 当其受到一个阈上强度的刺激时,爆发一次动作电位,迅速发生一次收缩反应,叫单收缩。单收缩曲线分为潜伏期、收缩期、舒张期三个时期。 在一定范围内,肌肉收缩的幅度随刺激强度的增加而增大。 当相继受到两个以上同等强度的阈上刺激时,因频率不同,下一次刺激可能落在前一刺激所引起的单收缩的不同时期内,造成: ?几个分离的单收缩:频率低于单收缩频率,间隔大于单收缩时间 ?收缩的总和(强直收缩): 不完全强直收缩:后一收缩发生在前一收缩的舒张期 完全强直收缩:后一收缩发生在前一收缩的收缩期内,各收缩不能 分开,肌肉维持稳定的收缩状态。 ?神经干动作电位、神经冲动传导速度、神经干不应期的测定 ?神经干是由许多神经纤维组成的,神经兴奋的标志是动作电位。在一定范围内神经 干动作电位的幅度随刺激强度的增加而增大,这是由于各神经纤维兴奋性的不同, 虽然每条纤维动作电位产生都遵守“全或无”的方式,但神经干动作电位记录到的是 多个兴奋阈值、传导速度和振幅各不相同的动作电位的总和,为一个复合动作电位,所以不存在阈强度,也不表现为“全或无”的特征。根据引导方法的不同(双极引导 或单极引导),可分别得到双相、单相动作电位。 ?动作电位在神经纤维上的传导有一定的速度。不同类型的神经纤维其传导速度各不 相同,主要取决于神经纤维的直径、有无髓鞘、环境温度等因素。蛙类坐骨神经干 传导是速度约为35-40 m/S, 神经纤维在一次兴奋过程中,其兴奋性可发生周期性变 化,包括绝对不应期、相对不应期、超常期和低常期。 ?为了测定神经一次兴奋之后兴奋性的变化,可先给神经施加一个条件性刺激,引起 神经兴奋,然后再用一个检验性刺激在前一兴奋过程的不同时相给予刺激,检查神 经对检验性刺激反应的兴奋阈值,以及所引起的动作电位的幅度变化,来判断神经 组织兴奋性的变化。 本次实验中所给条件性刺激和检验性刺激系两个参数完全相同的刺激,用在不同时

实验报告:蟾蜍坐骨神经干动作电位引导及传导速度测定

一、蟾蜍坐骨神经干动作电位引导及传导速度测定 实验目的:加强理解兴奋传导的概念,掌握测定神经干动作电位传导速度的方法。熟悉仪器设备的操作。 实验原理:通过测出示波器上动作电位传导的距离和传导所需的时间,计算传导速度。 1.潜伏期法:测量第一个通道动作电位潜伏期的时间t,输入刺激电极到第一个引导 电极间的距离s,v=s/t。 2.潜峰法:测量两个通道的动作电位波峰间的时间差和两对引导电极间的距离,v= (s2-s1)/(t2-t1)。 实验步骤:1.制备坐骨神经-腓神经标本,放入神经屏蔽盒。 2.连接仪器,引导动作电位波形。 3.剪裁编辑图形,计算传导速度。 实验结果:1.图形 2.计算 S=10mm, t=0.33ms, v=10mm/0.33ms=33m/s 分析讨论: 1. 当刺激端和记录端离得较远时,引导的复合动作电位波形会发生什么改变,为什么? 2.用什么方法可使复合动作电位传导速度的测量更准确? 实验结论:神经干动作电位的传导速度为33m/s.

二、兴奋性不应期的测定 实验目的:了解测定不应期的方法和原理,并加深对兴奋性在兴奋过程中的变化过程的理解。 实验原理:神经纤维受到适宜刺激后,产生兴奋,即动作电位。一次兴奋产生后,必须经绝对不应期、相对不应期、超常期等变化后,兴奋性才能恢复。本实验通过生物电放大器引导并记录神经干复合动作电位,验证和测量动作电位的不应期。先给一个条件刺激,再用另一个检验刺激在兴奋的不同时期给予刺激,检查兴奋未阈值及所引起动作电位的幅度。 实验步骤: 1.制备坐骨神经-腓神经标本,并浸在任氏液中约5分钟,待其兴奋性稳定后实验。 2.连接仪器,设置实验参数,观察并测量神经干的不应期。 实验结果:(见图) 分析讨论: 1.为什么要先引导神经纤维的单向复合动作电位,然后再测量其兴奋性的不应期? 2.神经干不应期与单根神经纤维的不应期有何不同? 实验结论:兴奋性的不应期包括绝对不应期、相对不应期、超常期、低常期。

神经干动作电位

反射时测定和反射弧分析 神经干动作电位的测定 2013级生命科学3班张柏辉学号:20132501076 1.实验目的 1.观察蛙坐骨神经干动作电位的基本波形,并了解其产生的基本原理; 2.学习测定反射时的方法,了解反射弧的组成; 3.了解脊髓反射的功能特性。 2.实验原理 (一)反射时测定和反射弧分析 反射是指对某一刺激无意识的应答。反射活动的结构基础称为反射弧,包括感受器、传入神经、神经中枢、传出神经和效应器。从皮肤接受刺激至机体出现反应的时间称为反射时。反射时是反射通过反射弧所用的时间。反射弧的任何一部分缺损,原有的反射不再出现。中枢的兴奋和抑制同时存在又相互影响。在脊髓反射的中枢之间或高位脑和脊髓对低位脊髓反射中枢均存在抑制作用,这些抑制作用保证了机体活动的协调性。 (二)神经干动作电位的测定 神经干在受到有效刺激后可以产生复合动作电位,标志着兴奋的产生。如果在立体神经干的一端施加刺激,从另一端引导传来的兴奋冲动可以记录出双相动作电位,假如在引导的两个电极之间将神经干麻醉或损坏,阻断其兴奋传导能力,此时可以记录到单相动作电位。 3.实验对象与实验材料 (一)材料:虎纹蛙 (二)器具:手术剪、手术镊、手术刀、金冠剪、眼科剪、毁髓针、玻璃分针、木质蛙板、固定针、锌铜弓、瓷盘、污物缸、滴管、纱布、粗棉线、滤纸片、支架、蛙嘴夹、小烧杯、秒表、神经屏蔽盒、PowerLab、刺激线、USB线、电脑 (三)试剂:任氏液、2%普鲁卡因、0.5%及1%硫酸溶液 4.实验方法与步骤 (一)反射时与反射弧的测定 1. 屈反射

取一只虎纹蛙,只毁脑髓制成脊蛙(只毁脑),用蛙嘴夹夹住蛙下颌悬挂在支架上,右后肢最长趾浸入0.5%硫酸溶液中2~3mm(<10s),同时开始计时。当出现屈反射时立即停止计时,并用清水冲洗受刺激皮肤,纱布擦干,重复测屈反射时3次。同样方法测左后肢最长趾的屈反射时。 2.损毁感受器 用手术剪自后肢最长趾基部环切皮肤,后用手术镊剥净长趾上的皮肤,用0.5%硫酸溶液刺激去皮皮肤,并记录侧时结果。 3.对照没损毁感受器 改换同侧后趾有皮肤趾,将其浸入0.5%硫酸溶液中,测定反射时。 4.擦或抓反射 取一浸有0.5%硫酸溶液的滤纸片贴于虎纹蛙腹部,记录抓或擦反射的反射时。 5.麻醉神经 右侧坐骨神经滴加普鲁卡因液,加药同时开始计时,每2min重复步骤3,并记录加药时间。 屈反射消失后,重复步骤4,记录加药时间。 6.测左后肢最长趾屈反射时,并与步骤1比较。 7.毁坏脊髓,重复步骤7. (二)神经干动作电位的测定 1. 标本制备:坐骨神经干(双毁髓->剥制后肢->分离两后肢),分离坐骨神经到踝关节附近,将标本搭置在神经屏蔽盒各金属极上; 2.设置实验装置:连接神经屏蔽盒各接线; 3.设置CH3 BioAmp和Stimulator:打开PowerLab电源,打开Scope软件(或Chart5),设置通道3: Ch3 BioAmp:Range 5mV, Filter 20Hz,High Pass 10Hz (调零用DC档);设置Stimulator:单刺激Delay 120ms ,波宽Duration:10mS,振幅Ampt:100mV;设置Overlay on Top 点右下角Start ,即可看到刺激输出后得到的动作电位波形图。每点一次START,记录号增加在图下方,调节单刺激持续时间Duration和振幅大小,以及调节放大器HighPass等参数,均对实验结果有影响。得到双相电位后,以普鲁卡因液或棉线结扎法损伤神经,调参数至振幅Amp5.000mV,,观察单相电位。

相关主题
文本预览
相关文档 最新文档